The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

Citation:

Sánchez AG, Montesano F, Kazin EA, Aubourg E, Beutler F, Brinkmann J, Brownstein JR, Cuesta AJ, Dawson KS, Eisenstein DJ, et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples. Monthly Notices of the Royal Astronomical Society. 2014;440 :2692-2713.

Date Published:

May 1, 2014

Abstract:

We explore the cosmological implications of the angle-averagedcorrelation function, ξ(s), and the clustering wedges,ξ(s) and ξ(s), of the LOWZ andCMASS galaxy samples from Data Releases 10 and 11 of the Sloan DigitalSky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Ourresults show no significant evidence for a deviation from the standardΛ cold dark matter model. The combination of the information fromour clustering measurements with recent data from the cosmic microwavebackground is sufficient to constrain the curvature of the Universe toΩk = 0.0010 ± 0.0029, the total neutrino mass to∑mν < 0.23 eV (95 per cent confidence level), theeffective number of relativistic species to Neff = 3.31± 0.27 and the dark energy equation of state to wDE =-1.051 ± 0.076. These limits are further improved by addinginformation from Type Ia supernovae and baryon acoustic oscillationsfrom other samples. In particular, this data set combination iscompletely consistent with a time-independent dark energy equation ofstate, in which case we find wDE = -1.024 ± 0.052. Weexplore the constraints on the growth rate of cosmic structures assumingf(z) = Ωm(z)γ and obtain γ =0.69 ± 0.15, consistent with the predictions of generalrelativity of γ = 0.55.

Website