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Abstract

We propose a method for estimating the causal effect of a treatment, binary or continuous,

on an outcome in the presence of a high-dimensional vector of confounders. Rather than

estimate an intermediate quantity, like a propensity score or selection model, we fit a tensor-

spline regression model for the outcome and then directly estimate counterfactual quantities of

interest. Estimation combines a marginal correlation screen and a new sparse Bayesian model

that achieves optimal predictive bounds on the outcome and treatment effect. The method

extends to instrumental variable, mediation, and sequential-g estimation. A simulation study

and two applied examples illustrate the methods.
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1 Introduction

A central problem for estimating causal effects is adjusting for a potentially high-dimensional vector

of confounders. Classic methods deal with the problem in one of two ways. The first reduces the

dimensionality of the problem through conditioning on a sufficient statistic of treatment assignment

(the “propensity score” (Rosenbaum and Rubin, 1983); for extensions see Imai and Van Dyk (2012);

Robins, Hernan and Brumback (2000)). Results can be sensitive, though, to slight or imperceptible

misspecification of the treatment model (e.g. Kang and Schafer, 2007). The second approach esti-

mates a low-dimensional structural parameter (e.g. Robins, 1986, 1989). This comes at the cost of

averaging over potentially interesting heterogeneities.

We propose a method, the Method of Direct Estimation (MDE), that implements a high-

dimensional nonparametric regression model in order to predict observation-level counterfactual

quantities. The method sidesteps the above dimension reduction steps and returns both a stable

and reliable causal estimate. Through casting causal effect estimation as a prediction problem,

the method unifies estimation across a range of treatment regimes and structural models. MDE

applies equally to a continuous, binary, or categorical treatment regime, and we extend it to both

instrumental variable and mediation models. Heterogeneous effects can be characterized through

examining the observation-level estimates.

We are the most recent in a long series of works using cutting edge methods to predict counter-

factual outcomes; for precursors, see (see, e.g., Hill, 2011; Hansen, 2008; Robins, 1989; Rubin, 1984;

Cochran, 1969; Belson, 1956; Peters, 1941). We extend these works from binary point-treatments to

continuous treatments and structural models, working within a nonparametric estimation framework

with provably minmax optimal prediction properties. We also contribute to the recent literature

on high-dimensional causal inference (see, e.g. Belloni et al., 2017, 2015, 2012; Athey, Tibshirani

and Wager, 2016; Hartford et al., 2016), bringing flexible models to bear in causal effect estima-

tion. Our primary contribution is providing a reliable means of estimating fine-grained (observation

level) causal effects, as well as extending the method to general treatment regimes and structural

models. Rather than using a LASSO screen followed by a regularized least-squares estimate (e.g.,

Belloni and Chernozhukov, 2013), we implement a one-stage Bayesian estimator that endogenously

shrinks coefficients on irrelevant covariates while returning asymptotically unbiased estimates on

maintained coefficients. The model is a Bayesian version of the adaptive LASSO of Zou (2006),
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but the mean parameter weights are estimated endogenously. Unlike recent sparse Bayesian models

with nonseparable, nonconvex priors (Bhattacharya et al., 2015; Rockova and George, Forthcoming;

Carvalho, Polson and Scott, 2010; Polson, Scott and Windle, 2014), our key tuning parameter is

constructed so that our estimates achieve the minmax optimal prediction rate. In simulations, we

show that the improvements in prediction error are sizable.

The proposed estimation procedure consists of four steps. First, we generate a large number of

nonparametric tensor-spline bases, on the order of millions, including all treatment× covariate×

covariate interactions and lower-order terms. These bases constitute a larger space than those

considered by earlier multivariate nonparametric regression models that inspire our work (Stone

et al., 1997; Friedman, 1991). We include such a dense parameterization so as to directly model

the confounding between treatment and covariate. We utilize nonparametric bases as we do not

know the functional form this interaction may take, and the nature of the interaction may vary

across the covariate space. Second, we use a marginal correlation screen (Fan and Lv, 2008) to

reduce the number of bases from millions to hundreds or thousands. Third, we regress the outcome

onto the maintained bases using a sparse Bayesian regression. Fourth, we use the estimated model

to predict the counterfactual quantities of interest. Pre-processing covariates by generating splines

(or other) features is an important step. As show below, variable selection methods alone (such as

those discussed above) are not sufficient to reduce specification sensitivity.

We then show how the MDE extends to several structural models and treatment types. In

the case of a binary treatment, the proposed method outperforms existing cutting-edge machine

learning methods on a benchmark dataset (LaLonde, 1986). In the instrumental variable setting,

we show that the method returns an observation level two stage least squares estimate. That is, our

approach to the instrumental variables setting estimates two covariances at the observation level:

that between the outcome and the instrument and that between the treatment and the instrument,

each conditioning on observed covariates. Standard instrumental variables estimates are the average

of these covariances, masking heterogeneity in both encouragement and effect. Our approach allows

us to relax the standard identification assumptions in instrumental variables from global to local,

i.e., monotonicity in the instrument over the entire sample to monotonicity within each strata

given by the covariates. Furthermore, we use the oracle bound constructively, rather than simply

descriptively, in order to distinguish observations encouraged by the instrument from those not.
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This distinction is important as it is only off the encouraged group that we can identify a causal

effect. This threshold improves on existing high-dimensional instrumental variables methods which

do not estimate the encouraged subsample (e.g. Athey, Tibshirani and Wager, 2016; Hartford et al.,

2016; Newey, 2013; Belloni et al., 2012). In a mediation framework, MDE allows for treatment

effect heterogeneity in the direct effect, mediated effect, or both. Analytically, MDE maintains a

key identity in mediation analysis: that the mediation effect is the product of the treatment effect

on mediator and mediator direct effect on outcome, a relationship otherwise lost using existing

estimation strategies with nonlinear models. Lastly, we show that MDE extends naturally to the

estimation of controlled direct effects via sequential g-estimation (Vansteelandt, 2009; Acharya,

Blackwell and Sen, 2016).

Our larger goal is aligning machine learning, particularly high dimensional nonparametric re-

gression, with causal inference, tightly and at a conceptual level. For example, we show that the

ignorability assumption common to causal inference actually implies a local linear function for the

outcome, guiding our choice of bases. Similarly, we show that our proposed regression method sat-

isfies an oracle inequality not only on the fitted values but also on the instantaneous causal effect.

This gives us an optimality condition in predicting the causal effect, which is close but not exactly

the same as predicting the outcome well.1 While the oracle bound has been typically used as a

descriptive tool (giving rates of risk convergence) instead we use it constructively by using a feasible

version of the bound to estimate which observations are likely not impacted by an instrument in

an encouragement design.

The paper proceeds as follows. Section 2 introduces the proposed framework and estimation

strategy. Section 3 shows how the method of direct estimation readily extends a binary treatment

framework as well as structural models like instrumental variables, mediation, and sequential g-

estimation. Section 4 discusses the relationship between the proposed method and earlier work.

We include several applications in Section 5. Section 6 concludes by showing how our approach

connects disparate literatures and by discussing limitations and future extensions.

1As one example, ensemble tree methods will fit the systematic component well (e.g. Hill, Weiss and Zhai, 2011),

but since the fits are piecewise constant, they are not well-suited to estimating an instantaneous causal effect.
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2 The Proposed Method

We first describe the setup for the proposed method. We next describe each step of the estimation

strategy: generating bases, screening, our sparse regression model, and predicting counterfactuals.

We then present our oracle bounds on both the fitted values and the instantaneous causal effect.

2.1 Setup

Assume a sample where observation i ∈ {1, 2, . . . , n} possesses a potential outcome function, Yi(Ti),

which maps treatment level Ti to outcome Yi(Ti). The treatment Ti is a realization of T̃i ∼ FXi , such

that T̃i has continuous support and its distribution may vary with Xi, a vector of p observation-

level fixed covariates. There may be more covariates than observations, so p may be greater than n,

and the covariates may include moderators, risk factors, prognostic variables, or simply superfluous

variables; the important point is that they are fixed and causally prior to T̃i. The observed data

are
{
Yi, Ti, X

>
i

}>
where Yi = Yi (Ti)

We will denote the causal effect of moving from one value of the treatment, T ′i , to another, T ′′i ,

as

∆i(T
′′
i , T

′
i ) = Yi(T

′′
i )− Yi(T ′i ). (1)

To identify our causal effects, we make three standard assumptions. First, we assume the

potential outcomes are ignorable given Xi: Yi(T̃i)⊥⊥T̃i|Xi, T̃i ∈ {T ′′i , T ′i}. Second, we assume the

counterfactual is realizable with positive probability, Pr(T̃i = Ti|Xi, Ti ∈ {T ′′i , T ′i}) > 0. Third, we

make stable unit and treatment value assumptions: potential outcomes do not depend on treatment

or outcomes of others and there is a single version of each treatment level.

The quantity ∆i(T
′′
i , T

′
i ) poses two challenges. First, as we can observe at most one potential

outcome per observation, at least one of the potential outcomes remain hidden. This requires

us to instead condition on the covariates, estimating the conditional effect for observation i as

E(∆i(T
′′
i , T

′
i )|Xi), the expected change in outcome for an observation with profile Xi. A second

concern is whether T ′i and T ′′i might occur with positive probability. To reduce concerns over

common support, we focus on a counterfactual estimate close to the observed data, limδ→0∇Ti(δi),

where

∇Ti(δi) =
1

δi
E {Yi (Ti + δi)− Yi (Ti) |Xi} . (2)
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For identification, we assume in this case that ignorability holds in a continuous, open interval

around the observed value Ti, i.e. Yi(T̃i)⊥⊥T̃i|Xi, T̃i ∈ (Ti − δSi , Ti + δSi ) for some δSi > 0 and that

E(Yi(Ti)|Xi) is differentiable in its manipulable argument at the observed value. This estimand

captures the impact of a ceteris paribus perturbation of the treatment on the outcome.

For example, researchers are used to fitting a model of the form

Yi = µi + βTi +X>i γ + εi (3)

where β, a global slope term, is interpreted as the marginal effect of Ti on Yi. We conceive of the

outcome in the following form:

Yi = µi + βiTi + g(Xi) + εi; (4)

βi = f(Xi) = lim
δ→0
∇Ti(δi) (5)

and f(Xi), g(Xi) nonparametric functions of the covariates. That the local effect is only a function

of Xi follows directly from our ignorability assumption:

Yi(T̃i)⊥⊥T̃i
∣∣Xi, T̃i ∈ (Ti − δSi , Ti + δSi )⇒ (6)

Yi(Ti + δi)− Yi(Ti)⊥⊥δi
∣∣Xi, |δi| < δSi (7)

⇒ lim
δi→0

E
{
Yi(Ti + δi)− Yi(Ti)

δi

∣∣∣∣Xi

}
= f(Xi) (8)

= lim
δi→0
∇Ti(δi) (9)

where f(Xi) is not a function of Ti. Taking an antiderivative gives the model in Equations 4-5.

We focus on this instantaneous effect under a continuous treatment through the first part of

the paper. We will estimate the model Equations 4-5 using a high-dimensional, nonparametric

regression. The regression specification allows for the instantaneous effect βi = limδi→0∇Ti(δi) to

vary with covariates, as well as including an additional function (g(Xi)) that is not a function of

the treatment.

Conditioning on the covariates Xi in such a rich, nonparametric regression model achieves two

goals: adjusting for confounding bias and characterizing effect heterogeneity. We achieve these by

looking at estimated effects within the strata and across the strata defined by the covariates Xi,

respectively. In order to reduce confounding bias, we estimate the impact of the treatment within

the stratum Xi, i.e., subclassifying on the covariates. Subclassification is a long-established means
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of reducing confounding bias (Cochran, 1968; Cochran and Rubin, 1973), though subclassification

is normally done on a coarsened sufficient statistic of the treatment (e.g. Rosenbaum and Rubin,

1984; Imai and Van Dyk, 2012). After estimating a treatment effect conditional on Xi, we are

able to look across covariate profiles as a means of assessing and characterizing treatment effect

heterogeneity. Of course, if an average effect is desired for the sample or some subset, this estimate

can just be found by taking the average over the desired subsample.

Modeling this local confounding returns an instantaneous treatment effect estimate–a conditional

effect for that observation, or, equivalently, the impact of a tiny “do” operation or the partial

derivative of the response function with respect to the treatment.2 Our emphasis is on implementing

a sufficiently rich regression model that uses covariates to consistently and reliably estimate the

treatment effect for each observation under our identification assumptions.

Once we have a means of estimating this instantaneous effect, we illustrate several useful ways in

which we can extend it to other causal settings. In an instrumental variable setting, we can model

first-stage heterogeneity in the encouragement, allowing us to relax the no defiers assumption. In

a mediation setting, we show that we can maintain a key identity–that the mediation effect is the

product of the treatment effect on mediator and mediator direct effect on outcome–that is otherwise

lost in nonlinear models. We also show that the method can estimate controlled direct effects in

a single step, but can also extend to a broad class of structural mean models through the use of

sequential g-estimation.

We then move past working with partial derivatives to estimating and averaging over the support

of T̃i. We use a bootstrap-estimated interval to characterize a range over which the treatment effect

can be estimated. We also use the bootstrap to move from estimating the effect of the treatment

at the observed value, limδi→0∇Ti(δi) to the expected effect of Ti, ET̃i (limδi→0∇Ti(δi)). Before

exploring these extensions we turn to our estimation procedure.

2.2 Estimation

Our identification assumptions require that we condition on the pre-treatment covariates, but there

is no theoretical guidance as to how and in what way to incorporate the covariates. A causal

effect estimate is model dependent to the extent that choices over how to incorporate covariates

into the model, say with interaction terms of higher-order terms, affects the estimated impact of

2In Pearl’s “do” notation, βi = ∇Ti
(δi) = 1

δi
{E(Yi|do(Ti + δi), Xi)− E(Yi|do(Ti), Xi)}.

6



a treatment variable, and nonparametric pre-processing is a now-accepted from of removing this

model dependence (Ho et al., 2007). Variable selection methods do not eliminate concerns over

what variables to include, as the decision to include only linear terms or include quadratic terms

can have a substantive impact on the inferences drawn on the treatment effect–even when using

variable selection methods, a point which we illustrate in one of our applied examples below.

In order to reduce concerns over model dependent inference, we fit a model using a high-

dimensional, tensor-spline nonparametric regression. Estimation proceeds in four steps. First, we

generate a large (on the order of millions) set of nonparametric bases. Second, we use a marginal

correlation screen to select a subset of bases, reducing their number from millions to hundreds

or thousands. Third, we use a sparse Bayesian regression to fit the model. Fourth, we use the

estimated model to predict the counterfactual quantities of interest.

2.2.1 The Assumed Model.

Our ignorability assumption guarantees that conditioning on covariates will allow for estimation of

the instantaneous causal effect. The assumption does not guide us in how these covariates should

enter the outcome model. For generality, we assume the data are generated as

Yi = µY +Ro(Ti, Xi)
>co + εi (10)

with εi
i.i.d.∼ N (0, σ2), where Ro(Ti, Xi) is a possibly infinite set of basis functions scaled to be mean

zero and unit variance. We divide these into three groups: those that survive our covariate screen

(described below), R(Ti, Xi); those that we consider in the screen, R∞(Ti, Xi); and those that are

in the data-generation process but not in our considered model space, R⊥(Ti, Xi).

We construct our covariate bases so as to satisfy the conditions required for the screening

procedure, Conditions C and 1–4 in Fan and Lv (2008). The B-spline basis we implement is

bounded, symmetric, and spherical, ensuring that the assumptions on the design are met (Condition

C and 2). The number of considered bases is large, but below order exp(n) (Condition 1), and we

reduce multicollinearity in the design through constructing interaction terms that are uncorrelated

with their lower order components (see Ratkovic and Tingley, 2017) (Condition 4). The remaining

assumptions require separable Gaussian noise (Condition 2), which we assume in Equation 10, and

a beta-min condition (Condition 3) that is unverifiable absent knowing the true model. We note

that selection errors on mean parameters of order o(nκ) for κ > 0 will have only a minimal impact

on the estimated treatment effect.
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2.2.2 Generating Bases

In constructing the set of bases to model the conditional mean, R∞(Ti, Xi), we turn to a tensor-

product of spline bases. Denote {1, b(Xik, κk)}κk∈Kk as an intercept term and a set of |Kk| mean-zero

nonparametric bases for variable Xk evaluated for observation i and each value in Kk a triplet con-

taining the knot location, degree, and type of spline basis. Similarly, for the treatment, denote

{1, bT (Ti, κT )}κT∈KT as an intercept and |KT | bases evaluated for the treatment observed for obser-

vation i and KT the triplet as given above. We construct the mean vector as

R∞(Ti, Xi) = {1, bT (Ti, κT )}κT∈KT ⊗ {1, b(Xik, κk)}κk∈Kk ⊗ {1, b(Xik′ , κk′)}κk′∈Kk′ (11)

where ⊗ denotes the tensor product. In effect, we construct a basis for the mean that contains

nonparametric bases in the treatment and covariates while allowing for treatment × covariate,

covariate× covariate, and treatment× covariate× covariate interactions. Interactions terms are

pre-processed through partialling out their lower-order terms, i.e. instead of a two-way interac-

tion, we include the residuals from regressing the two-way interaction on an intercept and its two

components. Doing so reduces the multicollinearity of the design

In terms of Equations 4-5 above, the bases involving the treatment are used to estimate the

instantaneous effect, βi. The bases that do not involve the treatment are used to estimate the purely

prognostic component, g(Xi). Our ignorability assumption carries implications for bases selection

for the treatment variable. The ignorability assumption implies that the outcome is locally linear

at each Ti with instantaneous effect given by an arbitrary function of Xi. We therefore model the

treatment using a degree 2 thresholded power-basis and a degree 2 B-spline. The first is a set

of hinge functions radiating off knots, the second is an upside-down V between two knots, and

zero elsewhere. Both sets of bases satisfy local linearity, unlike bases with more than one nonzero

derivative in Ti (e.g. gaussian radial basis functions, higher degree B-splines).

For each covariate, we use a B-spline basis of varying knots and degree (Eilers and Marx, 1996;

de Boor, 1978). The B-spline basis offers a bounded basis for nonparametric modeling, with well-

studied optimality properties (Gyorfi et al., 2002). The B-spline basis requires selecting both degree

and knot locations, and as we do not know the best choice, we err in favor of selecting too many

basis functions. We have two different sets of choices to make: how many bases to generate and how

may to maintain after our screen. These choices require balancing theoretical and computational

concerns. First, we want the number of bases in {1, b(Xik, κk)}κk∈Kk and {1, bT (Ti, κT )}κT∈KT to
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be approximately equal, so as not to bias our marginal correlation screen in favor of one variable

or another.3 Second, we want the bases to be sufficiently rich to capture a large class of models.

Third, we want the number of maintained bases to grow at the nonparametric rate of N1/5, but

also be sizable with a small sample size. Fourth, we want this to lead to a computationally feasible

algorithm.

To this end, at our default and throughout the paper, we model each confounder using k centered

B-spline bases of degree k with knots at every 100/(1 + k)th percentile of the covariate for k ∈

{3, 5, 7, 9}, generating 24 = 3 + 5 + 7 + 9 bases for each covariate. For the treatment, we implement

a degree 2 truncated-power basis spline with knots every 100× 1
8

th
percentile for 6 bases and then

degree 2 B-splines with knots at every 100× 1
1+k

th
percentile k ∈ {3, 4, 5, 6} for 18 = 3 + 4 + 5 + 6,

giving 24 = 18 + 6 total bases for the treatment variable. We maintain 100× (1 + n1/5) bases after

our screening procedure, described below. At these default values, computation times are certainly

practical; for example, on one of our simulations with a sample size of n = 1, 000 and p = 100

covariates, constructing the bases and recovering point estimates takes between a minute and a

minute and a half on a 2.6 GHz Intel Core i7 running R.

2.2.3 Screening Bases

We combine the treatment and covariate bases using the tensor product as given above. At our

default, we take 24 bases for the treatment and for each covariate. This gives us (1 + 24) × (1 +

24× p)× (1 + 24× p) total bases. Even a modest p generates a large number of bases; p = 10 gives

over 1, 450, 000 bases and p = 20 over 5, 700, 000. This places us in an “ultrahigh” dimensional

setting so we implement a Sure Independence Screen (SIS) (Fan and Lv, 2008).4 The SIS occurs

in two steps. First, we construct all of the tensor product bases in Equation 11. Second, we sort

the bases by their absolute correlation with the outcome. We want to select a sufficiently large and

rich dictionary of nonparametric bases to approximate a wide set of models; in practice and all of

the analyses below, we select 100× (1 + n1/5) bases that have the largest unconditional correlation

3Were we to include 10, 000 bases for one variable and 3 for the other, bases from the first would be more likely

to survive our screen.
4We implement a SIS rather than the grouped SIS strategies of (Fan, Feng and Song, 2012; Fan, Ma and Dai,

2014), as we are not willing to assume the group structure necessary to bring in entire sets of bases, and the grouped

SIS has not been extended to tensor product spaces.
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with the outcome.5

2.2.4 A Sparse Bayesian Model

Even after screening, we are left with hundreds of possible nonparametric bases. In order to enforce

some form of regularization, we implement a sparse Bayesian prior. We estimate our treatment

effects by extending LASSOplus, a sparse Bayesian prior we implemented in earlier work (Ratkovic

and Tingley, 2017), to the nonparametric prediction problem.

The likelihood component is a normal regression model. The prior structure has three properties.

First, it ensures that estimates satisfy an oracle bound on the prediction error. Second, a set of

inverse weights on the mean parameters regularize large effects less aggressively than small effects.

Third, a global sparsity parameter produces a non-separable prior, allowing for the estimates to

adapt to the overall level of shrinkage in the model.

The hierarchy is given as

Yi|R(Ti, Xi), c, σ
2 ∼ N (R(Ti, Xi)

>c, σ2) (12)

ck|λ,wk, σ ∼ DE (λwk/σ) (13)

λ2|n, p, ρ ∼ Γ (n× ({log(n) + 2 log(p))− p, ρ) (14)

wk|γ ∼ generalizedGamma(1, 1, γ) (15)

γ ∼ exp(1) (16)

where DE(a) denotes the double exponential density, Γ(a, b) denotes the Gamma distribution with

shape a and rate b, and generalizedGamma(a, b, c) the generalized Gamma density f(x; a, d, p) =

p/ad

Γ(d/p)
xd−1 exp{−(x/a)p}. We have two remaining prior parameters. We take a Jeffrey’s prior

Pr(σ2) ∝ 1/σ2 on the error variance and we set ρ = 1 in the generalized Gamma density. We fit the

model using an EM algorithm and use hats to denote the fitted values, i.e. ĉ is the EM estimate

for c.

We summarize several properties of our model and present formal derivations in Appendix A.

First, the prior on λ̂2 is scaled in n, p such that the estimate λ̂ achieves the oracle growth rate of√
n log(p) ex post when p is of order nα, α > 0, as in the nonparametric setting here. Second, the

5Memory and computational speed are a concern. To preserve memory, we construct millions of bases, but at

any given point in their construction we only save the 100 × (1 + n1/5) bases with the largest absolute correlation

with the outcome. Construction of the tensor basis is done in C++ via Rcpp.
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rate at which the oracle bound holds is controlled by 1 − exp{−
√

log(n)}, which approaches 1 in

the limit.6

The prior weights wk are constructed so that the MAP estimate is similar to the adaptive LASSO

of Zou (2006). Each mean parameter, ck, will have its own adaptive penalty λ̂ŵk
nσ̂

.The estimated

weights ŵk are inversely related to the magnitude of the parameter estimates ĉk. The adaptive

penalty term is of order
√

log(n)/n when ĉk → 0, which is not asymptotically negligible. On

the other hand, the adaptive penalty is of order 1/n when ĉk 6→ 0, and hence is asymptotically

negligible. For proofs, see Appendix A.

Third, the parameter γ̂ adapts to the global sparsity level of the data. If we take γ → 0, then

the prior approaches a degenerate ‘spike-and-slab’ prior uniform over the real number line but an

infinite point mass at 0. In this scenario, we are not shrinking any effects except for those exactly

zero. At the other extreme, γ → ∞, the prior approaches a Bayesian LASSO of Park and Casella

(2008), regularizing every term. For proof, see Appendix A.. The global tuning parameter, γ̂, is

estimated from the data and adjudicates between these two extremes; the utility of nonseparable

priors over the tuning parameters have also been discussed by Bhattacharya et al. (2015); Rockova

and George (Forthcoming), though we note that these priors were not tuned to achieve the oracle

property (or similar concentration property) ex post.

2.2.5 Counterfactual Prediction

Given fitted values ĉ, we can write

Ŷi = µ̂Y +R(Ti, Xi)
>ĉ (17)

with the intercept chosen as µ̂Y = 1
n

∑n
i=1

(
Yi −R(Ti, Xi)

>ĉ
)
. We then estimate

∇̂Ti(δi) =
1

δi

{(
R(Ti + δi, Xi)−R(Ti, Xi)

)>
ĉ
}

(18)

and we approximate the derivative by choosing δi close to zero; we take δi = 10−5 in prac-

tice.7 The sample average marginal causal effect can be found through averaging over the sample,

6The prior is proper whenever n × (log(n) + 2 log(p)) − p > 0. For example, with n ∈ {100; 1, 000; 10, 000}, this

requires p < 1, 978; 27, 339; 347, 529 respectively, which is slower than the LASSO rate of n ∼ log(p), but clearly

allows for p > n. This slower growth rate does suggest the utility of the an initial screen for covariates. Last, even

with an improper prior, the posterior will be proper, so estimation can still proceed.
7While numerical differentiation with precision floating point arithmetic often uses values for δ orders of magnitude

lower, we are differentiating an estimated model in a direction that is by construction locally linear in Ti. We have
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1
n

∑n
i=1 ∇̂Ti(δi).

2.3 Theoretical Results

We provide two bounds on the risk of our estimator. First, we provide a bound on the predicted

values. Second, we provide a bound on the effect estimate. The first follows almost directly from

our prior structure, which guarantees that the key tuning parameter grows at the Oracle rate. The

second bound shows that the model will do well in terms of predicting the instantaneous treatment

effect as well.

An Oracle Inequality Denote as R(T·, X·) the n × p matrix of bases and δ̂ = ĉ − c. Since our

tuning parameter grows at the oracle rate
√
n log(p), we can bound the excess risk as

1

n

{
||R(T·, X·)δ̂||22 + λ||

p∑
k=1

ŵkδ̂k||11

}
≤

C
λ̂2σ̂2γ2|S|
n2φ2

0

+ C∞
||Ro
∞/n(T·, X·)c∞/n||22

n
+ C⊥

||Ro
⊥(T·, X·)c⊥||22

n

(19)

with a probability at least exp{−
√

log(n)}. The bound splits into three components, a bound off

the post-screened basis R(T·, X·), a bound attributable to bases that did not survive the screen

but would as n grows, Ro
∞/n(T·, X·), and a bound attributable to the portion of the model that

falls outside the span of the basis used in the screen, Ro
⊥(T·, X·). In the first component, φ0 is

the smallest eigenvalue of the Gram matrix of the submatrix of R(Ti, Xi)Ŵ
−1/2, |S| is the number

of non-zero elements of c and we use C· to denote an unknown constant that does not grow in

n, p, S. For details, see Ratkovic and Tingley (2017). The next two components are attributable to

differences between Ro(T·, X·) and R(T·, X·). The second term is the same order of the first–both

are of order O(log(n)/n); see Appendix G and Fan and Lv (2008). The third term is irreducible and

of order O(1), corresponding with inescapable misspecification error. We minimize our concerns

over the third term through selecting a rich set of basis functions.

An Oracle Inequality on ∇Ti(δi) We are interested in not only bounding the prediction risk, as

above, but also the error on the ∇Ti(δi). To do so, we decompose our bases into two components,

one submatrix such that no element covaries with the treatment and one submatrix where for each

found any value of δ below
√

Var(Ti)/1000 works well.
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basis at least one element covaries with the treatment:

R(T·, X·) = [RX(X·) : RTX(T·, X·)]. (20)

Denote Ŷi = [RX(Xi) : RTX(Ti, Xi)]
>ĉ, and ĉX and ĉTX the subvectors of ĉ associated with

RX(Xi) and RTX(Ti, Xi). We denote as ∆R(T·, X·) = [∆Rij] = [∂Rij/∂Ti] the elementwise par-

tial derivative of R(T·, X·) with respect to the treatment and note ∇̂Ti(δi) = ∆Ri(Ti, Xi)
>ĉTX =

∆RTX
i (Ti, Xi)

>ĉTX , which is β̂i in the formulation of equations 4-5. Denote as ĉŜ,TX the subvector

of ĉTX selected in the outcome model.

We show in Appendix G that the mean parameter estimates ĉŜ,TX are actually a solution to the

following LASSO problem:

ĉS,TX = argmin
cŜ,TX

∣∣∣∣∆̃Y −∆RŜ,TXcŜ,TX
∣∣∣∣2

2
+
∣∣∣∣W̃ Ŝ,TXcŜ,TX

∣∣∣∣ (21)

where ∆̃Y is a pseudo-response generated from the fitted derivative and estimated residuals from

the outcome model, ε̂i, as

∆̃Yi = ∆Ri(Ti, Xi)
>ĉ+ ε̂i. (22)

The weight matrix W̃ Ŝ,TX is diagonal with entries W̃ Ŝ,TX
k =

∣∣∑N
i=1R

Ŝ,TX
ik (Ti, Xi)

∂ε̂i
∂Ti

∣∣. For intuition,

note that ∂ε̂i/∂Ti is the causal effect of the treatment on the prediction error, Ri(Ti, Xi)(c− ĉ). The

less correlated the basis RŜ,TX
k (Ti, Xi) with the impact of a treatment perturbation on prediction

error, the less that basis’s coefficient is penalized in predicting the treatment effect. The more

correlated the basis with the sensitivity of prediction error on perturbing the treatment, the more

penalized the coefficient on that basis.

As the coefficients are simultaneously minimizing a LASSO problem on the first derivative, we

can establish the oracle bound

1

n

{
||∆RŜ,TX(T·, X·)(ĉ

Ŝ,TX − cŜ,TX)||22 + ||W̃ Ŝ,TX(ĉŜ,TXk − cŜ,TXk )||11
}
≤

C∆
σ̂2γ2

∆|S∆|
N2φ2

∆

+ C∞
||∆Ro

∞/Ŝ(Ti, Xi)c∞/n||22
n

+ C⊥
||∆Ro

⊥(Ti, Xi)c⊥||22
n

(23)

where all the constants in the inequality are analogous to those in Inequality 23 but defined in

terms of the design matrix that parameterize the derivative.8

8We make the same assumptions on the model in Equation 22 as we do on the outcome model.
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We last note that the model is similar to the relaxed LASSO of Meinshausen (2007), differing in

that rather than re-fitting the outcome to first-stage LASSO selected variables, we fit them to the

pseudo-observation above. In this formulation, we are conditioning on the fitted residuals, which

suggests the utility of bagging to improve estimation (a point we discuss in Appendix C).

This oracle bound gives us a bound not on the predicted values but on the predicted first

derivative. Bounds of this type have been used for primarily descriptive purposes, to establish rates

of convergence of different estimates. We use the bound constructively, to help us differentiate

values for which the local treatment effect is zero from those where it is not. The bound helps us

in the instrumental variable setting to estimate off which observations we are identifying an effect.

We introduce a feasible estimate below in the context of an instrumental variables analysis.

2.3.1 Simulation Results

Our estimation contributions are twofold: construction of the tensor-spline nonparametric basis

and the sparse Bayesian model for estimation. We conducted a simulation study allowing us to

explore both contributions and the performance of MDE, varying sample size and the complexity

of the underlying true model. We report these results in Appendix E, and we find MDE performs

quite well in terms of RMSE and bias. To isolate the impact of our Bayesian prior, we compare

MDE to sparse regression models using our bases, namely the cross-validated LASSO and two

sparse Bayesian priors: the horseshoe and Bayesian Bridge (Carvalho, Polson and Scott, 2010;

Polson, Scott and Windle, 2014). We also compare MDE to methods that create their own basis

functions: kernel regularized least squares (KRLS, Hainmueller and Hazlett, 2013), POLYMARS

(Stone et al., 1997), and Sparse Additive Models (SAM, Ravikumar et al., 2009); as well as non-

regression methods: Bayesian additive regression trees (BART, (Chipman, George and McCulloch,

2010)), gradient boosted trees (GBM, Ridgeway, 1999), and the SuperLearner (Polley and van der

Laan, N.d.). Across settings, MDE is either the best performer or in the top set. Due to space

considerations we refer the reader to the appendix for a detailed discussion.

3 Extensions

We next consider several extensions of the proposed method. We first extend our local effect

estimand to two common structural models: instrumental variable (IV) analyses and mediation

analysis. We show that MDE provides new insights into the problems. In the IV setting, MDE lets
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us relax the monotonicity assumption, that the instrument uniformly encourage or discourage the

treatment across the sample. In the mediation setting, we show that MDE allows us to maintain

a useful identity, that the total effect is additive in the direct and mediation effects, even with

nonlinear models. We also show how MDE can estimate controlled direct effects via sequential-g

estimation. Last, we show that MDE easily accommodates binary treatments, the most studied

case in the literature.

3.1 Instrumental Variables

A treatment and outcome may be mutually determined, and thereby a correlative or regression

analysis may not recover the causal effect of the treatment. In these cases, an instrument, or

“encouragement,” can recover a causal effect. The instrument is assumed to have a direct effect on

the treatment but no direct effect on the treatment, thereby providing an experimental handle in

the study.

Two problems emerge: the instrument may only affect some observations, the compliers, and not

others; and the instrument may have a positive impact on some observations and negative on others.

These issues pose problems to both internal and external validity. It is unclear which observations

are actually impacted by the instrument and hence driving the causal effect estimate. The second

concern, that there are “no-defiers,” is assumed away in the binary treatment/instrument case,

while this assumption is embedded in a linear first-stage specification.

To formalize, we assume the treatment is not conditionally independent of the outcome given the

covariates, Yi(T̃i)6⊥⊥T̃i|Xi, thereby biasing the estimate of the causal effect. We assume the existence

of a pre-treatment instrument Z̃i that helps resolve the issue. The instrument, which follows law FZ
Xi

and has observed value Zi, enters the potential outcome function for the treatment as T̃i = Ti(Z̃i).

For identification, we make the exclusion restriction that Zi has no direct effect on the outcome,

Yi(Ti(Z̃i), Z̃i) = Yi(Ti(Z̃i), Z
′
i) for all Z ′i ∈ supp (Z̃i), or, equivalently, Yi(Ti(Z̃i), Z̃i)⊥⊥Z̃i|T̃i, Xi. The

observed data is [Yi, Ti, Zi, X
>
i ]>.

In order to recover a consistent estimate of the causal effect of the treatment on the outcome,

we trace the exogenous variation of the instrument through the treatment and onto the outcome.

The instantaneous encouragement from perturbing the instrument on observation i is

∇IV
Zi

(δ) = E(Ti(Zi + δ)− Ti(Zi)|Xi), (24)
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where as above we have to condition on Xi to recover an estimate. The instantaneous intent to

treat on the treated, or IITT, is the impact of this encouragement on the outcome,

∇IV
Ti

(δ) = E
{
Yi
(
Ti(Zi) +∇IV

Zi
(δ)
)
− Yi (Ti(Zi)) |Xi

}
. (25)

The effect limδ→0∇Ti(δ) = E(dYi(Ti)/dTi|Xi) is not identified because of the failure of ignora-

bility. Instead we target the causal quantity

E
(
dYi(Ti(Z), Z)

dZ

∣∣∣∣Xi, Z = Zi

)
= (26)

E
(
dYi(Ti(Z))

dZ

∣∣∣∣Xi, Z = Zi

)
= (27)

E
(
∂Yi(Ti)

∂Ti

∂Ti(Z)

∂Z

∣∣∣∣Xi, Z = Zi

)
(28)

where the second line comes from the exclusion restriction and the third by the chain rule. We then

use the continuous mapping theorem to give

E
(
∂Yi(Ti)

∂Ti

∣∣∣∣Xi, Z = Zi

)
= plim

E(dYi(Ti(Z))/dZ|Xi, Z = Zi)

E(∂Ti(Z)/∂Z
∣∣Xi, Z = Zi)

(29)

= lim
δ→0

∇IV
Ti

(δ)

∇IV
Zi

(δ)
, (30)

which we refer to as the Local Instantaneous Causal Effect (LICE) and denote limδ→0∇IV
Ti,Zi

(δ).

Like with TSLS, the plug-in estimate is a biased but consistent estimate of the desired causal effect.

The LICE differs in an important way from the standard Wald or two-stage least squares esti-

mates (TSLS). The TSLS estimate under a linear structural equation model, which reduces to the

Wald estimate in the binary treatment/encouragement setting, is calculated from sample covari-

ances as

θ̂TSLS =
ĈovS(Yi, Zi|Xi)

ĈovS(Ti, Zi|Xi)
, (31)

a ratio of sample covariances, after Xi has been partialed out. The TSLS estimator equals the OLS

estimate of the effect of Ti on Yi when Zi = Ti ∀ i, i.e. if encouragement is perfect. Compared to our

estimate in Equation 30, we see that the TSLS estimate averages the numerator and denominator

over compliers, defiers, and observations for which no causal effect is identified.

The estimated LICE is a TSLS estimate, but one that varies with Xi, thereby bringing the
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underlying heterogeneity to the fore. To see this, consider

lim
δ→0
∇IV
Ti,Zi

(δ) = lim
δ→0

∇IV
Ti

(δ)

∇IV
Zi

(δ)
(32)

=
E(dYi(Ti(Z))/dZ|Xi, Z = Zi)

E(∂Ti(Z)/∂Z
∣∣Xi, Z = Zi)

(33)

=
Cov(Yi, Zi|Xi)/Var(Zi|Xi)

Cov(Ti, Zi|Xi)/Var(Zi|Xi)
(34)

=
Cov(Yi, Zi|Xi)

Cov(Ti, Zi|Xi)
, (35)

where going from the second to the third line follows from the exclusion restriction and we assume

that the outcome and treatment functions are differentiable in the instrument.

Since our estimand is conditioned by Xi, we do not need to assume homogeneity in the de-

nominator (monotonicity) across values of Xi in order to estimate into which principal stratum

each observation falls (as required by Abadie, 2003; Aronow and Carnegie, 2013). We will refer to

observations with a positively, negatively, and zero impact of the instrument on the treatment as

compliers, defiers, and non-compliers, respectively (Angrist, Imbens and Rubin, 1996). Were we to

assume a binary treatment and instrument with underlying latent index models, we would recover

the same model used in the Local IV (LIV) estimate in Heckman and Vytlacil (2007a,b, 2005, 1999).

MDE is means of estimation, and as such, either the LIV or LICE can be estimated; we defer a

discussion contrasting the two estimands to below.

For estimation, we fit two models: one for the treatment as a function of the instrument and

a second for the outcome as a function of the treatment. We do so using the four-step procedure

outlined above, and then use the plug-in estimates for equations 24 and 25 to estimate the LICE

in equation 30.

Threshold for Estimating Compliers The LICE only exists for observations for which the

encouragement is non-zero. To estimate these observations, we implement a feasible estimate of

the Oracle bound, as given in Inequality 23, to allow us to differentiate observations with some

systematic perturbation from encouragement estimates that are likely noise. Since the Oracle

bound does not vary across the sample, we implement an adaptive bound that narrows where we

estimate signal and expands in a noisy region, constructed from a pointwise estimated degree of

freedom.
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Stein (1981) showed in the normal regression model Yi ∼ N (µ̂i(Yi), σ
2) for generic conditional

mean function µ̂i(Y ) : Y → Ŷi, a degree of freedom estimate can be recovered as

d̂f i =
∂µ̂i(Yi)

∂Yi
=

Cov(Yi, µ̂i(Yi))

σ2
(36)

and the model degree of freedom can be estimated as d̂f =
∑N

i=1 d̂f i. This definition coincides with

the trace of the projection matrix when µ̂i(Yi) is linear in Yi.

Decomposing into parts of the design that covary with Ti and those that do not, we can decom-

pose the degrees of freedom into

d̂f i =
∂[RX(Xi) : RTX(Ti, Xi)]

>ĉ

∂Yi
(37)

=
∂[RX(Xi)]

>ĉX

∂Yi
+
∂[RTX(Ti, Xi)]

>ĉTX

∂Yi
. (38)

We then take the degree of freedom estimate associated with ∇̂Ti(δ) as

d̂f
∇
i =

∂[RTX(Ti, Xi)]
>ĉTX

∂Yi
. (39)

This estimate will be larger the more signal there is at each observation.

The adaptive component of our threshold is of the form

d̂fadapti =
1/n

1/n+ d̂f
∇
i

(40)

which takes on a value of 1 when there is no signal for observation i, (d̂f
∇
i = 0). If the true model

is additive and linear in the treatment, we would see d̂f
∇
i = 1/n, which gives d̂fadapti = 1/2. As the

model grows more complex at a given point, the threshold will shrink.

We combine the degree of freedom bound and oracle estimate in our threshold as

1̂
(
∇IV
Zi

(δIVi ) 6= 0
)

= 1

(∣∣∇̂IV
Zi

(δIVi )
∣∣ > C

λ̂||ŵk||∞σ̂
nφ̂0

d̂fadapti

)
(41)

with ||ŵk||∞ the largest weight. C is a user-selected constant, but we show in our simulation that

taking C = 2 helps select observations impacted by the instrument. Lastly, the compatibility

constant is the smallest eigenvalue of the covariance of the true model predicting the gradient.

We estimate it using columns of the submatrix of the design that contains interactions with the

treatment. We find this matrix may be ill-conditioned or even rank-deficient, so we estimate the
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smallest eigenvalue such that the eigenvalues above it explain 90% of the variance in the selected

model.

The geometry of this threshold incorporates a “complexity penalty” in the selection process. If

the estimated model for the treatment effect is simple, the design will be low-dimension with a flat

spectrum, say a linear model. As the model grows more complex, the design will incorporate more

nonparametric bases and its smallest eigenvalues will be closer to zero, inflating the threshold. The

adaptive component, d̂fadapti , serves to adjust for local variation.

We include simulation evidence for the proposed threshold’s efficacy and reliability in Ap-

pendix F.

3.2 Causal Mediation

Mediation analysis examines the pathway through which a treatment variable impacts some outcome

through an intermediate variable, a mediator. Mediation analysis hence examines mechanisms

rather than treatment effects; for a review, see VanderWeele (2015).

A key insight of mediation analysis is that the total treatment effect decomposes into the direct

effect plus the mediated effect. In a linear SEM framework, the mediated effect is the product of

the mediator direct effect and intermediate direct effect (MacKinnon et al., 2002), and it can be

estimated as a product of coefficients. Imai, Keele and Tingley (2010) show that the product rule

does not apply to estimated coefficients unless the underlying model is linear. We show that MDE

allows us to maintain this key identity, as we are fitting a model that is a local linearization around

the treatment and mediator at each point.

Consider first a post-treatment mediator equipped with its own potential outcome function,

M̃i = Mi(T̃i) with law FM
Ti,Xi

and observed value Mi = Mi(Ti). The observed outcome is now

Yi = Yi (Mi, Ti) and the observed data is
[
Yi,Mi, Ti, X

>
i

]>
. Our goal is to differentiate three effects:

the total effect of the treatment on the outcome, the direct effect of the treatment on the outcome,

and the mediated effect of the treatment through the mediator on the outcome. For identifica-

tion, we will assume that the covariates are sufficiently rich to render the outcome, mediator, and

treatment sequentially ignorable (Imai, Keele and Yamamoto, 2010): Yi(M̃i, T̃i)⊥⊥Mi(T̃i)|T̃i, Xi and{
Yi

(
M̃i, T̃i

)
,Mi(T̃i)

}
⊥⊥T̃i|Xi. Second, we assume that all considered manipulations of mediator

and treatment are on the support of M̃i|Xi and T̃i|Xi.
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We then estimate the observation-level total effect, direct effect, and mediated effect as

Total effect: ∇TE
Ti

(δTEi ) =
1

δTEi
E
{
Yi
(
Mi(Ti + δTEi ), Ti + δTEi

)
− Yi (Mi, Ti) |Xi

}
(42)

Direct effect: ∇DE
Ti

(δDEi ) =
1

δDEi
E
{
Yi
(
Mi, Ti + δDEi

)
− Yi (Mi, Ti) |Xi

}
(43)

Mediated effect: ∇ME
Ti

(δME
i ) =

1

δME
i

E
{
Yi
(
Mi(Ti + δME

i ), Ti
)
− Yi (Mi, Ti) |Xi

}
. (44)

We will also make use of

Mediator direct effect: ∇Mi
(δMi ) =

1

δMi
E
{
Yi
(
Mi + δMi , Ti

)
− Yi (Mi, Ti) |Xi

}
(45)

First stage mediation effect: ∇Ti(δ
T
i ) =

1

δTi
E
{
Mi

(
Ti + δTi

)
−Mi (Ti) |Xi

}
(46)

If we assume that the potential outcome functions Yi(·) and Mi(·) are differentiable in their

manipulable arguments, we see that the total effect decomposes into a sum of the direct and

mediated effects. The law of the total derivative gives

lim
δTEi →0

∇TE
Ti

(δTEi ) = lim
δDEi →0

∇DE
Ti

(δDEi ) + lim
δMi →0

∇Mi
(δMi )× lim

δTi →0
∇Ti(δ

T
i ). (47)

The second summand on the righthand side can be simplified by the chain rule as

lim
δTEi →0

∇TE
Ti

(δTEi ) = lim
δDEi →0

∇DE
Ti

(δDEi ) + lim
δME
i →0

∇ME
Ti

(δME
i ). (48)

This gives us two well-known results: the mediated effect is the product of the mediator direct effect

and intermediate direct effect (MacKinnon et al., 2002) and that the total effect is additive in the

direct and mediated effects.

In our framework we thus estimate two models, one for the outcome and one for the mediator.

The models that we fit are

Yi = µY +RY (Mi, Ti, Xi)
>cY + εYi (49)

Mi = µM +RM(Ti, Xi)
>cM + εMi (50)

where, again, the R·(·) vectors are a post-screened set of bases. We can now recover estimates of

the effects in Equations 42–46.

Interestingly, while Imai, Keele and Tingley (2010) show that the product rule above does not

apply to estimated coefficients unless the underlying model is linear, we obtain a different result.

Since we are using a local linearization around each point as a function of the treatment and

mediator, the product rule can be extended, a point earlier noted by Stolzenberg (1980).
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3.3 Controlled Direct Effects and Sequential g-estimation

A natural extension of our method is to the case where controlled direct effects are of interest and

there are intermediate confounders (as in Acharya, Blackwell and Sen, 2016; Vansteelandt, 2009).

We focus on estimating a controlled direct effect, but show how MDE can then generalize to a far

wider class of structural mean models.

The controlled direct effect is the effect of a shift in treatment holding the mediating variable

fixed at some level m:

Controlled direct effect: ∇CDE
Ti

(δCDEi ) =
1

δCDEi

E
{
Yi
(
Mi = m,Ti + δCDEi

)
− Yi (Mi = m,Ti) |Xi

}
(51)

Identification assumptions are nearly identical to the mediation case above, except the CDE allows

for post-treatment confounders in the condition set. Decompose Xi = [Xpre
i : Xpost

i ] for whether the

covariates are observed pre- or post-treatment. The assumptions are, first, Yi(M̃i, T̃i)⊥⊥Mi(T̃i)|T̃i, Xpre
i , Xpost

i

and
{
Yi

(
M̃i, T̃i

)
,Mi(T̃i)

}
⊥⊥T̃i|Xpre

i , and, second, all manipulations are on the support of M̃i|Xpre
i , Xpost

i

and T̃i|Xpre
i .

The estimate of the controlled direct effect is then simply

∇̂CDE
Ti

(δCDEi ) =
1

δCDEi

(Ri(Mi = m,Ti + δCDEi , Xi)−Ri(Mi = m,Ti + δCDEi , Xi))
>ĉ (52)

We note two advances offered by our estimation strategy. First, estimation can be done in one

step since we need not model the mediator as a function of treatment, as we did in recovering

the mediation effect above. The method of sequential g-estimation, most commonly used in these

models, is a multi-stage method, where summaries from earlier models are used as a bias-correction

in later models. For MDE, the bias correction is incorporated through the bases: estimation utilizes

bases Ri(Mi, Ti, Xi), but prediction at Ri(m,Ti, Xi). Second, we can relax the assumption that post-

treatment confounders are independent of the mediator, which is required for the simplest form of

g-estimation.

More generally, structural mean models can be estimated using the basic framework of MDE.

The basic element of these models, the “blip function,” is the conditional counterfactual difference

in outcome between two observations. Under an identity link, which we consider in this paper, the
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blip function for a point-treatment is

ψ∗ ((T ′′i , T
′
i ), Xi; c

o) = E(Yi(T
′′
i )− Yi(T ′i )|Xi) (53)

where co parameterizes the true mean function. This blip function is constructed to satisfy

E {Yi(T ′′i )− ψ∗ ((T ′′i , T
′
i ), Xi; c

o) |Xi} = E {Yi(T ′i )|Xi} (54)

allowing recovery of an estimate of the outcome at some desired value, T ′i . This technology can be

extended to recover consistent treatment effect estimates across a variety of structural settings (see

Vansteelandt, 2009, for an excellent review).

In our notation, this blip function ψ∗ ((T ′′i , T
′
i ), Xi; c

o) = E {∆i (T
′′
i , T

′
i ))|Xi}, a generalization

of our primary parameter of interest, ∇Ti(δ). The methods described above show how MDE can

recover a blip function but also assess whether the desired conditional in the blip down has positive

support, a particular concern with a continuous treatment where structural mean models and their

extensions are most useful (Vansteelandt, 2009, p. 23).

3.4 Binary Treatments

We have so far focused on and emphasized the method’s utility with a continuous treatment variable,

but there is nothing in our framework that prevents us from predicting counterfactuals with a binary

or categorical treatment variable. We next extend MDE to the case of a binary treatment, where

most work in the causal literature has taken place, and show that it provides a reasonable means

for effect estimation even relative to methods designed explicitly for the binary treatment case.

In our notation, the individual causal effect under a binary treatment can be written as

E(Yi(1)− Yi(0)|Xi) = ∇Ti(1− 2× Ti) = E(∆i(1, 0)|Xi) (55)

The most common estimands with a binary treatment are the sample average treatment effect

(ATE) and sample average treatment effect on the treated (ATT),

ATE =
1

n

n∑
i=1

∇Ti(1− 2× Ti) = (56)

ATT =
1

nT

n∑
i=1

(∇Ti(1− 2× Ti))× 1(Ti = 1) (57)

where nT =
∑n

i=1 1(Ti = 1). Estimation can now proceed as described above, except we now

consider differences instead of partial derivatives.
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4 Relationship to Earlier Work

Our approach to modeling counterfactuals incorporates insights from several different fields, as we

discuss next.

Relationship to causal inference Causal estimation generally involves a two-step procedure.

In the first, a model of the treatment is used to characterize any confounding. In the second, some

summary statistic from the first stage, such as a the density estimate or conditional mean of the

treatment, is incorporated into the outcome model through matching, subclassification, or inverse

weighting. See Rubin (1974); Rosenbaum and Rubin (1983, 1984); Robins, Rotnitzky and Zhao

(1994); Pearl (2000); van der Laan and Rose (2011) for seminal work.

Misspecification of this treatment model is both inevitable and impactful (Kang and Schafer,

2007). We sidestep the entire endeavor and directly target a fully saturated, nonparametric condi-

tional mean function. In doing so we face efficiency reductions compared to a model that incorpo-

rates a correctly specified propensity score model (e.g., Robins and Ritov, 1997), yet this efficiency

loss must be balanced against the modeling uncertainty that comes from not knowing the true

model. We show that focusing attention on the outcome model can provide a feasible, robust, and

powerful means for causal estimation.

The bulk of the literature on causal inference has focused on the case of the case of binary or

categorical treatment regimes (For exceptions see Imai and Van Dyk, 2012; Hirano and Imbens,

2005). We share some of the motivation in Austin (2012); Hill, Weiss and Zhai (2011); Lam (2013),

though these works focused on the binary treatment and did not extend to structural models. We

find below that the methods advocated by several of these works do not perform as well as our tensor

regression model. We also share a motivation with the targeted maximum-likelihood approach of

van der Laan and Rose (2011). The authors use a cross-validation tuned ensemble of methods, or

“Superlearner,” to predict the treatment density, then incorporate these estimates in the second

stage model so as to achieve semiparametrically efficient estimates of a treatment parameter. Unlike

this method, we target observation-level estimates rather than an aggregate parameter. We also find

the Superlearner performs poorly in estimating the derivative of the loss function, as minimizing

the predictive risk may result in poor estimates of a derivative or treatment effect; see Athey and

Imbens. (2016) and Horowitz (2014), esp. sec 3.1.
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Relationship to High-Dimensional Regression Modeling Our spline basis is closest to the

nonparametric specification in the “POLYMARS” multivariate tensor-spline model of Stone et al.

(1997). We differ from POLYMARS in two regards. First, our screening step allows us to include

an “ultra-high” number of candidate bases (Fan and Lv, 2008). We include spline bases of multiple

degrees and interactions, then reduce the millions of possible bases to hundreds or thousands.

Second, rather than conduct Rao and Wald tests for basis inclusion/exclusion, we use a sparse

model to fit all of the maintained bases at once (Ratkovic and Tingley, 2017). Third, unlike

existing sparse Bayesian models (e.g. Polson and Scott, 2012; Rockova and George, Forthcoming),

we use a frequentist minmax argument to motivate our hyperprior selection as a function of n, p.

We were inspired by work on tensor-product and smoothing spline ANOVA models Gu (2002);

Wood (2016, 2006); Currie, Durban and Eilers (2006); Eilers and Marx (1996). We differ from

these methods primarily in scale. We are considering tens or hundreds of covariates, a combinato-

rially growing number of tensor products, while focusing on the impact of only a single treatment.

Due to the complexity of the problem, we do not specify a penalty function or reproducing kernel,

but instead construct tensor-product bases and let the sparse LASSO prior manage the regulariza-

tion. While this leads to inefficiencies in estimation, current software cannot handle the number of

variables and tensor-interactions we are considering here.

Estimation of first derivatives. In the case of a continuous or binary treatment, our method

reduces to estimating the partial derivative or subderivative, respectively, of the response func-

tion with respect to the treatment variable. The econometric literature has long recognized this

manipulation-based, and hence causal, interpretation of a structural equation model (Haavelmo,

1943; Hansen, 2017; Pearl, 2014; Angrist and Pischke, 2009). We differ by targeting observation-

level counterfactuals rather than a parameter in a structural model. Even absent a causal interpre-

tation, estimating derivatives has been motivated by problems in engineering as well as economics;

see O’Sullivan (1986); Horowitz (2014) for overviews and Hardle and Stoker (1989); Newey (1994)

for seminal work. We differ primarily in estimation, through considering a large-p setting as well as

models that are nonparametric in all covariates. These methods also stay silent on how to choose

a basis, whether B-splines, Hermite polynomials, radial basis functions, and so on. We leverage

our ignorability assumption, which is central to causal inference, to show that the appropriate basis

function for a causal effect is locally linear almost everywhere, i.e. the piecewise linear cubic-spline
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or B-spline basis.

Relation to nonparametric and high-dimensional structural models Recent work has

extended nonparametric and high-dimensional estimation to the instrumental variables setting,

through either series estimation or LASSO selection (Newey, 2013; Belloni et al., 2012; Newey and

Powell, 2003). Like these methods, we use a regularized series estimator to recover a conditional

mean. We differ from these methods in that we construct our estimator from observation-level pre-

dictions under counterfactual manipulations, rather than targeting structural parameters. Recent

work by Belloni et al. (2015) develop theory for both estimation and inference on a broad class of

models under least squares estimation; included in their analysis is inference on the instantaneous

causal effect in a tensor-spline model. We address the proliferation of bases in this model serves as

the central issue in estimation (Belloni et al., 2015, Sec. 3.6) through our screen and regularization

procedure. We also extend the approach to additional quantities of interest beyond those considered

in Belloni et al. (2015), such as those studied in instrumental variable and mediation analyses.

Our work is perhaps closest to Heckman and Vytlacil (2007a,b, 2005, 1999)9, Athey, Tibshirani

and Wager (2016), and Hartford et al. (2016). Heckman and Vytlacil develop the Local IV (LIV)

in the binary treatment/encouragement setting as the impact of the treatment on those indifferent

between control and treatment at a given level of encouragement. The LICE considers the impact

of a perturbation to the encouragement at the observed data. In a policy setting, where the

encouragement can be controlled, the LIV may be preferred, while in an observational setting, where

interest is on the data as observed, the LICE is likely to be preferred.10 We emphasize, though,

that MDE can be used to estimate either the LICE or LIV, using a rich mean model unavailable

to these previous papers, and handles settings beyond a binary treatment/encouragement.

In additional related work, Athey, Tibshirani and Wager (2016) use a random forest to estimated

a kernel density for each observation, then use the density weights in a two-stage least-squares

calculation. As with us, Athey, Tibshirani and Wager (2016) generate observation-level effect

9 See Kennedy, Lorch and Small (2017) for concurrent, and fascinating, work.
10See Section D for one way to bridge the two estimands. One could for example calculate the set of observations

for which a given level of encouragement could be supported. We also note that, as with our approach the LIV can

be aggregated to an average effect. For the Heckman and Vytlacil framework this follows precisely because it is a

latent index model with an assumed error (a probit model). In the continuous setting, like we consider here, that

expectation requires either assuming the error density or estimating it, as we do.
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estimates and use a high-dimensional model to avoid the curse of dimensionality. Like Hartford et al.

(2016), we use a flexible regression model to estimate conditional mean functions. While we generate

pointwise counterfactuals at the two stages, Hartford et al. (2016) uses the first stage for a second-

stage residual correction, which is the “control function” approach described in Horowitz (2014).

Our primary additions over Athey, Tibshirani and Wager (2016) and Hartford et al. (2016) come

from both returning a first-stage estimate, which offers important insight into internal validity, and

using the oracle bound to identify non-compliers in the data. The importance of separate estimates

at each stage will allow plug-in estimates for other causal structural models (VanderWeele, 2015),

as we illustrate with our discussion of mediation and sequential-g estimation above. Lastly, we are

not the first to note that the sampling distribution of instrumental variable estimates can be erratic

and non-normal (Bound, Jaeger and Baker, 1995; Imbens and Rosenbaum, 2005). Rather than

turning to rank-based estimates, we instead suggest a bagging procedure to smooth over a possibly

erratic sampling distribution (see Appendix C).

5 Analyses

5.1 Application: Binary Treatment

As a validation exercise, we test MDE against several existing methods using data first put forward

by LaLonde (1986), but see also Smith and Todd (2005); Diamond and Sekhon (2012); Imai and

Ratkovic (2014). The data consist of an experimental subset and and observational subset. The

experimental subset contains the results from a policy experiment, the National Supported Work

Study, with participants randomly assigned to a treated (nT = 297) and untreated (nC = 425)

group. The treatment consisted of a job-training program and participants were hard-to-employ

individuals across 15 sites in the United States in 1976. The outcome is 1978 earnings and observed

covariates include the participants’ age, years of schooling, whether the individual received a high

school degree, indicators for race (black, hispanic), an indicator for whether the participant is

married, previous earnings from 1974 and 1975, and indicators for whether 1974 or 1975 earnings

were zero.11 The observational dataset comes from the Panel Study for Income Dynamics, a survey

11The LaLonde data contain several subsets that have been used as a benchmark analysis. One subset, analyzed

by Dehejia and Wahba (1999) subsets on the outcome variable, returning a data on which most methods perform

quite well. We focus on the full original experimental data, which poses a greater challenge.
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of low-income individuals, with data on the same covariates as the experimental data (nP = 2915).

We conduct three separate tests. The first uses the experimental treated and observational

untreated, with the goal of recovering the experimental result ($886.30). This is perhaps the most

policy-relevant comparison, as it may allow for methods that can estimate the causal impact of

a policy intervention in the absence of a randomized control group. The second test is a placebo

test, considering the experimental and observational untreated groups. As no one in the treated or

untreated group received the treatment, the known true effect is zero, and any non-zero estimate

has been termed evaluation bias (Smith and Todd, 2005; Imai and Ratkovic, 2014). In the third

test, we compare the experimental treated to the experimental untreated, in order to assess the

extent to which a causal estimation method can recognize experimental data and recover an effect

close to the simple difference-in-means.

We compare the proposed method, in both its point estimate and bagged implementations, to

several existing methods. We include the horseshoe model and cross-validated LASSO, both using

our nonparametric bases. We also include BART, gradient boosting (GBM), and POLYMARS, an

existing nonparametric spline model. We include four methods designed for a binary treatment:

logistic propensity score matching (Propensity, Ho et al., 2007), the covariate balancing propensity

score (CBPS, Imai and Ratkovic, 2014) the targeted maximum likelihood estimate (Gruber and

van der Laan, 2011) and the double-selection OLS post-LASSO estimator of Belloni, Chernozhukov

and Hansen (2014); Chernozhukov, Hansen and Spindler (2016).

Results from this analysis can be found in Table 1. The treated and control groups used in the

comparison are given in the top two rows. Columns consist of the target, either the experimental

benchmark ($886.30) or zero. Results from each method are then listed below and the final column

gives the absolute bias across comparisons. Methods are listed in order of performance on this final

measure. We see that MDE performs well relative to other methods. CBPS achieves a bias across

the three simulations settings comparable to MDE, performing particularly well in the experimental

sample. The remaining methods struggle in at least one of the comparisons.

We next illustrate how variable selection alone, without nonparametric preprocessing of covari-

ates, need not reduce model dependent causal effect estimation. The practical point is that a

variable selection methodology may suggest estimation is robust to whether higher order terms are

included, but we show that this is not necessarily the case.
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Treatment Group Experimental Experimental Experimental Total
Control Group Observational Observational Experimental Absloute Bias

Truth 886.30 0.00 886.30 0
MDE 850.82 190.55 572.01 540.31

CBPS 453.19 -300.28 872.27 747.42
OLS Post LASSO 1423.51 803.04 879.01 1347.54

TMLE -128.11 -520.48 739.26 1681.93
Horseshoe 901.67 1600.79 -93.01 2595.47

BART -477.87 -1265.07 803.77 2711.77
GBM -864.43 -1402.73 866.10 3173.66

POLYMARS -228.30 -1863.41 0.00 3864.32
LASSO -1204.34 -1726.13 944.94 3875.41

Propensity -3728.93 -5597.30 1067.96 10394.19

Table 1: Treatment Effect Estimates, LaLonde Data. The treated and control groups used in
the comparison are given in the top two rows. Columns consist of the target, either the experimental
benchmark ($886.30) or zero. Results from each method are then listed below and the final column
gives the absolute bias across comparisons. Methods are listed in order of performance on this final
measure. We see that MDE performs well across comparisons.

Treatment Group Experimental Experimental Experimental
Control Group Observational Observational Experimental

Truth 886.30 0.00 886.30
X 859.10 189.32 832.61

MDE X reduced 888.41 278.72 720.64
X,X2 513.29 614.75 792.76

X,X2, interactions 338.08 -105.91 577.83
X 1423.51 803.04 879.01

OLS Post LASSO X reduced 46.17 -905.32 893.61
X,X2 2306.71 1115.50 756.81

X,X2, interactions 8.22 ×1015 1.33 ×1012 801.35

Table 2: Specification Stability, LaLonde Data. The treated and control groups used in
the comparison are given in the top two rows. Columns consist of the target, either the ex-
perimental benchmark ($886.30) or zero. Rows show which conditioning set is being used: the
complete covariates (X); the covariates dropping covariates constructed from other covariates (i.e.
1974earnings = 0; X reduced); the complete set of covariates plus square terms (X,X2); and the
covariates, square terms, and two-way interactions (X,X2, interactions). Setting aside convergence
issues in the interactive model, we see that MDE returns values with less variance across different
parameterizations of X, each with the same amount of information.

We illustrate by repeating the analysis above, but hold fixed the conditioning set–the amount of

information available in the covariates–but vary the form in which the covariates are entered into

the model. We first start with the covariate set X, as given above. Next, in row “X, reduced” we

drop three covariates that are functions of other covariates, dummy variables for whether a high
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MDE 187.25 187.40 188.87 190.54 189.67
Horseshoe 1600.79 1873.87 997.57 1456.29 762.58

Table 3: Algorithm Stability, MDE versus Horseshoe Prior. Estimated treatment effects
from MDE (top) and a horseshoe regression (bottom) across five random starts, using the same set
of nonparametric bases. MDE is much more stable across multiple runs.

school degree is attained (= 1(schoolingi > 12)) and indicators for whether earnings in the previous

two years were 0. The dropped covariates do not reduce the information in the conditioning set.

We then include X and X2, squared terms for each centered covariate. Again, we are not changing

the information in the conditioning set. Lastly, we include X, the square terms, and all interaction

terms.

We compard MDE to the post-LASSO OLS treatment effect estimator of Belloni, Chernozhukov

and Hansen (2014); results appear in Table 4. We see that MDE is stable across specifications,

while the post-LASSO OLS method returns sometimes dramatically different results. For example,

when comparing the observational control to the experimental treated set, the effect estimates can

vary by over $2200 dollars, setting aside the failure of convergence on the model with interaction

terms. In the experimental data, post-LASSO OLS performs particularly well, as the model is

OLS fit to the treatment variable and a set of selected covariates. As the treatment has been

randomized, a regression additive in the treatment and any subset of the controls will perform well.

In the observational settings, though, model dependence as measured through shifting covariate

specifications are dramatically muted by our tensor-spline plus marginal screen method given above.

We next consider algorithm stability, specifically the variance in estimated treatment effects

across multiple runs. We compare MDE, with its LASSOplus implementation, to the horseshoe fit

via variational inference as implemented in the R package rstanarm. We focus on the horseshoe

estimator due to its popularity in both the applied and theoretical literatures. Both MDE and the

horseshoe regression are given the same set of nonparametric bases. Results are in Table 3, where

we are only looking at the comparison between untreated experimental units and the untreated

observational units (the middle column in Tables 1 and 4), as we know the true effect is $0. From

run to run, MDE stays around $188.75 ± $2, whereas the horseshoe estimator has a range of over

$1100.

Our nonparametric basis construction generates a regression model that is robust to how co-

variates are entered and our Bayesian prior generates estimates robust to different starting values,
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while maintaining a high level of accuracy in the LaLonde exercise.

In Appendix H.1 we include an additional LaLonde analysis, looking at how well each method

predicts observation-level effects, rather than simply average effects, in a held-out sample. Again,

we find that MDE performs competitively.

5.2 Application: Instrumental Variables

Next we examine an empirical application using instrumental variable methods. Here we focus on

an application with a continuous instrument in order to highlight how the proposed methodology

naturally incorporates continuous as well as non-continuous exogenous variables.

Larreguy and Marshall (2017) study the long term political effects of increased education. To do

this they utilize variation in the intensity of a Nigerian government reform, the Universal Primary

Education reform of 1976. The authors leverage Afrobarometer survey data to explore a variety

of political variables, such as interest in the news and knowledge of politics. Concerned about

endogeneity problems present in regressing these political variables onto measures of education,

they use an instrumental variables strategy akin to earlier work in development economics on the

effects of education (Duflo, 2001). In particular they exploit temporal (the program started in

1976 and so impacted particular cohorts of citizens) and spatial (regional level differences between

actual and potential enrollment, see also Bleakley (2010)) variation. They use linear two stage least

squares with an interaction between the intensity of the program and whether an individual would

have been eligible to benefit from the program as an instrument for education levels. The authors

include a range of control variables and fixed effects for cohort, region, and Afrobarometer survey

wave. They find strong and robust impacts of education on long term political variables. Using

their replication data we implement our proposed method to reevaluate their results.

Part of our interest is in allowing for the instrument to have non-linear effects on the endogenous

variable. Hence before displaying results from our analysis, we present evidence of such a non-linear

relationship by simply fitting a generalized additive model to the data, allowing for local smoothing

on the instrument and including the full set of controls. On the x-axis we present the values of the

instrument along with a histogram of its marginal distribution. On the y-axis we present the fitted

values of the endogenous variable.12 Here and below we present this distribution as a 2-dimensional

heatmap in order to convey density of observations over the space, and fit a smooth trend line

12We re-scaled the endogenous variable, education, which in the original analysis ran from 1 to 5.
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Figure 1: Nonlinear bi-variate relationship between instrument and fitted values of the
endogenous variable. Estimated using generalized additive model and not the proposed
method.

to convey the basic pattern. Generally speaking we see higher effects of the instrument at lower

values of the instrument, and lower effects at higher values of the instrument. This gives some

evidence that it might be desirable in calculating causal effects to incorporate greater functional

form flexibility into the analysis.

We fit our model using a full set of splines and interactions described in Section 2.2.13 We

present two main sets of results.

First, in Figure 2 we present a plot analogous to Figure 1 which plots for each observation the

relationship between the instrument and the covariance between the instrument and and (endoge-

nous) treatment variable. This is the “first stage” result. We see a strong positive relationship

until the upper end of the instrument distribution, where it begins to get closer to 0. A behavioral

interpretation of this pattern is that the returns on education to increasing intensity in the program

were lower in areas with greater intensity, perhaps because it would be harder to increase their

education levels even higher.14

Figure 3 plots the “second stage”: the treatment variable versus the covariance between the

13The original model used a substantial number of fixed effects, in part to establish a difference in difference

identification strategy with an instrumental variable. This poses no problem for our proposed method. However for
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Figure 2: Relationship between instrument and first stage covariance (covariance be-
tween instrument and treatment). Estimated using the proposed method.

treatment and outcome variable. A piecewise line plots the means across the values of the treatment

variable. At lower lower levels of the treatment variable the average covariance was lower than at

higher levels of the treatment variable. Combined with the results in Figure 2 this helps to give us

an expectation of what the LICE will look like over the sample.

Remembering that the LICE is a ratio estimate, the next step then is to directly plot the

numerator of our IV estimate (the covariance between the instrument and treatment) against the

denominator (the covariance between the treatment and outcome). Figure 4 plots the results.

Several patterns are interesting. First, the majority of observations are in the upper right quadrant,

with positive covariances. Second, there is a non-linear relationship. As the first stage covariance

increases (that is, the strength of the instrument), there are declining returns to having an effect

on the second stage relationship. Substantively this implies a positive relationship overall between

education and interest in news, but one that is diminishing at higher levels once endogeneity concerns

have been addressed. Third, there are a small number of observations in the bottom left quadrant.

computational purposes we made some minor modifications that we discuss in Appendix H.
14We also investigated the first stage fit of our model compared to least squares via cross-validation. We found

nearly identical performance, which is impressive for our proposed method given that the sample size is quite large

relative to the number of parameters fit by the least squares model.
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Figure 3: Treatment variable versus covariance between treatment and outcome.

For these observations the LICE will still be positive. On average these observations are likely to

be of lower education (see Figure 3). Behaviorally these individuals were negatively encouraged but

also saw a decrease in interest in news. Finally, there are no observations in the top left quadrant,

and few observations in the bottom right. Individuals in the bottom right were positively encouraged

by the reforms but saw a decrease in news interest; for these individuals we would expect a negative

LICE

Finally in Figure 5 we plot the distribution of local individual causal effects (LICE) against

the treatment. The dashed horizontal lines represents the average LICE, which we estimate to be

.35 (95% confidence interval: .20, .49).15 While there was non-linearity in the first stage estimate,

we observe more stability over the sample in the LICE. This directly follows from the results in

Figure 4.

15We bootstrapped the confidence intervals using 100 bootstrap runs. Using TSLS the original analysis returned a

point estimate of .62. Larreguy and Marshall (2017) cluster standard errors at the state level. However, re-analysis

of their specification shows this made no difference. In fact, the confidence intervals were slightly wider without

clustering. We did not cluster standard errors, though a block bootstrap approach would accomplish this goal.
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Figure 4: First stage versus second stage.
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Figure 5: Local Individual Causal Effect versus treatment variable.

6 Conclusion

We focus on using a high-dimensional, flexible regression model directly target observation-level

causal effect estimates by considering an extremely rich covariate and functional space. We utilize
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recent advances in machine learning to estimate our model and show that the proposed approach

performs extremely well against other cutting edge methods. Finally, we show how our estima-

tion strategy extends beyond the estimation of simple treatment effects and can also be used in

instrumental variable or other structural models.

We see this work as providing an integrative thread across a number of seminal contributions.

Our approach starts with Rubin’s observation that causal inference is a missing data problem: were

the counterfactual outcomes known, causal inference would amount to simple descriptive statistics.

We work towards this goal head-on, avoiding workarounds like inverse weights and propensity scores,

which add another layer of modeling uncertainty and are rarely subjects of direct interest. An early

stumbling block in causal inference was acknowledged by Robins, in that causal inference is only as

persuasive as the underlying model. Rather than develop methods that are reasonable even in the

face of model misspecification, we focus our attention on getting the conditional mean correct. We

build off seminal work on multivariate spline models (Stone et al., 1997; Friedman, 1991) but expand

the range of basis functions utilized and combine it with recent machine learning tools (Fan and Lv,

2008; Ratkovic and Tingley, 2017) in order to focus on this goal.16 Though we started the project in

terms of the potential outcomes approach, we found that our estimation strategy combined thinking

in terms of observation-level counterfactuals as well as structural “do” manipulations, as developed

by Pearl. The utility of our approach becomes more clear in the case of the instrumental variable

analysis, where we integrate the nonparametric structural equation model (SEM) approach and the

potential outcome approach of Angrist, Imbens and Rubin (1996).

The are a number of areas for future work. One thing we have left out of the current paper

is the set of advantages of using the Bayesian LASSOPlus model that we previously developed

(Ratkovic and Tingley, 2017).17 We are actively extending the method of direct estimation to cases

with multiple separate treatment variables, instruments (e.g., Chernozhukov, Hansen and Spindler,

2015; Belloni et al., 2012), or mediators. Our current approach considers the impact of perturbing

a single instrument, but extending it to multiple instruments and treatments will involve moving

16Of note, as shown in Section E, our expanded basis function approach also enabled the LASSO to beat a number

of cutting edge machine learning methods.
17These advantages include straightforward ways to incorporate binary or truncated outcome variables, random

effects, uncertainty estimates with desirable coverage properties, and not relying on arbitrary tuning parameter

selection.
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from partial to Frechet derivatives. We have also explored a means for estimating the range of

values for the treatment over which the model could predict. We can then use this approach to

change our estimand to the expected value of the local effect over the range of treatment values,

ET̃i(limδ→0∇Ti(δ)) (see Appendix D). Appendix C explores the use of bagging in contexts where

there will be high sampling variability. Finally, future work could also consider how to extend the

model to the longitudinal setting or how to incorporate spline bases with discontinuities so as to

capture “jumps” in the data, and how to estimate the effect in a regression discontinuity design.
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Appendix

The outline of the appendix is as follows.

Section A details properties of the LASSOPlus estimator. Interested readers can consult Ratkovic

and Tingley (2017) for additional details. Section B proves validity of our bootstrap estimate.

Section C covers how bagging can be used and Section D proposes a method for calculating the

extrapolation range. Section F conducts a simulation study on the IV compliance threshold and

proposes a diagnostic for instrumental variables akin to the first-stage F -statistic. Section G gives

the proofs of our Oracle results. Section H discusses our processing of the Larreguy and Marshall

(2017) data as well as plots of variable effect estimates. Section H.1 includes additional exercises

using the LaLonde data.

A LASSOplus Properties

Our joint conditional density on c, w produces a problem similar to the adaptive LASSO of Zou

(2006):

− log
(
Pr
(
c, {wk}pk=1|λ, σ

2, γ
))

=
1

σ2

{
1

2

n∑
i=1

(Yi −R(Ti, Xi)
>c)2 + λσ

p∑
k=1

wk|ck|

}
+

p∑
k=1

wγk . (58)

where the weights and global sparsity parameter enter the log-posterior as wγk rather than as separate

terms, as in Leng, Tran and Nott (2014); Alhamzawi, Yu and Benoit (2012); Griffin and Brown

(2012, 2010); Kang and Guo (2009).

Estimation Following Park and Casella (2008), we reintroduce conjugacy in the mean parameters

through augmentation:

ck ∼ DE(wkλ/σ)⇒ ck|τ 2
k , σ

2 ∼ N (0, τ 2
kσ

2); τ 2
k ∼ exp(λ2w2

k/2). (59)

Both the MCMC and EM estimation details are standard, see Ratkovic and Tingley (2017).

The tuning parameter. We first focus on the conditional posterior density of the tuning pa-

rameter, λ. Rescaling by n reveals that we are recovering the MAP estimate

ĉ |· = argmin
c

1

n

n∑
i=1

(Yi −R(Ti, Xi)
>c)2

2σ2
+

λ

nσ

p∑
k=1

wk|ck|. (60)
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The Oracle rate is achieved when λ/n grows as
√

log(p)/n, i.e. when λ grows as
√
n log(p). Our

conditional posterior density of λ2 is

λ2|· ∼ Γ

(
n× (log(n) + 2 log(p)) ,

p∑
k=1

τ 2
k/2 + ρ

)
(61)

which possesses several desirable properties. First, each mean parameter ck is given its own shrinkage

parameter, λwk
nσ

, allowing for differential regularization of large and small effects. Second, for p ∼

nα, α > 0, then λ̂ = O
(√

n log(p)
)

, as desired. Second, the tuning parameter has the structure

given in Buhlmann and van de Geer (2013, Corollary 6.2) so that it provides a consistent estimate

of the conditional mean. The term log(n) controls the probability with which the Oracle bound

holds, and it goes to zero in n. For a full discussion of bounds, see Ratkovic and Tingley (2017).

The weights. To see the impact of the weights, consider the posterior conditional density and

mean of wk,

Pr(wk|·) =
e−w

γ
k−

λwk
σ
|ck|∫

e−w
γ
k−

λwk
σ
|ck|dwk

; E(wk|·) =

∫ ∞
wk=0

wk Pr(wk|·)dwk (62)

with ŵk simply the conditional mean of wk under this density.

The derivative of ŵk with respect to |ck| evaluated at the EM estimate gives

∂ŵk
∂|ck|

= −λ̂

√
1̂

σ2
Var(wk|·) < 0 (63)

showing that the weights are inversely related to the magnitude of the estimates, |ck|. This inverse

relationship between the weights and the estimate gives us the same properties as the adaptive

LASSO of Zou (2006).

Consider the two limiting cases |ĉk| = 0 and |ĉk| → ∞. Consider first |ĉk| → ∞. In this case,

the exponent in the conditional kernel of wk is dominated by the term −λwk
σ
|ck| and approaches an

exponential density with mean ŵk → σ̂/λ̂. Therefore, as |ck| grows, the weighted LASSO penalty

approaches 1/n, a negligible term.

When |ĉk| = 0, the conditional posterior density follows a generalized Gamma density with

kernel exp{−wγ̂k} and has mean Γ(2/γ̂)/Γ(1/γ̂) which we denote γ.18 Therefore, for the zeroed out

parameters, the weighted LASSO penalty for |ck| approaches λ̂γ/n. Since λ̂ = O(
√
n log(n)), the

penalty is of order log(n)/
√
n, which is not negligible.

18 Γ(·) refers to the gamma function (not density)
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The global sparsity parameter. The global sparsity parameter γ serves to pool information

across the mean parameters (see e.g. Bhattacharya et al., 2015, for a similar insight). To illustrate

its workings, we consider the two limiting cases, γ ∈ {0,∞}.

First, as γ approaches 0, our prior approaches the spike-and-slab prior for a mean parame-

ter, resulting in no shrinkage but with a point mass at zero. Taking γ → 0 ⇒ Pr(wk|·) →

Exp(λ|ck|/σ). This gives us ŵk =
(

1̂
σ2

)−1/2

/(λ̂|ĉk|). Plugging into the prior on ck gives Pr(ck) →

DE

(
λ̂ŵk

(
1̂
σ2

)1/2
)
→ DE

(
λ̂
(

1̂
σ2

)−1/2

/(λ̂|ĉk|)
(

1̂
σ2

)1/2
)
∝ 1, the flat Jeffreys prior when ĉk 6= 0.

When ĉk = 0, the prior has infinite density, to due the normalizing constant of order 1/|ĉk|, giving

a spike-and-slab prior with support over the real line.

Taking γ → ∞ ⇒ Pr(wk|·) → U(0, 1), a uniform on [0, 1], since any weight greater than 1

has mass proportional to exp {w−γ} = 0. This gives us ŵk = 1/2. Plugging into the prior on ck

gives Pr(ck) → DE

(
1
2
λ̂
(

1̂
σ2

)1/2
)

, which is the Park and Casella (2008) prior with 1/2 the rate

parameter.

B Proof of Validity of Bootstrap Estimate

Denote as TBN the complete set of all possible bootstrap estimates. We need to show that the

bootstrap estimate TBN converges in distribution to T̃i. We exploit the independence between

the bootstrapped fitted values, T̂BN and permuted bootstrapped errors ε̂B′
N

, as well as Slutsky’s

Theorem, to show that a bootstrapped approximation to the convolution formula converges to its

population analog. We assume that the distribution of T̃i|Xi is Glivenko-Cantelli with bounded

density a.e. and that εi⊥⊥Xi. Then, with FBN the empirical bootstrap distribution over replicates

FBN (z) = Pr(Tib ≤ z) = Pr(T̂ib + ε̂ib′ ≤ z) (64)

=

BN∑
i=1

∑
x∈ε̂B′

N

1

BN

1(x = ε̂ib)1(T̂ib + x ≤ z)
p→
∫
fεi(x)FT̃i(z − x)dx (65)

= F (T̃ ≤ z) (66)

by Glivenko-Cantelli and Slutsky. In practice TBN is too large to compute, so we use TB with large

B.
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C Bagging

We have several reasons to be concerned that our estimates may have a large sampling variance.

The LASSO problem minimized in Equation 21 conditions on the estimated residuals. This suggests

that results may be sensitive to sample-specific outlying residuals. Second, we are fitting a high-

dimensional nonparametric regression, which is known to generate high-variance estimates near

the boundaries of the covariate space. Beyond the generic issues of nonparametric regression,

several of our examples and simulations involve cases where we confront highly-skewed or fat-

tailed distributions. For example, in an instrumental variable setting, the effect estimate is a ratio

estimator that may have such fat tails that the sampling distribution may have no finite moments.

In one of our empirical examples, the outcome is earnings, which is highly right-skewed.

To reduce the variance of our estimates, we turn to bootstrap aggregation (bagged, Buhlmann

and Yu, 2002). We implement bagging use a Rademacher-wild bootstrap, to account for possible

heteroskedasticity (e.g., Davidson and Flachaire, 2008). Bagging normally involves taking the mean

across bootstrapped samples, but as we are worried about skew or whether the mean is even finite,

we take as our bagged estimate the median across bootstrap samples for each observation. We show

below that the method can lead to a decrease root-mean-squared error with only little increase in

bias.

We confront a similar problem with our IV estimator. The LICE is a ratio estimator, and we

worry that the estimator’s sampling distribution may be Cauchy or approximately so. In order to

stabilize the estimation, we utilize median bagged estimates,

∇̂IV ;boot
Zi

(δIVi ) = medB

(
1

{RT (Zi + δIVi , Xi)−RT (Zi, Xi)}
>
ĉT,b

)
×

medB

({
R
(
RT (Zi + δIVi , Xi)

>ĉT,b, Xi

)
−R

(
RT (Zi, Xi)

>ĉT,b, Xi

)}>
ĉb

) (67)

where medB(a) refers to the median over bootstrap samples b ∈ {1, 2, . . . , B}. This median-bagging

is effective at reducing the impact of wild or erratic estimates.

D Extrapolation Ranges and Expected Effects

We have so far focused on the partial derivative of an outcome with respect to a treatment as our

primary estimand. The researcher may want to know the causal effect of a larger shift in the treat-

ment, or perhaps expected outcomes over a range of treatment values. As a model of the conditional

4



mean, MDE certainly can estimate the outcome under any treatment level. Estimates are only re-

liable, though, over the range of treatment values that have non-zero probability, supp (T̃i|Xi).

Doing so requires an estimate of the density of T̃i|Xi

We suggest using a bootstrap estimate. Denote as T̂i the estimate of the treatment from our

regression model; ε̂i the estimated residual; E(Ti|Xi) the population value; T̂ib, ε̂ib estimated fitted

values and residuals from a bootstrap replicate; and T̂B = {T̂ib}Bb=1, ε̂B = {ε̂ib}Bb=1, and q(A,α) the

αth quantile of set A.

We cannot construct a bootstrapped estimate from T̂ib+ε̂ib since this value is Ti for each replicate.

Instead, we construct our estimates from Tib = T̂ib + ε̂ib′ , for some b 6= b′, breaking the correlation

between fitted value and residuals for a given observation over bootstrap replicates. Under the

assumption that the error is independent of the systematic component, the set TB = {Tib}Bb=1 can

be used to construct a confidence interval. For example, we can take use the percentile bootstrap,

[q(Tb, α/2), q(TB, 1− α/2)] for false positive rate α. For proof, see Appendix B.

This bootstrap estimate of the sampling distribution offers three separate advances. First, we

can use it to estimate a reasonable range of extrapolation for each covariate profile. Doing so helps

give a sense of what range of counterfactual predictions are supported by the data.

Second, the bootstrap estimated support can be used ex ante, say in an experiment, or ex

post, in an observational study, to find observations with common support. In an experimental

study, a randomization with poor in-sample balance on prognostic variable, can be rerun (e.g.

Morgan and Rubin, 2012). In a field study, where experimental units may be quite heterogeneous,

the researcher may have concerns over the ability to compare the treated and control group in a

given randomization. The support for the treated and control can be estimated, and consequently

compared, as a means of assessing whether the treatment and control groups are indeed comparable.

In an observational study, the estimated support can be used for trimming. Rather than trim off the

marginal covariates (e.g. King and Zeng, 2006), the bootstrap estimates can be used for trimming

off the actual estimated support of the treatment variable.

Lastly, the bootstrap estimate can be used to extend from a local effect at the observed value,

limδ→0∇Ti(δ), to an expected effect. The local effect conditions on a particular value of the treat-

ment, T̃i = Ti. It could very well be, though, that the effect at the observed Ti may be different

than an expected value over all possible Ti. The researcher interested in the expected effect over

5



the treatment, ET̃i(limδ→0∇Ti(δ)), can use TB to approximate this integral,

ÊT̃i
{

lim
δ→0
∇Ti(δ)

}
=

1

B

B∑
b=1

lim
δ→0
∇Tib(δ), (68)

the expected effect of the treatment.

E Simulations

We next present simulation evidence illustrating the MDE’s utility in estimating treatment effect.

We include four sets of simulations presented in increasing complexity, a linear model, a low-

dimensional interactive model, a nonlinear model, and a model with interactions and discontinuous

breaks, respectively:

Linear: Yi = Ti +
8∑

k=5

Xikθk + εi (69)

Interactive: Yi = Ti − Ti ×Xi3 +
8∑

k=5

Xikθk +Xi1Xi2 + εi (70)

Nonlinear: Yi = 20 sin

((
Xi1 −

1

2

)
Ti
20

)
+

1

2
× (1 + |Xi3 ×Xi4|+)× (1 + Ti)+

8∑
k=5

Xikθk + εi

(71)

Discontinuous Yi = (1 + |Ti|)× 1(|Ti| > 1/2)× (Xi5 + 1) +
8∑

k=5

Xikθk +Xi1Xi2 + εi (72)

where the the error is independent, identical Gaussian such that the true R2 in the outcome model is

0.5. All covariates are from a multivariate normal with variance one and covariance of 0.5 between

all pairs and the elements of β are drawn as independent standard normal. The treatment is

generated as

Ti = −3 + (Xi1 +Xi4)2 + εTi ; εTi
i.i.d.∼ N (0, 4) (73)

We consider n ∈ {100, 250, 500, 1000, 2000} and p ∈ {10, 25, 50, 100}. In each case, the true data is

generated from the treatment and the first 8 covariates, but the dimensionality of the underlying

model may be much higher. For example, the smooth curve in simulation 4 is infinite dimensional

(a sine curve).

We assess methods across two dimensions, each commensurate with our two estimation con-

tributions: the nonparametric tensor basis for causal estimation and the sparse Bayesian method.

6



We want to assess, first, how well sparse regression methods perform given the same covariate ba-

sis. We include in this assessment the cross-validated LASSO, as a baseline, as well as two sparse

Bayesian priors: the horseshoe and Bayesian Bridge (Carvalho, Polson and Scott, 2010; Polson,

Scott and Windle, 2014), as well as LASSOplus, described above.19 Each of these methods are

handed the same nonparametric basis created in our pre-processing step. To date, the use of these

methods have not taken advantage of our nonparametrics basis construction and screening steps.

We compare these methods to regression-methods that generate their own bases internally, ker-

nel regularized least squares (KRLS, Hainmueller and Hazlett, 2013), POLYMARS (Stone et al.,

1997), and Sparse Additive Models (SAM, Ravikumar et al., 2009). These methods are simply

given the treatment and covariates, not our nonparametric basis. The last comparison set are non-

regression methods, bayesian additive regression trees (BART, (Chipman, George and McCulloch,

2010)), gradient boosted trees (GBM, Ridgeway, 1999), and the SuperLearner (Polley and van der

Laan, N.d.). For the SuperLearner we include as constituent methods random forests, the LASSO,

POLYMARS, and a generalized linear model. All simulations were run 500 times.

E.1 Results

We report results on each methods’ ability to recover the conditional mean µi = E(Yi|Xi, Ti) and

partial derivative ∂µi/∂Ti. To summarize the performance, we calculate three statistics measuring

error and bias. The statistics are constructed such that they are 0 when µi = µ̂i and ∂µi/∂Ti =

∂̂µi/∂Ti and take a value of 1 when µ̂i = 1
n

∑n
i=1 Yi = Y i.

RMSE :

√∑n
i=1(µi − Ŷi)2∑n
i=1(µi − Y i)2

(74)

RMSE∇ :

√√√√√√
∑n

i=1

(
∂µi
∂Ti
− ∂̂Yi

∂Ti

)2

∑n
i=1

{
∂µi
∂Ti

}2 (75)

Bias∇ :

∣∣∣∣∑n
i=1

∂µi
∂Ti
− ∂̂µi

∂Ti

∣∣∣∣√∑n
i=1

{
∂µi
∂Ti

}2
(76)

19We included the OLS post-LASSO estimator of Belloni and Chernozhukov (2013) implemented in R package

hdm. We found the method performed practically identically to cross-validated LASSO, when applied to our bases.
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Figure 6: A Comparison of RMSE for Fitted Values.

In the figures, a value of 1 can be interpreted as performing worse than the sample mean, in

either a mean-square or bias sense, and values closer to 0 as being closer to the truth. A value

above 1 when estimating the derivative means the method did worse than simply estimating 0 for

each value, the first derivative of the null model µ̂i = Y i. For presentational clarity we remove any

results greater than 1.5 for the RMSE results and .2 for the bias results.

Figure 6 reports the RMSE for the fitted values, by method. We can see that MDE, the proposed

method, performs well in each situation. The first column contains results from the simple additive

linear model, where MDE, POLYMARS, and the SuperLearner are all competitive. We suspect

SuperLearner is competitive here because the true model is in the model space for OLS, one of

the components included in the SuperLearner. MDE, POLYMARS and LASSO are nearly tied for

the best performance in the interactive and non-linear settings.20 Finally while MDE is in a top

performing set for the discontinuous case, POLYMARS had a slight advantage.

Figure 7 presents results on each methods’ error in estimating the derivative. In the linear

model, we are consistently dominated by POLYMARS and beat SuperLearners as p grows. In

the interactive and non-linear settings, MDE is again aligned with the LASSO and POLYMARS,

20LASSO methods with a linear specification in the covariates, i.e. not using our nonparametric bases, performed

poorly so were not included.

8



●

●
● ●

●

●
●

●
●

●●
● ● ●

●

●
● ● ●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●

●
●

●

●

● ●
●

●
●●

● ● ● ●
● ●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●● ● ● ● ●

●

● ●

●● ● ● ● ●

●

●

● ●
●

●
● ●

●
●

● ● ●
●

●● ●
● ● ●

●
●

●

●

● ● ● ● ●

●

● ●

● ●

●

● ● ● ●

●
●

● ●
●●

● ● ●
●

●
● ● ● ●

●

● ●

●

●

● ● ● ● ●
●

● ●

● ●

●

●

●

●
●

●
● ● ● ●

●
● ● ● ●

●

●

●

●
●

● ● ● ● ●

●

●

●

● ●

●

●

● ●
●●

● ● ● ●
●

● ● ● ●

●
●

● ●
●

● ● ● ●

●

●
●

●

●

●

● ●
● ●

● ● ● ● ●

●
● ● ● ●
●

●

● ●

● ● ● ● ●●

● ●
●

●

●

●
● ● ●

● ●

● ● ●
●

●
● ● ●

●
● ● ● ●

●

●
●

● ●

● ● ● ● ●
●

●

● ●

●

●

●
●

●

●

●
●

●
● ●

●

● ● ● ●
●

●
● ●

●
● ● ● ●

●

●

●
●

●

●

●
● ● ●

● ●
● ●

●●
● ● ● ●

● ●
● ●

●

●
● ● ● ●

●

●
● ● ●

●

●

● ●
●

● ● ● ● ●
● ● ● ● ●

●

●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●
●

●

●

● ●

● ●

●
●

● ● ●

●

● ● ●
●

● ●

● ● ●

●

● ●

● ●

●
● ● ● ●

●

●
●

● ●

●

● ●

●

●

● ● ●
● ●

●
● ●

●
●

●

●
●

● ●

●
● ● ● ● ●

●

●

●

● ●

●

● ●
● ●

● ● ● ● ●

● ● ● ● ●

●

● ●

●
●

●

● ●
● ● ●

●

● ●
● ●

●

● ●
●

●

● ● ● ●
●

● ● ● ● ●

●

●

●

●
●

●

●

●

●

● ● ● ● ●
●

● ●
● ●

Discontinuous, p=10 Discontinuous, p=25 Discontinuous, p=50 Discontinuous, p=100

Non−linear, p=10 Non−linear, p=25 Non−linear, p=50 Non−linear, p=100

Interactive, p=10 Interactive, p=25 Interactive, p=50 Interactive, p=100

Linear, p=10 Linear, p=25 Linear, p=50 Linear, p=100

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Sample Size

R
M

S
E

●

●

●

●

●

●

●

●

●

●

BART

Bayesian Bridge

Gradient Boosting

Horseshoe

KRLS

LASSO

POLYMARS

Proposed Method

Sparse Additive Model

Super Learner

First Derivative, All

Figure 7: A Comparison of RMSE for Unit Level Derivatives Across Methods.

while POLYMARS performs worse than the null model in the non-linear setting, with the horseshoe

competitive. POLYMARS performs the best in the discontinuous case but MDE was not far behind.

We find that, across settings, LASSOplus is the only method that generally performs first or second

best in RMSE, though POLYMARS, particularly in the discontinous case, and cross-validated

LASSO are reasonable alternatives.

This highlights how estimating fitted values well need not result in recovering the treatment

effect well. Most of the systematic variance in our simulations is attributable to the background

covariates, and a method could perform well simply by getting these effects correct but missing

the impact of the treatment. For example, BART and Sparse Additive Models perform relatively

well in estimating fitted values in the interactive, and nonlinear but not much better than the null

model in estimating the partial derivative.

We perform well in our simulations, and we share the concern that this performance is the

result of favorable decisions we made in the simulation design. To help alleviate these concerns,

we use ordinary least squares to decompose the first derivative into two different components, one

that correlates with the treatment and one that does not. Examining the two separate components

helps identify the extent to which each methods captures the low-dimensional linear trend in the

first dimension and the extent to which they capture the residual nonlinear trend. In our first
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Figure 8: A Comparison of RMSE Across Methods. Linear terms.

simulation, there is no nonlinear trend in the fitted values, and the first derivative is flat, so any

curvature found in the fitted values will show as error in the second component of the RMSE.

Results from this decomposition can be found in Figure 8 and Figure 9 . Figure 8 presents

results for the low-dimensional linear trend while Figure 9 presents results for residual non-linear

trend terms. We find that the proposed method performs well for both sets of effects. Interestingly

in Figure 9 we see that POLYMARS does more poorly in the non-linear setting but better in the

discontinuous setting.21

F Instrumental Variables Diagnostics and Simulations

F.1 Simulations

We next present a short set of simulation results to examine the performance of our method applied

to the case of an encouragement design (instrumental variable). For simplicity we compare our

21Beyond individual effects, sample average effects though, may be of interest to the researcher or policy maker.

For that reason, we also considered the level of the bias and generally find similar results though the Bayesian Bridge

performed better than in the previous results.
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Figure 9: A Comparison of RMSE Across Methods. Residual non-linear terms

proposed method to two-stage least squares estimation.22 We examine first stage and second stage

performance, as well as how well the proposed method helps to unpack individual level compliance

estimates

Simulation Environments We consider five different simulation settings. We fix the second

stage (outcome) model but vary the first stage (treatment) model across five settings. The fist is

a null model, in which the instrument does not impact the treatment and therefore no observation

complies with the instrument. In the second, the instrument has an additive linear effect on the

treatment. The third scenarios contains a mixture of compliers, non-compliers, and defiers. The

fourth scenario is the non-linear model from the earlier simulation setting, and the fifth contains a

discontinuity in the instrument. We note that, in this last setting, the true function is not in the

model space of our spline bases.

Specifically, we use the exact same settings as in the previous simulations to generate the treat-

22The conclusion discusses connections with Chernozhukov, Hansen and Spindler (2015); Belloni et al. (2012)

that investigate the case of variable selection, rather than variable and functional selection, in the estimation of

a structural parameter rather than individual effects. Methods used in Section E have not been extended to the

instrumental variables context except for ensemble tree methods by Athey, Tibshirani and Wager (2016).
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ment from the instrument. We add an additional null model,

Null Ti =
8∑

k=5

Xikθk + εTi , (77)

resulting in five first stage models. The instrument is also generated some confounding from covari-

ates

Zi = −3 + (Xi1 +Xi4)2 + εTi ; εZi
i.i.d.∼ N (0, 4) . (78)

Across settings, the outcome is generated as

Yi = |Ti − 2|+
∑

k∈{5,6,7,8}

Xikθk +Xi1 ×Xi2 + εYi . (79)

where

[εTi , ε
Y
i ]>

i.i.d.∼ N

[0, 0]>, C

1, .9

.9, 1

 (80)

where C is selected such that the second stage has a signal to noise ratio of 1. We generated the

instrument similar to above, with nonlinear confounding with two pre-treatment covariats. The

error structure was induced so endogeneity bias would be severe.

Results In each setting, we compare the performance of MDE to TSLS. We consider three sets of

performance measures. The first two are RMSE performance for the first and second stages. The

second stage RMSE is only measured off the observations with an in-truth identified causal effect.

Third, we consider the ability of MDE to differentiate compliers from defiers and for our threshold

to identify non-compliers.

We focus on two ways to evaluate our results. First, we examine the RMSE on the first and

second stage. The RMSE in the second stage is particularly important because this evaluates the

extent to which we are capturing the LICE. Results for the RMSE in the first stage are still helpful

to show, though they are analogous to the insights provided in Section E.

Figure 10 plots the ratio of the proposed method’s RMSE to the RMSE of 2SLS. Values less

than one indicate better performance for the proposed method.23 In all settings except for the

linear model, and for both the first and the second stage, the method of direct estimation returns

a superior RMSE. As the sample size increases in the linear model, MDE quickly catches up.

23Figures 16 and 17 in Appendix H plot the actual RMSE’s for both methods.

12



●

●
●

●
●

●

●

●

●
●

●

●● ● ●

●

●

●
●

●

●
●● ● ●

●
●● ● ●

●

●
● ● ●

● ●

●
●

●

● ●
●

● ●

●

● ●

●
●

●

●
●

●

●
●

● ●● ●

●

●
●

●
●

●
● ●● ●

●
● ●● ●

●
● ●

● ●

● ● ●● ●

●
● ●

● ●

● ●

●

●
●

●
●

●

●

●

● ●
●

● ●

●
●

●

●
● ● ●● ● ●

● ●
●

● ●

● ●

●
● ●

● ●● ● ●

● ●
● ●

●

Discontinuous, p=10 Discontinuous, p=25 Discontinuous, p=50

Non−linear, p=10 Non−linear, p=25 Non−linear, p=50

Interactive, p=10 Interactive, p=25 Interactive, p=50

Linear, p=10 Linear, p=25 Linear, p=50

Null, p=10 Null, p=25 Null, p=50

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

0.5
1.0
1.5
2.0
2.5

0.5
1.0
1.5
2.0
2.5

0.5
1.0
1.5
2.0
2.5

0.5
1.0
1.5
2.0
2.5

0.5
1.0
1.5
2.0
2.5

Sample Size

R
at

io

● ●Stage1 Stage2

RMSE Ratio (Proposed/TSLS)

Figure 10: Ratio of RMSE estimates for proposed method versus 2SLS for first stage
and second stage estimation across simulation environments.

Compliance Estimates Figure 11 examines how well we estimate the correct sign for first stage.

In our simulations we know if someone was positively encouraged by the instrument, negatively

encouraged, and not encouraged (zero).24 We then recorded the model’s individual level estimates

and calculate the percentage of observations correctly classified into each bin. We make several

observations on the figure. First, where there are in-truth no observations encouraged, as in the

first row, the proposed threshold does indeed return this value. In the second row, the first stage

estimate is an additive linear model in which all observations comply positively, and again, the

threshold separates compliers from others even at a modest sample size. In the interactive setting

the performance is increasing in sample size for identifying both positive and negative compliers.

In the non-linear setting our performance for positive observations increases in sample but the

proposed method performs poorly for the other types. Finally in the discontinuous setting positive

and negative observations are increasingly better identified. Zero types are estimated with high

accuracy, though there is a slight degradation as the sample increases.

We also recorded compliance estimates for TSLS. TSLS can only return one compliance estimate

24Figure 12 in Appendix H gives the true proportions in the simulated data.
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Figure 11: First stage accuracy for proposed method. Blue line plots the percentage of in fact
positive LICE that we correctly capture. The red line plots the percentage of in fact negative LICE
that we correctly capture. The green line plots the percentage of in fact non-identified units that
we correctly capture. In setting 1 no one is identified. In our simulations there are no observations
with in truth 0 LICE and so the purple line for this case is not present.

for each observation, and we recorded all observations as not complying if the first-stage F statistic

on the instrument was less than 10. Results are in Figure 16 of Appendix H. When TSLS did

recover compliance percentages correctly, it was only for positively encouraged units. Given the

large number of other types in the simulations this performance is not desirable.

F.1.1 True Compliance Rates by Simulation Setting

Figure 12 presents the true percentage for the first stage compliance status. This shows how in

setting 1 no observations were encouraged. Settings 2-5 mix the ratio in different ways across

positive, negative, and in truth 0.

Figure 12 presents the true percentage each sign for the instrumented causal effect of observa-

tions. This shows how in setting 1 all observations do not have an identified sign in the second stage.

Settings 2-5 mix the ratio in different ways across positive, negative, in truth 0, and unidentified.
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Figure 12: Percentage of observations in sample by compliance status.
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Figure 13: Percentage of observations in sample by category of sign on instrumented
causal effect.

F.1.2 RMSE

Figure 16 presents RMSE estimates for the first stage model. Consistent with the previous simu-

lation results, the proposed method performs well across a range of settings. The standard least
15
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Figure 14: RMSE estimates for proposed method and 2SLS for first stage estimation
across simulation environments.

squares model, which is misspecified, generally does not perform as well, especially in the third

simulation environment.

Figure 15 presents the second stage results. We again see improved performance by the proposed

method. RMSE’s are lower than 2SLS estimates. In the simulation context we consider there are

mixtures of individuals compliance types (discussed further below). Not capturing this heterogeneity

means our estimate of the LICE is more accurate than the 2SLS.

F.1.3 TSLS Peformance

Next we give compliance estimates for TSLS in the first stage. TSLS can only return one compliance

estimate for each observation, and we recorded all observations as not complying if the first-stage

F statistic on the instrument was less than 10. Results are in Figure 16. When TSLS did recover

compliance percentages correctly, it was only for those with a positive instrumented causal effect.

Essentially it records everything as falling in this category. Given the large number of other types

in the simulations this performance is not desirable.

We also recorded compliance estimates for TSLS in the second stage. TSLS can only return one

compliance estimate for each observation, and we recorded all observations as not complying if the
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Figure 15: RMSE estimates for proposed method and 2SLS for second stage estimation
across simulation environments.

first-stage F statistic on the instrument was less than 10. Results are in Figure 15. When TSLS did

recover compliance percentages correctly, it was only for those with a positive instrumented causal

effect. Given the large number of other types in the simulations this performance is not desirable.

F.2 Diagnostics

Instrumental variables estimation is reliable to the extent that the encouragement of the instrument

has a strong effect on the treatment (Bound, Jaeger and Baker, 1995; Staiger and Stock, 1994).

The standard measure of this effect in the TSLS case is the F -statistic.25 Many researcher use a

threshold, like 10, to decide whether their instrument is strong enough.

Using the notation in the paper, the first-stage F -statistic for our proposed method is:

F̂ =

1

d̂f
∇

∑n
i=1

{
RZX
T (Zi, Xi)

>ĉZXT − µ̂T
}2

1

n−d̂f∇
∑n

i=1 {Ti −RT (Zi, Xi)>ĉT − µ̂T}2 (81)

where RZX
T (Zi, Xi) is the the subvector of RT (Zi, Xi) that fluctuates with Zi and cZXT the corre-

sponding parameters.

25Though see Kleibergen (2002) for one alternative proposal.
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Figure 16: First stage accuracy for TSLS. Blue line plots the percentage of in fact
positive LICE that TSLS correctly captures. The red line plots the percentage of
in fact positively encouraged that TSLS correctly captures. The green line plots the
percentage of negatively encouraged units that TSLS correctly captures and the blue
line captures the percentage of non-encouraged observations correctly identified.

G Oracle Proofs

We condition on Ŵ = diag(ŵk) throughout the proof and note that Ŵ = Ip reduces the proof to

that of the standard LASSO. Throughout, to ease notation, we write R = R(Ti, Zi), etc. dropping

dependence on Ti, Zi when it is clear from context. We also assume that Y and Rk have sample

mean zero, so we do not have to worry about an intercept.

Start with the LASSO problem

ĉ = argmin
c̃

||Y −Rc̃||22 + λ||Wc̃||11. (82)

As we are minimizing over the sample, we know the estimator ĉ satisfies

||Y −Rĉ||22 + λ||Wĉ||11 ≤ ||Y −Rc||22 + λ||Wc||11. (83)

After some manipulation (e.g., Buhlmann and van de Geer, 2013; Ratkovic and Tingley, 2017) and
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Figure 17: Second stage accuracy for TSLS. Blue line plots the percentage of in fact
positive LICE that TSLS correctly captures. The red line plots the percentage of in
fact negative LICE that TSLS correctly captures. The green line plots the percentage
of in fact non-identified units that TSLS correctly captures.

evaluating at λ̂, Ŵ , this excess risk generates the inequality

1

n

{
||Rδ̂||22 + λ̂||Ŵ δ̂||11

}
≤ C

λ̂2σ̂2γ2|S|
n2φ2

0

+ C∞
||Ro
∞/nc∞/n||2∞

n
+ C⊥

||Ro
⊥c⊥||2∞
n

(84)

which is Equation 19.

First order conditions on the LASSO and the derivative. The first-order conditions for

the LASSO problem above are

2R>k ε̂ = skλ̂ŵk (85)

with sk ∈ [−1, 1] and sk = 1 or −1 iff ĉk 6= 0. We consider the subset of the matrix corresponding

with these non-zero estimates

RŜ = {Rk : ĉk 6= 0} (86)

and the submatrices RŜ,X and RŜ,XT .
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Consider the gradient derivative of equality 85 wrt the treatment at each observation and noting,

by the identification assumptions (1)-(4), ∂
∂Ti
ŝkŵkλ̂ = 0, which gives

0 =
N∑
i=1

∂

∂Ti

N∑
i=1

(
RŜ
ik ε̂i

)
⇒ (87)

0 =
N∑
i=1

∂

∂Ti
RŜ
ik ε̂i (88)

=
N∑
i=1

∂RŜ
ik

∂Ti
ε̂i +RŜ

ik

∂ε̂i
∂Ti

(89)

This gives us ∣∣∣∣ N∑
i=1

∂RŜ
ik

∂Ti
ε̂i

∣∣∣∣ =

∣∣∣∣ n∑
i=1

RŜ
ik

∂ε̂i
∂Ti

∣∣∣∣ (90)

which is a solution to the following LASSO problem

ĉS,T = argmin
cS,T

||∆̃Y −∆RŜ,T cŜ,T ||22 + ||W̃ Ŝ,T cŜ,T ||11 (91)

which will satisfy an Oracle Inequality if W̃ Ŝ,T is of order
√
n log(p). We have denoted as ∆RŜ,T

the elementwise partial derivative of RŜ,T wrt Ti and ∆̃Y is a pseudo-response constructed from

the estimate ∆̂Y =
[
∂̂Yi
∂Ti

]
as

∆̃Y = ∆RŜ,T ĉŜ,T + ε̂. (92)

The model is fit using basis-specific tuning parameter,

w̃Ŝ,Tk =

∣∣∣∣ n∑
i=1

RŜ
ik

∂ε̂i
∂Ti

∣∣∣∣ (93)

=

∣∣∣∣RŜ,>
k ∆RTX(cT − ĉT )

∣∣∣∣ (94)

since ∂εi/∂Ti = 0.

Then, ∣∣∣∣RŜ,>
k ∆RTX(cT − ĉT )

∣∣∣∣ ≤ ||RŜ,>
k ||2||∆R

TX(cT − ĉT )||2 (95)

by Cauchy-Schwarz. The first term on the righthand side is order
√
n and the second is of order of

the square root of the oracle bound on the prediction since each element of ∆RTX is also in RX ,

which gives a bound on the weights of order
√
n log(p), from which the oracle result follows directly.
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H Data Appendix

H.1 Larreguy and Marshall Data

Data Preparation and Transformation The original analysis selected a set of state× covariate

interactions to place into a TSLS model. Rather than select the interactions a priori, we instead

create a model of fully saturated interactions and then use the SIS screen to winnow them down.

As the data have a hiearchical structure, we include each variable three times: first, the original

variable; second, the mean of the variable by state; and third, the state-centered version of this

variable. Specifically, assume Xvar are the matrix of variables and Xfe the matrix of state fixed

effects. Denote as Hfe the hat matrix from the fixed effects and I the commensurate n×n identity

matrix.

The data we place into our software is then

Xbig = [Xfe : Xvar : HfeXvar : (I −Hfe)Xvar]. (96)

All two way interactions and spline transformations of this data are then calculated as normal.

Types of coefficients Figure 18 plots estimates for several different types of variables that

get included in our model using data from Larreguy and Marshall (2017). The top left plots all

coefficients that came out of the Sure Independence Screen. The top right plots coefficients on the

linear terms, the bottom left on terms that had an interaction, but no non-linear basis function.

Finally, the bottom right plots coefficients on variables constructed via an interaction term with a

non-linear basis function. We provide Figure 18 for descriptive purposes. Analysts could use this

information, for example, to explore sources of heterogeneity in the LICE.

LaLonde Predictive Performance

Throughout this study, we have focused not just on sample-average estimates but individual-

level effect estimation. We next compare several methods on their ability to predict a held-out

subsample. Results are presented in Table 4. In the first comparison (columns 2-3), we fit a model

to the experimental data and then use this model to predict outcomes in the observational data. As

an experimental sample may not resemble a target population of interest, this prediction exercise

indicates the extent to which methods can generalize from an experiment to observational data. In

the second comparison (columns 4-5), we fit a model to the experimental treated and observational

21



●

●
●●
●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●

●

●
●

●

−0.1

0.0

0 100 200 300 400
C

oe
ffi

ci
en

t

Coefficient Estimates
●

●
●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ● ●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

−0.1

0.0

0 100 200 300 400

C
oe

ffi
ci

en
t

Coefficient on Linear Terms

●

●

●

●

●●

●

●
●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●

●●●●
●●●●●●

●
●●

●
●

●

−0.02

0.00

0.02

0.04

0 100 200 300 400

C
oe

ffi
ci

en
t

Coefficient on 
 Interaction Only Terms

●

●

●●

●

●●●● ●●●● ●● ●●● ●●●●●● ●●●● ● ●●● ●●●●●●●●●●●●

●
●●

●

●

●
●
●

●

−0.01

0.00

0.01

0 100 200 300 400
C

oe
ffi

ci
en

t

Coefficient on Splines with 
 Interactions Terms

Figure 18: Coefficient Estimates by Effect Type

Outcome Observational Untreated Experimental Untreated
Bias RMSE Bias RMSE

OLS, in-sample 0.00 10173.27 0.00 5433.39
MDE -15054.61 21267.99 428.78 7040.68

MDE, bagged -255.94 10804.69 660.84 6865.75
Horseshoe -16104.93 22371.13 14733.41 15798.17

BART -11049.12 17046.63 1125.95 6896.35
POLYMARS -13035.59 18957.33 996.27 6646.84
SuperLearner -13407.01 19474.82 2057.12 6684.54

LASSO -12942.43 19186.10 1689.17 6751.50

Table 4: Prediction Exercise, LaLonde Data. Columns contain the results from predicting the
outcome on held-out subsets of the LaLonde data (top row). We fit a model to the experimental
data and then use this model to predict outcomes in the observational data (columns 2-3). Next, we
fit a model to the experimental treated and observational untreated, then use this model to predict
the held-out experimental group (columns 4-5). In each case, we include the result from least-
squares fit to the held-out sample as a baseline. We see that the bagged MDE estimate performs
well in both settings, in terms of both bias and RMSE. In the second setting, POLYMARS achieves
the lowest RMSE, but at the cost of a large bias.

untreated, then use this model to predict the held-out experimental group. In each case, we include

the result from least-squares fit directly to the held-out sample as a baseline.

We see again that bagged MDE performs well in both exercises, particularly the first, where it

achieves a predictive RMSE nearly that of OLS fit to the held-out data. In the first simulation, MDE
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performs less well, achieving a higher RMSE than all but the horseshoe. In the second analysis,

predicting the experimental untreated, bagged MDE achieves a RMSE and bias lower than BART.

MDE achieves the lowest bias, but with a somewhat higher RMSE than the remaining methods

except for the horseshoe. POLYMARS and the SuperLearner both achieve a lower RMSE than

MDE and bagged MDE in the second analysis, but at the cost of a higher variance.
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