Anatomy of the Photochemical Reaction: Excited-State Dynamics Reveals the C−H Acidity Mechanism of Methoxy Photo-oxidation on Titania

Citation:

Kolesov G, Vinichenko D, Tritsaris GA, Friend CM, Kaxiras E. Anatomy of the Photochemical Reaction: Excited-State Dynamics Reveals the C−H Acidity Mechanism of Methoxy Photo-oxidation on Titania. Journal of Physical Chemistry Letters. 2015;6 :1624-1627.

Abstract:

Light-driven chemical reactions on semiconductor surfaces have potential for
addressing energy and pollution needs through efficient chemical synthesis; however, little is known about the time evolution of excited states that determine reaction pathways. Here, we study the photo-oxidation of methoxy (CH3O) derived from methanol on the rutile TiO2(110) surface using ab initio simulations to create a molecular movie of the process. The movie sequence reveals a wealth of information on the reaction intermediates, time scales, and energetics. The reaction is broken in three stages, described by Lewis structures directly derived from the “hole” wave functions that lead to the concept of “photoinduced C−H acidity”. The insights gained from this work can be generalized to a set of simple rules that can predict the efficiency of photo-oxidation reactions in reactant−catalyst pairs.

Last updated on 09/07/2015