
Self-organizing Tuple Reconstruction in Column-stores

Stratos Idreos
CWI Amsterdam
The Netherlands
idreos@cwi.nl

Martin L. Kersten
CWI Amsterdam
The Netherlands

mk@cwi.nl

Stefan Manegold
CWI Amsterdam
The Netherlands

manegold@cwi.nl

ABSTRACT
Column-stores gained popularity as a promising physical de-
sign alternative. Each attribute of a relation is physically
stored as a separate column allowing queries to load only
the required attributes. The overhead incurred is on-the-fly
tuple reconstruction for multi-attribute queries. Each tu-
ple reconstruction is a join of two columns based on tuple
IDs, making it a significant cost component. The ultimate
physical design is to have multiple presorted copies of each
base table such that tuples are already appropriately orga-
nized in multiple different orders across the various columns.
This requires the ability to predict the workload, idle time
to prepare, and infrequent updates.

In this paper, we propose a novel design, partial side-
ways cracking, that minimizes the tuple reconstruction cost
in a self-organizing way. It achieves performance similar
to using presorted data, but without requiring the heavy
initial presorting step itself. Instead, it handles dynamic,
unpredictable workloads with no idle time and frequent up-
dates. Auxiliary dynamic data structures, called cracker
maps, provide a direct mapping between pairs of attributes
used together in queries for tuple reconstruction. A map
is continuously physically reorganized as an integral part of
query evaluation, providing faster and reduced data access
for future queries. To enable flexible and self-organizing be-
havior in storage-limited environments, maps are material-
ized only partially as demanded by the workload. Each map
is a collection of separate chunks that are individually reor-
ganized, dropped or recreated as needed. We implemented
partial sideways cracking in an open-source column-store. A
detailed experimental analysis demonstrates that it brings
significant performance benefits for multi-attribute queries.

Categories and Subject Descriptors: H.2 [DATABASE
MANAGEMENT]: Physical Design - Systems

General Terms: Algorithms, Performance, Design

Keywords: Database Cracking, Self-organization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
A prime feature of column-stores is to provide improved

performance over row-stores in the case that workloads re-
quire only a few attributes of wide tables at a time. Each
relation R is physically stored as a set of columns; one col-
umn for each attribute of R. This way, a query needs to load
only the required attributes from each relevant relation.

This happens at the expense of requiring explicit (partial)
tuple reconstruction in case multiple attributes are required.
Each tuple reconstruction is a join between two columns
based on tuple IDs/positions and becomes a significant cost
component in column-stores especially for multi-attribute
queries [2, 6, 10]. Whenever possible, position-based join-
matching and sequential data access are exploited. For each
relation Ri in a query plan q, a column-store needs to per-
form at least Ni − 1 tuple reconstruction operations for Ri

within q, given that Ni attributes of Ri participate in q.
Column-stores perform tuple reconstruction in two ways [2].

With early tuple reconstruction, the required attributes are
glued together as early as possible, i.e., while the columns
are loaded, leveraging N -ary processing to evaluate the query.

On the other hand, late tuple reconstruction exploits the
column-store architecture to its maximum. During query
processing, “reconstruction” merely refers to getting the at-
tribute values of qualifying tuples from their base columns as
late as possible, i.e., only once an attribute is required in the
query plan. This approach allows the query engine to exploit
CPU- and cache-optimized vector-like operator implementa-
tions throughout the whole query evaluation. N -ary tuples
are formed only once the final result is delivered.

Like most modern column-stores [12, 4, 15], we focus on
late reconstruction. Comparing early and late reconstruc-
tion, the educative analysis in [2] observes that the latter
incurs the overhead of reconstructing a column more than
once, in case it occurs more than once in a query. Further-
more, exploiting sequential access patterns during recon-
struction is not always possible since many operators (joins,
group by, order by etc.) are not tuple order-preserving.

The ultimate access pattern is to have multiple copies for
each relation R, such that each copy is presorted on an other
attribute in R. All tuple reconstructions of R attributes
initiated by a restriction on an attribute A can be performed
using the copy that is sorted on A. This way, the tuple
reconstruction does not only exploit sequential access, but
also benefits from focused access to only a small consecutive
area in the base column (as defined by the restriction on A)
rather than scattered access to the whole column. However,
such a direction requires the ability to predict the workload

1

and the luxury of idle time to prepare the physical design.
In addition, up to date there is no efficient way to maintain
multiple sorted copies under updates in a column-store; thus
it requires read-only or infrequently updated environments.

In this paper, we propose a self-organizing direction that
achieves performance similar to using presorted data, but
comes without the hefty initial price tag of presorting it-
self. Instead, it handles dynamic unpredictable workloads
with frequent updates and with no need for idle time. Our
approach exploits database cracking [7, 8, 9] that sets a
promising direction towards continuous self-organization of
data storage based on selections in incoming queries.

We introduce a novel design, partial sideways cracking,
that provides a self-organizing behavior for both selections
and tuple reconstructions. It gracefully handles any kind
of complex multi-attribute query. It uses auxiliary self-
organizing data structures to materialize mappings between
pairs of attributes used together in queries for tuple recon-
struction. Based on the workload, these cracker maps are
continuously kept aligned by being physically reorganized,
while processing queries, allowing the DBMS to handle tuple
reconstruction using cache-friendly access patterns.

To enhance performance and adaptability, in particular in
environments with storage restrictions, cracker maps are im-
plemented as dynamic collections of separate chunks. This
enables flexible storage management by adaptively main-
taining only those chunks of a map that are required to
process incoming queries. Chunks adapt individually to the
query workload. Each chunk of a map is separately reorga-
nized, dropped if extra storage space is needed, or recreated
(entirely or in parts) if necessary.

We implemented partial sideways cracking on top of an
open-source column-oriented DBMS, MonetDB1 [15]. The
paper presents an extensive experimental analysis using both
synthetic workloads and the TPC-H benchmark. It clearly
shows that partial sideways cracking brings a self-organizing
behavior and significant benefits even in the presence of ran-
dom workloads, storage restrictions and updates.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background. Then, to enhance
readability and fully cover the research space, we present
partial sideways cracking in two steps. Focusing on the tuple
reconstruction problem and neglecting storage restrictions
at first, Section 3 introduces the basic sideways cracking
technique using fully materialized maps, accompanied with
an extensive experimental analysis. Then, Section 4 extends
the basic approach with flexible storage management using
partial maps. Detailed experiments demonstrate the signif-
icant benefits over the initial full materialization approach.
Then, Section 5 presents the benefits of sideways cracking
with the TPC-H benchmark. Related work is discussed in
Section 6, and Section 7 concludes the paper.

2. BACKGROUND
This section briefly presents the experimentation plat-

form, MonetDB (v 5.4), and the basics of database cracking.

2.1 A Column-oriented DBMS
MonetDB is a full fledged column-store using late tuple

reconstruction. Every relational table is represented as a col-

1Partial sideways cracking is part of the latest release of
MonetDB, available via http://monetdb.cwi.nl/

lection of Binary Association Tables (BATs). Each BAT is
a set of two columns. For a relation R of k attributes, there
exist k BATs, each BAT storing the respective attribute as
(key,attr) pairs. The system-generated key identifies the
relational tuple that attribute value attr belongs to, i.e., all
attribute values of a single tuple are assigned the same key.
Key values form a dense ascending sequence representing the
position of an attribute value in the column. Thus, for base
BATs, the key column typically is a virtual non-materialized
column. For each relational tuple t of R, all attributes of t
are stored in the same position in their respective column
representations. The position is determined by the inser-
tion order of the tuples. This tuple-order alignment across
all base columns allows the column-oriented system to per-
form tuple reconstructions efficiently in the presence of tuple
order-preserving operators. Basically, the task boils down
to a simple merge-like sequential scan over two columns, re-
sulting in low data access costs through all levels of modern
hierarchical memory systems. Let us go through some of the
basic operators of MonetDB’s two-column physical algebra.

Operator select(A,v1,v2) searches all (key,attr) pairs
in base column A for attribute values between v1 and v2. For
each qualifying attribute value, the key value (position) is
included in the result. Since selections are mostly performed
on base columns, the underlying implementation preserves
the key-order also in the intermediate results.

Operator join(j1,j2) performs a join between attr1 of
j1 and attr2 of j2. The result contains the qualifying
(key1,key2) pairs. In general, this operator can maintain
the tuple order only for the outer join input.

Similarly, groupby and orderby operators cannot main-
tain tuple order for any of their inputs.

Operator reconstruct(A,r) returns all (key,attr) pairs
of base column A at the positions specified by r. If r is the
result of a tuple order-preserving operator, then iterating
over r, it uses cache-friendly in-order positional lookups into
A. Otherwise, it requires expensive random access patterns.

2.2 Selection-based Cracking
Let us now briefly recap selection cracking as introduced

in [7]. The first time an attribute A is required by a query,
a copy of column A is created, called the cracker column
CA of A. Each selection operator on A triggers a range-
based physical reorganization of CA based on the selection
of the current query. Each cracker column, has a cracker
index (AVL-tree) to maintain partitioning information. Fu-
ture queries benefit from the physically clustered data and
do not need to access the whole column. Cracking continues
with every query. Thus, the system continuously refines its
“knowledge” about how values are spread in CA. Physical
reorganization happens on CA while the original column is
left as is, i.e., tuples are ordered according to their insertion
sequence. This order is exploited for tuple reconstruction.

The operator crackers.select(A,v1,v2) replaces the orig-
inal select operator. First, it creates CA if it does not exist.
It searches the index of CA for the area where v1 and v2

fall. If the bounds do not exist, i.e., no query used them
in the past, then CA is physically reorganized to cluster all
qualifying tuples into a contiguous area.

The result is again a set of keys/positions. However, due
to physical reorganization, cracker columns are no longer
aligned with base columns and consequently the selection
results are no longer ordered according to the tuple inser-

2

tion sequence. For queries with multiple selections, we need
to perform the intersection of individual selection results on
unordered (key,value) sets. Without either sequential access
or positional lookups, performance worsens significantly for
tuple reconstruction. Thus, for conjunctive queries, [7] uses
crackers.select only for the first selection, introducing the
crackers.rel select for all subsequent selections. It per-
forms the tasks of select and reconstruct in one go.

The terminology “database cracking” reflects the fact that
the database is conceptually cracked into pieces. It aims at
unpredictable/dynamic environments. An extensive discus-
sion on the pros and cons of cracking against traditional in-
dices can be found in [7, 8]. In [8], cracking has been shown
to also maintain its properties under high-volume updates.

3. SIDEWAYS CRACKING
In this section, we introduce the basic sideways cracking

technique using fully materialized maps. To motivate and il-
lustrate the effect of our choices, we build up the architecture
starting with simple examples before continuing with more
flexible and complex ones. The section closes with an exper-
imental analysis of sideways cracking with full maps against
the selection cracking and non-cracking approaches. The
addition of adaptive storage management through partial
sideways cracking is discussed and evaluated in Section 4.
Section 5 shows the benefits on the TPC-H benchmark.

3.1 Basic Definitions
We define a cracker map MAB as a two-column table over

two attributes A and B of a relation R. Values of A are
stored in the left column, while values of B are stored in the
right column, called head and tail, respectively. Values of
A and B in the same position of MAB belong to the same
relational tuple. All maps that have been created using A
as head are collected in the map set SA of R.A. Maps are
created on demand, only. For example, when a query q needs
access to attribute B based on a restriction on attribute A
and MAB does not exist, then q will create it by performing
a scan over base columns A and B. For each cracker map
MAB , there is a cracker index (AVL-tree) that maintains
information about how A values are distributed over MAB .

Once a map MAB is created by a query q, it is used to
evaluate q and it stays alive to speed up data access in future
queries that need to access B based on A. Each such query
triggers physical reorganization (cracking) of MAB based on
the restriction applied to A. Reorganization happens in such
a way, that all tuples with values of A that qualify the re-
striction, are in a contiguous area in MAB . We use the two
algorithms of [7] to physically reorganize maps by splitting
a piece of a map into two or three new pieces.

We introduce sideways.select(A,v1,v2,B) as a new se-
lection operator that returns tuples of attribute B of relation
R based on a predicate on attribute A of R as follows:

(1) If there is no cracker map MAB , then create one.
(2) Search the index of MAB to find the contiguous area w of

the pieces related to the restriction σ on A.
If σ does not match existing piece boundaries,

(3) Physically reorganize w to move false hits out of the
contiguous area of qualifying tuples.

(4) Update the cracker index of MAB accordingly.
(5) Return a non-materialized view of the tail of w.

Example. Assume a relation R(A, B) shown in Figure 1.
The first query requests values of B where a restriction on A

12
3
5
9

15
22
7

26
4
2

24
11
16

b1
b2
b3
b4
b5
b6
b7
b8
b9

b10
b11
b12
b13

A B
select B from R where 10<A<15

4
3
5
9
2
7

12
11
15
22
24
26
16

b9
b2
b3
b4

b10
b7
b1

b12
b5
b6
b11
b8

b13

AB

Position 1
value <=10Piece 1

Position 7
value >10Piece 2

Position 9
value >=15Piece 3

select B from R where 5=<A<17

4
3
2
9
5
7

12
11
15
16
24
26
22

b9
b2

b10
b4
b3
b7
b1

b12
b5

b13
b11
b8
b6

Position 1
value <5Piece 1

Position 7
value >10Piece 3

Position 9
value >=15Piece 4

Position 4
value >=5Piece 2

Position 11
value >=17Piece 5

Cracker index Cracker indexM ABM
Initial state

Figure 1: A simple example

holds. The system creates map MAB and cracks it into three
pieces based on the selection predicate. Via cracking the
qualifying B values are already clustered together aligned
with the qualifying A values. Thus, no explicit join-like
operation is needed for tuple reconstruction; the tail column
of the middle piece forms the query’s result. Then, a similar
second query arrives. From the index, we derive that (1)
the entire middle piece belongs to the result, and hence, (2)
only Pieces 1 and 3 must be analyzed and further cracked.
As more queries are being processed, the system “learns” —
purely based on incoming queries — more about how data
is clustered, and hence, can reduce data access.

3.2 Multi-projection Queries
Let us now discuss queries with multiple tuple reconstruc-

tion operations. We start with queries over a single selec-
tion and multiple projections. Then, Section 3.3 discusses
queries with multiple selections.

The Problem: Non-aligned Cracker Maps. A single-
selection query q that projects n attributes requires n maps,
one for each attribute to be projected. These maps MAx be-
long to the same map set SA. However, a naive use of the
maps can lead to incorrect query results. Consider the ex-
ample depicted in the upper part of Figure 2. The first query
triggers the creation of MAB and it physically reorganizes
it based on A < 3. Similarly, the second query triggers the
creation of MAC and cracks it according to A<5. Then, the
third query needs both MAB and MAC . Refining both maps
according to A < 4 of the third query creates correct con-
secutive results for each map individually. However, since
these maps had previously been cracked independently using
different restrictions on A, the result tuples are not position-
ally aligned anymore, prohibiting efficient positional result
tuple reconstruction. Maintaining the tuple identity explic-
itly by adding a key column to the maps is not an efficient
solution, either. It increases the storage requirements and
allows only expensive join-like tuple reconstruction requiring
random access due to non-aligned maps.

The Solution: Adaptive Alignment. To overcome
this problem, we extend the sideways.select operator with
an alignment step that adaptively and on demand restores
the alignment of all maps used in a query plan. The basic
idea is to apply all physical reorganizations, due to selections
on an attribute A, in the same order to all maps in SA. Due
to the deterministic behavior of the cracking algorithms [7],
this approach ensures alignment of the respective maps.

Obviously, in an unpredictable environment with no idle
system time, we want to invest in this extra work only if it

3

7
4
1
2
8
3
6

B
b1
b2
b3
b4
b5
b6
b7

A
c1
c2
c3
c4
c5
c6
c7

C
select B from R where A<3 select C from R where A<5 select B,C from R where A<4

2
1
4
7
8
3
6

b4
b3
b2
b1
b5
b6
b7

v<3

v>=3

3
4
1
2
8
7
6

c6
c2
c3
c4
c5
c1
c7

v<5

v>=5

2
1
3
7
8
4
6

M
b4
b3
b6
b1
b5
b2
b7

v<3

v>=4

v>=3

3
2
1
4
8
7
6

c6
c4
c3
c2
c5
c1
c7

v<4

v>=5

v>=4

Result

b4
b3

Result
c6
c2
c3
c4

Result
b4
b3
b6

c6
c4
c3

Initial state

Without
Alignment

2
1
4
7
8
3
6

b4
b3
b2
b1
b5
b6
b7

v<3

v>=3

b4
b3

Result

With
Alignment

2
1
4
3
8
7
6

c4
c3
c2
c6
c5
c1
c7

v<3

v>=5

Result

c4
c3
c2
c6

2
1
4
7
8
3
6

c4
c3
c2
c1
c5
c6
c7

v<3

v>=3

Crack A<5

v>=3

2
1
4
3
8
7
6

b4
b3
b2
b6
b5
b1
b7

v<3

v>=5

v>=3

2
1
3
4
8
7
6

b4
b3
b6
b2
b5
b1
b7

v<3

v>=5

v>=3
v>=4

2
1
3
4
8
7
6

c4
c3
c6
c2
c5
c1
c7

v<3

v>=5

v>=3
v>=4

Result
b4
b3
b6

c4
c3
c6

Wrong
allignment

Correct
allignment

Crack A<3

Crack A<5Crack A<3

Crack A<3 Crack A<4Crack A<5

Crack A<4
AB MACMAB MAC

MAC MAC MACMAB MABMAB

Crack A<4

Crack A<4

Figure 2: Multiple tuple reconstructions in multi-projection queries

pays-back, i.e., only once a map is required. In fact, per-
forming alignment on-line is not an option. On-line align-
ment would mean that every time we crack a map, we also
forward this cracking to the rest of the maps in its set. This
is prohibitive for several reasons. First, in order to be able
to align all maps in one go we need to actually materialize
and maintain all possible maps of a set, even the ones that
the actual workload does not require. Most importantly ev-
ery query would have to touch all maps of a set, i.e., all
attributes of the given relation. This immediately overshad-
ows the benefit of using a column-store in touching only
the relevant attributes every time. The overhead of hav-
ing adaptive alignment is that each map MAx in a set SA

needs to materialize the head attribute A so that MAx can
be cracked independently. We will remove this restriction
with partial sideways cracking in the next section.

To achieve adaptive alignment, we introduce a cracker
tape TA for each set SA, which logs (in order of their occur-
rence) all selections on attribute A that trigger cracking of
any map in SA. Each map MAx is equipped with a cursor
pointing to the entry in TA that represents the last crack
on MAx. Given a tape TA, a map MAx is aligned (synchro-
nized) by successively forwarding its cursor towards the end
of TA and incrementally cracking MAx according to all se-
lections it passes on its way. All maps whose cursors point
to the same position in TA, are physically aligned.

To ensure that alignment is performed on demand only, we
integrate it into query processing. When a query q needs a
map M , then and only then, q aligns M . We further extend
the sideways.select(A,v1,v2,B) operator with three new
steps that maintain and use the cracker tapes as follows:

(1) If there is no TA, then create an empty one.
(2) If there is no cracker map MAB , then create one.
(3) Align MAB using TA.
(4) Search the index of MAB to find the contiguous area w of

the pieces related to the restriction σ on A.
If σ does not match existing piece boundaries,

(5) Physically reorganize w to move false hits out of the
contiguous area of qualifying tuples.

(6) Update the cracker index of MAB accordingly.
(7) Append predicate v1<A<v2 to TA.

(8) Return a non-materialized view of the tail of w.

For a query with one selection and k projections, the query
plan contains k sideways.select operators, one for each
projection attribute. For example, assume a query that se-
lects on A and projects B and C. Then, one sideways.select
operator will operate over MAB and another over MAC .

With the maps aligned and holding the projection attributes
in the tails, the result is readily available. The bottom part
of Figure 2 demonstrates how queries are evaluated using
aligned maps yielding the correctly aligned result.

Sideways cracking performs tuple reconstruction by ef-
ficiently maintaining aligned maps via cracking instead of
using (random-access) position-based joins.

The alignment step follows the self-organizing nature of a
cracking DBMS. Aligning a map M becomes less expensive
the more queries use M , as incremental cracking successively
reduces the size of pieces and hence the data that needs to
be accessed. Moreover, the more frequently M is used, the
fewer alignment steps are required per query to bring it up-
to-date. Unused maps do not produce any processing costs.

3.3 Multi-selection Queries
The final step is to generalize sideways cracking for queries

that select over multiple attributes. One approach is to cre-
ate wider maps that include multiple attributes in differ-
ent orderings. However, the many combinations, orderings
and predicates in queries lead to huge storage and main-
tenance requirements. Furthermore, wider maps are not
compatible with the cracker algorithms of [7] and the up-
date techniques of [8]. Instead, we propose a solution that
exploits aligned two-column maps in a way that enables ef-
ficient cache-friendly operations.

The Problem: Non-aligned Map Sets. Let us first
consider conjunctive queries, e.g., the query of Figure 3. A
query plan could use maps MAD, MBD and MCD. These
maps belong to different sets SA, SB and SC , respectively.
However, the alignment techniques presented before apply
only to multiple maps within the same set. Keeping maps of
different sets aligned is not possible at all, as each attribute
requires/determines its own individual order for its maps.
Thus, using the above map sets for the example query inher-
ently yields non-aligned individual selection results requiring
expensive operations for subsequent tuple reconstructions.

The Solution: Use a Single Aligned Set. The chal-
lenge for multi-selections is to find a solution that uses maps
of only one single set, and thus can exploit their alignment.
We postpone the discussion about how to choose this one
set till later in this section. To sketch our approach using
the query of Figure 3 as example, we arbitrarily assume that
set SA is chosen, i.e., we use maps MAB , MAC and MAD.

Each map is first aligned to the most recent crack opera-

4

12
3
5
9
8

22
7

26
4
2
7

9
2
6

10
7
11
16
2
5
8
3

A B
select_create_bv(A,3,10,B,4,8)

2
3
5
9
8
7
7
4

26
12
22

8
2
6

10
7
3

16
5
2
9
11

MAB

v<=3

v>3

v>=10

1
0
1
0
0
1

Bit
vector bv

3
6
2
1
6
9

12
2
11
17
3

C
select_refine_bv(A,3,10,C,1,7,bv)

2
3
5
9
8
7
7
4

26
12
22

17
6
2
1
6
3

12
11
2
3
9

v<=3

v>3

v>=10

1
0
1
0
0
0

Bit
vector bv

9
4
2

10
12
19
3
6
5
8
1

D
reconstruct(A,3,10,D,bv)

2
3
5
9
8
7
7
4

26
12
22

8
4
2

10
12
1
3
5
6
9

19

v<=3

v>3

v>=10

2
12

 Result

MAC MAD

select D from R
where 3<A<10 and
4<B<8 and 1<C<7

Initial stateQuery

1
0
1
0
0
0

Bit
vector bv

Figure 3: Multiple tuple reconstructions in multi-selection queries

tion on A and only then it is cracked given the current predi-
cate on A. Given the conjunctive predicate, we know that we
just created contiguous areas wB , wC and wD aligned across
the involved maps that contain all result candidates. These
areas are aligned since all maps were first aligned and then
cracked based on the same predicate. Thus, all areas have
also the same size k. To filter out the “false candidates” that
fulfill the predicate on A, but not all other predicates, we
use bit vector processing (X100 [4] and the study of [2] also
exploit bit-vectors for filtering multiple predicates). Using a
single bit vector of size k, if a tuple fulfills the predicate on
B, the respective bit is set, otherwise cleared. Successively
iterating over the aligned result areas in the remaining maps
(wC in our example), the bits of tuples that do not fulfill the
respective predicate are cleared. Finally, the bit vector in-
dicates which wD tuples form the result. An example in
Figure 3 illustrates the details using the following three new
operators.

sideways.select create bv(A,v1,v2,B,v3,v4)

(1-7) Equal to sideways.select in Section 3.2.
(8) Create and return bit vector bv for w with v3<B<v4.

sideways.select refine bv(A,v1,v2,B,v3,v4,bv)

(1-7) Equal to sideways.select in Section 3.2.
(8) Refine bit vector bv with v3<B<v4 and return bv.

sideways.reconstruct(A,v1,v2,B,bv)

(1-7) Equal to sideways.select in Section 3.2.
(8) Create and return a result that contains the tail value

of all tuples from w in MAB whose bit is set in bv.

Given the alignment of the maps and the bit vector, only
positional lookups and sequential access patterns are in-
volved. In addition, by clustering and aligning relevant data
via cracking, the system needs to analyze only a small por-
tion of the involved columns (equal to the size of the bit
vector) for selections and tuple reconstructions.

Map Set Choice: Self-organizing Histograms. The
remaining issue is to determine the appropriate map set.
Our approach is based on the core of the “cracking philos-
ophy”, i.e., in an unpredictable environment with no idle
system time, always perform the minimum investment. Do
just enough operations to boost the current query. Do not
invest in the future unless the benefit is known, or there is
the luxury of time and resources to do so. In this way, for a
query q, a set SA is chosen such that the restriction on A is
the most selective in q, yielding a minimal bit vector size in
order to load and analyze less data in this query plan.

The most selective restriction can be found using the cracker
indices, for they maintain knowledge about how values are
spread over a map. The size of the various pieces gives

the exact number of tuples in a given value range. Effec-
tively, we can view a cracker index as a self-organizing his-
togram. In order to estimate the result size of a selection
over an attribute A, any available map in SA can be used.
In case of alternatives, the most aligned map is chosen by
looking at the distance of its cursor to the last position of
TA. The bigger this distance, the less aligned a map is. A
more aligned/cracked map can lead to a more accurate es-
timation. Using the cracker index of the chosen map MAx,
we locate the contiguous area w that contains the result
tuples. In case the predicate on A matches with the bound-
aries of existing pieces in MAx, the result size is equal to
the size |w| of w. Otherwise, we assume that w consists
of n pieces W1, . . . , Wn, and derive |w| =

Pn
i=1 |Wi| and

|w′| =
Pn−1

i=2 |Wi| as upper and lower bounds respectively.
We can further tighten these bounds by estimating the qual-
ifying tuples in W1 and Wn, e.g., using interpolation.

Disjunctive Queries. Disjunctive queries are handled
in a symmetrical way. This time the first selection creates
a bit vector with size equal to the size of the map and not
to the size of the cracked area w (as with conjunctions).
The rest of the selections need to analyze the areas outside
w for any unmarked tuples that might qualify and refine
the bit vector accordingly. The choice of the map set is
again symmetric; we choose a set based on the least selective
attribute. In this way, the areas that need to be analyzed
outside the cracked area are as small as possible.

3.4 Complex Queries
Until now we studied multi-selections/projections queries.

The rest of the operators are not affected by the physical
reorganization step of cracking as no other operator, other
than tuple reconstruction, depends on tuple insertion order.
Thus, joins, aggregations, groupings etc. are all performed
efficiently using the original column-store operators (e.g., see
our experimental analysis). Potentially, many operators can
exploit the clustering information in the maps, e.g., a max

can consider only the last piece of a map or a join can be
performed in a partitioned like way exploiting disjoint ranges
in the input maps. We leave such directions for future work
consideration as they go beyond the scope of this paper.

3.5 Updates
Update algorithms for a cracking DBMS have been pro-

posed and analyzed in detail in [8]. An update is not applied
immediately. Instead, it remains as a pending update and
it is applied only when a query needs the relevant data as-
sisting the self-organizing behavior. This way, updates are
applied while processing queries and affect only those tuples
relevant to the query at hand. For each cracker column,

5

there exist a pending insertions and a pending deletions col-
umn. An update is merely translated into a deletion and an
insertion. Updates are applied/merged in a cracker column
without destroying the knowledge of its cracker index which
offers continual reduced data access after an update.

Sideways cracking is compatible with [8] as follows. Each
map MAB has a pending insertions table holding (A,B)
pairs. Insertions are handled independently and on demand
for each map using the Ripple algorithm [8]. The extension
is that the first time an insertion is applied on a map of set
SA, it is also logged in tape TA so that the rest of the SA

maps can apply the insertions in the correct order during
alignment. For deletions we only need one pending dele-
tions column for each set SA as we only need (A,key) pairs
to identify a deletion. Since maps do not contain the tuple
keys, as cracker columns do, we maintain a map MAkey for
each set SA. This map, when aligned and combined with
the pending deletions column, gives the positions of the rel-
evant deletes for the current query in the currently aligned
maps. The Ripple algorithm [8] is used to move deletes out
of the result area of the maps used in a plan.

3.6 Experimental Analysis
In this section, we present a detailed experimental analy-

sis. We compare our implementation of selection and side-
ways cracking on top of MonetDB, against the latest non-
cracking version of MonetDB and against MonetDB on pre-
sorted data. We use a 2.4 GHz AMD Athlon 64 processor
equipped with 2 GB RAM. The operating system is Fedora
Core 8 (Linux 2.6.23). Unless mentioned otherwise, all ex-
periments use a relational table of 9 attributes (A1 to A9),
each containing 107 randomly distributed integers in [1, 107].

Exp1: Varying Tuple Reconstructions. The first
experiment demonstrates the behavior in query plans with
one selection, but with multiple tuple reconstructions:

(q1) select max (A2), max (A3) ... from R where v1 <A1<v2

We test with queries with 2 to 8 attributes in the select
clause. For each case we run 100 queries requesting random
ranges of 20% of the tuples. Figure 4(a) shows the results
for the 100th query (full query sequence behavior is shown
in next experiments). The structures in both cracking ap-
proaches have been reorganized by the previous 99 queries.

For all systems, increasing the number of tuple reconstruc-
tions increases the overall cost while presorted MonetDB
and sideways cracking significantly outperform the others.

Presorted Sid. Cracking Sel. Cracking MonetDB
Tot TR Sel Tot TR Sel Tot TR Sel Tot TR Sel
43 0.2 0.02 47 0.4 0.5 771 725 0.3 483 211 229

The above table breakes down the cost (in milli secs) for
the case of 8 tuple reconstructions. It shows the contribu-
tion of tuple reconstruction (TR) and selection (Sel) to the
total cost (Tot). For presorted data, the table is already
sorted on the selection attribute. Naturally, selections hap-
pen very fast (using binary search). Tuple reconstructions
are also extremely fast since the projection attributes are al-
ready aligned with the selection result, given that only tuple
order-preserving operators are involved in these queries (we
show more complex examples later on). Sideways cracking
achieves similar performance to presorted data by contin-
uously aligning and physically clustering relevant data to-
gether both for selections and for tuple reconstructions.

On the contrary, selection cracking improves over Mon-
etDB significantly on selections but suffers from tuple re-

 0

 200

 400

 600

 800

2 4 8

R
es

po
ns

e
tim

e
(m

ill
i s

ec
s)

of tuple reconstructions

(a) Exp1: Multiple tuple reconstructions

Presorted MonetDB
Sideways Cracking
MonetDB
Selection Cracking

 1.5

 0.01

 0.1

 1

 1 10 100

R
es

po
ns

e
tim

e
re

la
tiv

e
to

 M
on

et
D

B

Query sequence

(b) Exp2: Varying selectivity

1000

3

MonetDB
Sid. point
Sid. 10%
Sid. 30%
Sid. 50%
Sid. 70%
Sid. 90%

Figure 4: Improving tuple reconstruction

construction costs. With MonetDB, the select operator is
order-preserving, hence, tuple reconstruction is performed
using in-order positional key-lookups into the projection at-
tribute’s base column. The resulting sequential access pat-
tern is very cache-friendly ensuring that each page or cache-
line is loaded at most once. On the contrary, with selection
cracking, the result of crackers.select is no longer aligned
with the base columns due to physical reorganization. Con-
sequently, the tuple reconstruction is performed using ran-
domly ordered positional key-lookups into the base column.
Lacking both spatial and temporal locality, the random ac-
cess pattern causes significantly more cache-/page-misses,
making tuple reconstruction more expensive.

Exp2: Varying Selectivity. We repeat the previous
experiment for 2 tuple reconstructions, but this time we
vary selectivity factors from point queries up to 90% se-
lectivity. We run 103 queries selecting randomly located
ranges/points. Figure 4(b) shows the response time relative
to the performance of non-cracking MonetDB (per selec-
tivity factor). Sideways cracking significantly outperforms
MonetDB on all selectivity ranges. In general, the first query
is slightly slower for sideways cracking since the appropriate
maps are created. After only a few queries, the maps are
physically reorganized to an extent that significantly fewer
non-qualifying tuples have to be accessed, allowing side-
ways cracking to quickly outperform MonetDB. As queries
become less selective, sideways cracking outperforms Mon-
etDB sooner (in terms of processed queries). With less se-
lective queries, more tuples have to be reconstructed pro-
ducing higher costs for the non-cracking column-store. For
the same reason, with more selective queries, the relative
benefit of cracking is smaller for the initial queries as the
(smaller) benefits in tuple reconstruction are being partially
shadowed by the higher cracking costs of the first queries.

 0

 1

 2

1 2 4 8

T
R

 c
os

t (
se

co
nd

s)

Tuple reconstructions (TR)

plain MonetDB (ord. TR)
Sel.Cracking (unord. TR)
sort + ordered TR
radix-cluster + clust. TR

Exp3: Reordering. A
natural direction to improve
tuple reconstruction with se-
lection cracking is to reorder
unordered intermediate results.
For the graph on the left, we
use both sorting and a cache-
friendly radix-clustering algo-
rithm [10] that restricts random
access during reconstruction to
the cache. This achieves similar

6

 0

 500

 1000

 1500

 2000

 2500

 1 10 100

R
es

po
ns

e
tim

e
(m

ill
i s

ec
s)

Query sequence

Exp4: (a) Total Cost

Selection Cracking

MonetDB

Sideways Cracking

Presorted MonetDB
Presorting cost=12 secs

 0

 200

 400

 600

 800

 1000

 1 10 100

Query sequence

(b) Select and TR cost before join

MonetDB

Selection Cracking

Sideways Cracking
Presorted
MonetDB

 0

 200

 400

 600

 800

 1000

 1 10 100

Query sequence

(c) TR cost after join

Selection Cracking

MonetDB

Sideways
Cracking

Presorted MonetDB

Figure 5: Join queries with multiple selections and tuple reconstructions (TR)

1e+03

1e+04

1e+05

1e+06

 1 10 100

R
es

po
ns

e
tim

e
(m

ic
ro

 s
ec

s)

Query sequence
1000

MonetDB

Selection
Cracking

Sideways Cracking
Presorted MonetDB

Presorting cost=3.5 secs

Figure 6: Skewed workload

reconstruction performance as purely sequential access at a
lower investment than sorting. We see that the investment
in clustering (sorting) pays off with 4 (8) or more projec-
tions. In this way, reordering intermediate results pays off
when multiple projections share a single intermediate result.
However, it is not beneficial with only a few projections or
with multiple selections, where individual intermediate re-
sults prohibit the sharing of reordering investments. Also, as
seen in Figure 4 presorted MonetDB and sideways cracking
significantly outperform plain MonetDB even with just a few
tuple reconstructions by having columns already aligned.

Exp4: Join Queries. We proceed with join queries that
both select and project over multiple attributes. Two tables
of 7 attributes and the following query are used.

(q2)

select max (R1),max (R2),max (S1),max (S2) from R,S
where v1 <R3<v2 and v3 <R4<v4 and v5 <R5<v6

and k1 <S3<k2 and k3 <S4<k4 and k5 <S5<k6

and R7 = S7

We run 102 randomly created queries, with fixed selec-
tivity factors of 50%, 30% and 20% for the conjunctions
of each table. Figure 5(a) shows the results. All systems
evaluate the queries starting from the most selective pred-
icate. Sideways cracking and presorted MonetDB achieve
similar performance and significantly outperform the other
approaches. Presorting of course has a high preparation cost
(12 secs). Figure 5(b) shows separately the selections and
tuple reconstruction costs before the join. For a fair compar-
ison both MonetDB and MonetDB on presorted data use the
faster rel select operator of selection cracking for the tu-
ple reconstructions prior to the join. Figure 5(c) also shows
separately the tuple reconstruction costs after the join.

For both cost components, presorted data and sideways
cracking significantly improve the column-store performance
by providing both very fast selections due to value ranges
knowledge, but also very fast tuple reconstructions due to
more efficient access patterns. Qualifying data is already
aligned and clustered in smaller areas, i.e., equal to the re-
sult size of the most selective predicate. On the contrary,
MonetDB and selection cracking have to reconstruct the re-
quired attributes from the full base columns.

Selection cracking loses its advantage in selections due to
random access patterns in tuple reconstruction, even before
the join. Also, the order of tuple-keys in cracker columns
becomes more distorted, as more queries contribute to crack-
ing, resulting in further increasing reconstruction costs.

For all systems, tuple order in the intermediate result of
the inner input is lost after the join. Thus, all systems per-

1e+05

1e+06

10000 1 10 100 1000

R
es

po
ns

e
tim

e
(m

ic
ro

 s
ec

s)

Query sequence

 Exp6: (a) LFHV scenario

Non-cracking MonetDB

Selection
Cracking

Sideways Cracking

10000 1 10 100 1000

Query sequence

(b) HFLV scenario

Non-cracking MonetDB

Selection
Cracking

Sideways Cracking

Figure 7: Effect of updates

form tuple reconstruction for this table using random access
patterns. However, plain MonetDB and selection cracking
need to prompt the base columns as the tuples to be re-
constructed for each attribute A are scattered through the
whole base column of A. On the other hand, MonetDB
on presorted data and sideways cracking have the qualifying
data clustered in a smaller area in each column and thus can
improve significantly by loading and analyzing less data.

Naturally, more selections or more tuple reconstructions
(either before or after the join), further increase the benefits
of presorted data and sideways cracking.

Exp5: Skewed Workload. Sideways cracking grace-
fully adapts to the workload and exploits any opportunity to
improve performance. To illustrate this powerful property,
assume a 3 attribute table and the following query type.

(q3) select max (B),max (C) from R where v1 <A<v2

We choose v1 and v2 such that 9/10 queries request a ran-
dom range from the first half of the attribute value domain,
while only 1/10 queries request a random range from the
rest of the domain. All queries request 20% of the tuples.
Figure 6 shows that sideways cracking achieves high per-
formance similar to presorted data by always using cache-
friendly patterns to reconstruct tuples. Skew affects the
“learning” rate of sideways cracking, making it reach the
best performance quickly for the hot-set. Since most of the
queries focus on a restricted area of the maps, cracking can
analyze this area faster (in terms of query requests) and
break it down to smaller pieces (which are faster to process).
With queries outside the hot-set, we have to analyze a larger
area (though not the whole column). This is why we see the
peaks roughly every 10 queries. However, as more queries

7

15
8

19
6

11
2

14
5

12
18
4
9

13
7

b1
b2
b3
b4
b5
b6
b7
b8
b9

b10
b11
b12
b13
b14

A B
Select B from R whe re 9<A<=15Initial state
Chunk map H (A,id)

v<=9
U

v>9
F

v>15
U

v<=9
E

v>9
M,C=1

v>15
E

Partial map M
Select B from R whe re 9<A<13

v<=9
 E

v>9
M,C=1

v>15
 E

v>=13
M,C=1

Select B from R wher e 5<=A<8

v<5
 U

v>9
 F

v>15
 U

v>15, E

v>9
M,C=1

v>=13
M,C=1

v>=5
F

v>=8
 U

v<5, E

v>=5
M,C=2

v>=8, E

7
8
9
6
4
2
5

14
12
13
15
11
19
18

14
2

12
4

11
6
8
7
9

13
1
5
3

10

14
12
13
15
11

b7
b9

b13
b1
b5

11
12
13
15
14

b5
b9

b13
b1
b7

4
2
7
6
5
9
8

14
12
13
15
11
19
18

11
6

14
11
8

12
2
7
9

13
1
5
3

10

11
12
13
15
14

b5
b9

b13
b1
b7

7
6
5

b14
b11
b8

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10
c11
c12
c13
c14

C
Select C from R whe re 8<=A<15

v<5
 U

v>9
 F

v>15
 U v>15, E

v>9
M,C=1
v>=13
M,C=1

v>=5
F

v>=8
 F

v<8, E

v>=8
M,C=3

4
2
7
6
5
9
8

14
12
13
15
11
19
18

11
6

14
11
8

12
2
7
9

13
1
5
3

10

11
12
13
14
15

c5
c9

c13
c7
c1

9
8

c12
c2

v>15
M,C=1

A Chunk map H (A,id)A Chunk map H (A,id)AAB Partial map MAB Partial map MAB Partial map MAC

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Keys

Figure 8: Using partial maps (U=Unfetched, F=Fetched, E=Empty, M=Materialized, C=ChunkID)

touch the non-hot area, in a self-organizing way, sideways
cracking improves performance also for the non-hot set.

Exp6: Updates. Two scenarios are considered for up-
dates, (a) the high frequency low volume scenario (HFLV);
every 10 queries we get 10 random updates and (b) the low
frequency high volume scenario (LFHV); every 103 queries
we get 103 random updates. Random q3 queries are used.
Figure 7 shows that sideways cracking maintains high per-
formance and a self-organizing behavior through the whole
sequence of queries and updates demonstrating similar per-
formance as in [8]. We do not run on presorted data, here,
since to the best of our knowledge there is no efficient way
to maintain multiple sorted copies under frequent updates
in column-stores [6]. This is an open research problem. Ob-
viously, resorting all copies with every update is prohibitive.

4. PARTIAL SIDEWAYS CRACKING
The previous section demonstrated that sideways cracking

enables a column-store to efficiently handle multi-attribute
queries. It achieves similar performance to presorted data
but without the heavy initial cost and the restrictions on up-
dates and workload prediction. So far, we assumed that no
storage restrictions apply. As any other indexing or caching
mechanism, sideways cracking imposes a storage overhead.
This section addresses this issue via partial sideways crack-
ing. An extensive experimental analysis shows that it signif-
icantly improves performance under storage restrictions and
enables efficient workload adaptation by partial alignment.

4.1 Partial Maps
The motivation for partial maps comes from a divide and

conquer approach. The main concepts are the following. (1)
Maps are only partially materialized driven by the workload.
(2) A map consists of several chunks. (3) Each chunk is a
separate two-column table and (4) contains a given value
range of the head attribute of this map. (5) Each chunk
is treated independently, i.e., it is cracked separately and it
has its own tape. Figure 8 illustrates a simplified example.

Basic Definitions. A map set SA of an attribute A con-
sists of (a) a collection of partial maps and (b) a chunk map
HA. HA contains A values along with the respective tu-
ple key. Its role is to provide the partial maps of SA with
any missing chunks when necessary. Each partial and chunk
map has an AVL-tree based index to maintain partitioning
information. Different maps in the same set do not necessar-
ily hold chunks for the same value ranges. A partial map is
created when a query needs it for the first time. The chunk

map for a set S, is created along with the creation of the
first chunk of the first partial map in S.

An area w of a chunk map is defined as fetched if at least
one partial map has fetched all tuples of w to create a new
chunk. Otherwise, w is called unfetched. Similarly, an area
c of a partial map is defined as materialized if this map has
created a chunk for c. Otherwise, c is called empty. Figure 8
shows some simple examples.

For each fetched area w, the index of a chunk map main-
tains (i) a list of references to w, i.e., the IDs of the partial
maps that currently hold a chunk created by fetching w, and
(ii) a tape where all the cracks that happen on the chunks
created by w are logged. If all these chunks are dropped
(discussed below under “Storage Management”), then w is
marked again as unfetched and its tape is removed.

Creating Chunks. New chunks for a map MAx are cre-
ated on demand, i.e., each time a query q needs tuples from
an empty area c of MAx. The area c corresponds to an area
w of HA. We distinguish two cases depending on whether w
is fetched or not. Firstly, if w is unfetched, then currently
no other map in SA holds any chunks created from w. In
this case, depending on the value range that q requires, we
either make a new chunk using all tuples of w or crack w in
smaller areas to materialize only the relevant area (see ex-
amples in Figure 8). Secondly, in case w is already marked
as fetched, it must not be cracked further, as this might lead
to incorrect alignment as described in Section 3.2. For ex-
ample, if multiple maps are used by a single query q that
requires chunks created from an area w, then these chunks
will not be aligned if created by differently cracked instances
of w. Hence, a new chunk is created using all tuples in w.
To actually create a new chunk for a map MAB , we use the
keys stored in w to get the B values from B’s base column.

Storage Management. A partial map is an auxiliary
data structure, i.e., without loss of primary information, any
chunk of any map can be dropped at any time, if storage
space is needed, e.g., for new chunks. In the current imple-
mentation, chunks are dropped based on how often queries
access them. After a chunk is dropped, it can be recreated
at any time, as a whole or only in parts, if the query work-
load requires it. This is a completely self-organizing behav-
ior. Assuming there is no idle time in between, no available
storage, and no way to predict the future workload, this ap-
proach assures that the maximum available storage space is
exploited, and that the system always keeps the chunks that
are really necessary for the workload hot-set.

Before creating a new chunk, the system checks if there
is sufficient storage available. If not, enough chunks are

8

dropped to make room for the new one. Dropping a chunk
c involves operations to update the corresponding cracker
index I. To assist the learning behavior lazy deletion is
used, i.e., all nodes of I that refer to c are not removed but
merely marked as deleted and hence can be reused when c
(or parts of it) is recreated in the future.

Dropping the Head Column. The storage overhead
is further reduced by dropping the head column of actively
used chunks, at the expense of loosing the ability of further
cracking these chunks. We consider two opportunities.

First, we drop the head column of chunks that have been
cracked to an extend that each piece fits into the CPU
cache. In case a future query requires further cracking of
such pieces, it is cheap to sort a piece within the CPU cache.
This action is then logged in the tape to ensure future align-
ment with the corresponding chunks of other maps.

Second, we drop the head column of chunks that have
not been cracked recently as queries use their pieces “as is”.
Once we need to crack such a chunk c in the future, we only
need to recover and align the head as follows. If a chunk c′

(of the same area as c) in an other map still holds the head
and is less or equally aligned to the state that c was when it
lost its head, then the head is recovered from c′. Otherwise,
the head is taken from the chunk map. The first case is
cheaper as less effort is needed to align the head.

Chunk-wise Processing. As seen in Section 3.3, each
sideways cracking operator O first collects (using proper
cracking and alignment) in a contiguous area w of the used
map M all qualifying tuples based on the head attribute
of M . Then, it runs the specific operator O over the area
w, e.g., create or refine a bit vector based on a conjunctive
predicate, perform a projection, etc. With partial sideways
cracking we have the opportunity to improve access patterns
even more by allowing chunk-wise processing. Each opera-
tor O handles one chunk c of a map at a time, i.e., load c,
create c if the corresponding area is empty, crack or align c
if necessary and finally run O over c.

Partial Alignment. Partial maps allow significant opti-
mizations during alignment. The key observation is that we
do not always need to perform full alignment, i.e., align a
chunk c up to the last entry of its tape. If c is not going to
be cracked, it only needs to be aligned with respect to the
corresponding chunks of the other maps of the same map set
used in this query, i.e., up to the maximum cursor of these
chunks. We call this partial alignment. When performing
any operator over a map, only the boundary chunks might
need to be cracked, i.e., the first chunk where the lower
bound falls and the last chunk where the upper bound falls;
all other chunks in between benefit from partial alignment.

Even for boundary chunks, partial sideways cracking can
in many cases avoid full alignment as follows. Assume a
chunk c as a candidate for cracking based on a bound b.
First, we perform partial alignment on c and monitor the
alignment bounds. If b matches one of the past cracks, then
cracking and thus full alignment of c is not necessary. Other-
wise, full alignment starts. However, even then, if b is found
on the way, then alignment stops and c is not cracked.

Updates. The Ripple algorithm of [8] is already de-
signed to update only the parts (value ranges) necessary for
the running query. Thus, the update strategy and perfor-
mance in partial maps remains the same as in Section 3.
Chunk maps are treated in the same way, i.e., a chunk map
Hx has its own pending updates structures and areas on Hx

are updated only on demand. Thus, before making a new
chunk from an unfetched area w, w is updated if necessary.
Naturally, updates applied in a chunk map are also removed
from the pending updates of all partial maps in this set.

4.2 Experimental Analysis
We proceed with a detailed assessment of our partial side-

ways cracking implementation on top of MonetDB. Using
the same platform as in Section 3.6, we show that partial
maps bring a significant improvement and a self-organizing
behavior under storage restrictions and during alignment.

For storage management with full maps, we use the same
approach as for partial maps, i.e., existing maps are only
dropped if there is not sufficient storage for newly requested
maps. We always drop the least frequently accessed map(s).

For the experiments throughout this section we use a re-
lation with 11 attributes containing 106 tuples and 5 multi-
attribute queries (Qi, i ∈ {1, . . . , 5}) of the following form.
(Qi) select Ci from R where v1 <A<v2 and v3 <Bi <v4

All queries use the same A attribute but different Bi and Ci

attributes, i.e., each query requires two different maps. A
fully materialized map needs 106 tuples. All queries select
random ranges of S tuples. We run 103 queries in batches of
100 per type, i.e., first 100 Q1 queries, then 100 Q2 queries,
and so on, while enforcing a storage threshold of T tuples.

Handling Storage Restrictions. We use S = 104 and
three different storage restrictions: (a) no limit (in practice,
all 10 maps used by the 5 queries fit within T = 107); (b)
T = 6.5∗106, i.e., slightly more than required to keep 6 full
maps concurrently; (c) T = 2∗106, i.e., only 2 full maps can
co-exist (the minimum to run one query using full maps).

Figures 9(a), (b) and (c) show the per query cost for
each case separately. In all three plots, full maps show the
same pattern. Once every 100 queries, very high peaks (i.e.,
per query costs) severely disturb the otherwise good perfor-
mance. These peaks relate to the workload changes between
query batches. The first 5 peaks reflect the costs of initially
creating the cracker maps for each batch, plus aligning them
with the cracks of the preceding batch. Requiring no align-
ment, the first peak is smaller than the next 4. As of query
500, the batch cycle is repeated. With unlimited storage,
all created maps are still available for reuse, requiring only
alignment but no recreation with peaks 5–10 in Figure 9(a).
With limited storage, the first maps had to be dropped to
make room for later batches, requiring complete recreation
of the maps once the cycle restarts. Figure 9(d) shows full
maps allocating storage in blocks of two full maps per batch.

In contrast, partial maps do not penalize single queries,
but distribute the map creation and alignment costs evenly
across all queries, using chuck-wise granularity to more ac-
curately adapt to changing workloads. Due to slightly in-
creased costs for managing individual chunks instead of mono-
lithic maps, partial maps do not quite reach the minimal per
query cost of full maps. However, this investment results in
a much smoother and more predictable performance behav-
ior due to more flexible storage management (cf., Fig. 9(d)).
Additionally, partial maps reduce the overall costs of query
sequences (cf., Fig. 11 & 12 and discussion below).

Adaptation. Partial maps can fully exploit the workload
characteristics to improve performance. To demonstrate
this, we re-run the basic experiment with two variations:
(a) we keep the uniform workload, but increase the selectiv-
ity using S = 103; (b) we keep S = 104, but use a skewed

9

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0 2 4 6 8 10

R
es

po
ns

e
tim

e
(m

ic
ro

 s
ec

s)

Query sequence (x100)

(a) Unlimited storage

Full maps
Partial maps

 0 2 4 6 8 10

Query sequence (x100)

(b) Limited storage: T=6.5M

Full maps
Partial maps

 0 2 4 6 8 10

Query sequence (x100)

(c) Limited storage: T=2M

Full maps
Partial maps

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

S
to

ra
ge

 u
se

d
(#

 o
f t

up
le

s
x1

M
)

Query sequence (x100)

(d) Storage usage: F(ull) vs. P(artial)

F, no T
P, no T

P, T=6.5M
F, T=6.5M

F, T=2M
P, T=2M

Figure 9: Efficient handling of storage restrictions with partial maps (S=10K)

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0 2 4 6 8 10

R
es

po
ns

e
tim

e
(m

ic
ro

 s
ec

s)

Query sequence (x100)

(a) Random, Result size S=1K tuples

Full maps
Partial maps

 0 2 4 6 8 10

Query sequence (x100)

(b) Skewed, Result size S=10K tuples

Full maps
Partial maps

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

S
to

ra
ge

 u
se

d
(#

 o
f t

up
le

s
x1

M
)

Query sequence (x100)

(c) Storage usage: F(ull) vs. P(artial)

F, rand., S=1K

F, skew, S=10K

P, rand., S=1K

P, skew, S=10K

Figure 10: Efficient adaptation to the workload with partial maps (T=6.5M)

 1

 10

1K 10K 100K 300K

C
um

ul
at

iv
e

co
st

 (
se

co
nd

s)

Result size S (# of tuples)

Total cumulative costs (1000 queries)

0.3

3

F
, n

o
T

P
, n

o
T

F
, T

=
6.

5M
P

, T
=

6.
5M

F
, T

=
2M

P
, T

=
2M

Figure 11: No overhead

 0.1

 1

 10

 100

 1000

 5 50 500 10 100 1000

C
um

ul
at

iv
e

co
st

 (
s)

 fo
r

10
00

 q
ue

rie
s

workload changes per 1000 queries

Varying workload change rate (S=10K, T=6M)

Full maps

Partial maps

Figure 12: Total costs

1e+02

1e+03

1e+04

1e+05

 0 2 4 6 8 10

R
es

po
ns

e
tim

e
(m

ic
ro

 s
ec

s)

Query sequence (x100)

Change workload: (a) every 10 queries

Full maps
Partial maps

 0 2 4 6 8 10

Query sequence (x100)

(b) every 100 queries

Full maps
Partial maps

 0 2 4 6 8 10

Query sequence (x100)

(c) every 200 queries

Full maps
Partial maps

Figure 13: Improving alignment with partial maps (S=10K, T=unlimited)

workload. To simulate the skew, we force 9/10 queries to
request random ranges from only 20% of the tuples while
the remaining queries request ranges from the rest of the
domain. Both runs use a storage threshold of T = 6.5∗106.

Figures 10(a) and (b) depict the results. Compared to the
previous experiment, the workload is now focused on specific
data parts, either by more selective queries or by skew. In
both cases, partial sideways cracking shows a self-organizing
and normalized behavior without penalizing single queries as
full maps do. Being restricted to handling complete maps
(holding mostly unused data), full maps cannot take advan-
tage of the workload characteristics and suffer from lack of
storage. Figure 10(c) illustrates that full maps demand more
storage and thus quickly hit the threshold. In contrast, par-
tial maps exploit the available storage more efficiently and
more effectively by materializing only the required chunks.

No Overhead in Query Sequence Cost. So far, we
demonstrated that partial maps provide a more normalized
per query performance compared to full maps. In addition,
Figure 11 shows that these benefits come for free. It depicts
the total cost to process all queries in the basic experiment
by varying both the selectivity and the storage threshold.
With 30% selectivity (S = 3∗105), both approaches have
similar total cost while with more selective queries partial
maps significantly outperform full maps. This behavior com-
bined with the more normalized per query performance gives
a strong advantage to partial maps. The next experiment
demonstrates that the advantage of partial maps over full
maps increases with more frequent workload changes.

Adapting to Frequently Changing Workloads. In
all previous experiments we assume a fixed rate of changing
workload, i.e., every 100 queries. Here we study the effect of

10

 1000

 3000

 5000

 7000

R
es

po
ns

e
tim

e
(m

ill
i s

ec
s)

TPC-H Query 1

 26000

 27000
MonetDB presorted

 300

 500

 700

 900

 1100 TPC-H Query 3
 10000

 30000
Selection Cracking

 700

 800

 900

 1000 TPC-H Query 41071
1027

 1400

 1600
Sideways Cracking

 20

 100

 200

 300 TPC-H Query 6743
325

 3500

 4000
MySQL presorted

 300
 400

 600

 800

 1000

 1200

 1400

R
es

po
ns

e
tim

e
(m

ill
i s

ec
s)

TPC-H Query 7
 5000

 50000

 200

 300

 400

 500 TPC-H Query 8
 10000

 60000

 600

 650

 700

 750

 800

 850 TPC-H Query 10927
 2000

 10000

 200

 300

 400

 500

 600

 700 TPC-H Query 121128
894

 3000

 5000

 200

 300

 400

 0 5 10 15 20 25 30R
es

po
ns

e
tim

e
(m

ill
i s

ec
s)

Query sequence

 800

 900 TPC-H Query 14 22000

 23000

 70

 330

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

Query sequence

TPC-H Query 15764
420

 1000

 10000

 150

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

Query sequence

TPC-H Query 192475

 160
 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

Query sequence

TPC-H Query 20893
792

Figure 14: TPC-H results (“presorted” times exclude presorting costs; Q4,8,10: 3min.; Q1,6,7,12,14,15,19,20: 11min.; Q3: 14min.)

varying this parameter. We run the basic experiment with
fixed S = 104 and T = 6∗106 but for various different rates
of changing the workload. Figure 12 shows the total cost
to process all queries for each case. The performance of full
maps faces a significant degradation as the workload changes
more often, causing maps to be dropped and recreated more
frequently. In contrast, due to flexible and adaptive chunk
management, partial maps offer a stable high performance
that decreases hardly with more frequent workload changes.

Alignment Improvements. Let us now demonstrate
the benefits of partial maps during alignment. We run the
basic experiment for S = 104. To concentrate purely on the
alignment cost we use only two types of queries and assume
no storage restrictions. Figure 13 shows results for changing
the workload every 10, 100 or 200 queries. As we decrease
the rate of changing workloads, the peaks for full maps be-
come less frequent, but higher. These peaks represent the
alignment cost. Each time the workload changes, the maps
used by the new batch of queries have to be aligned with
the cracks of the previous batch; the longer the batch, the
more cracks, the higher the alignment costs. Partial maps
do not suffer from the alignment cost. Being able to align
chunks only partially, and only those required for the current
query, partial maps avoid penalizing single queries, bring-
ing a smoother behavior to the whole query sequence. Fur-
thermore, notice that as more queries are processed, partial
maps gain more information to continuously increase align-
ment performance, assisting the self-organizing behavior.

5. TPC-H EXPERIMENTS
In this section, we evaluate our implementation in real-

life scenarios using the TPC-H benchmark [14] (scale factor
1) on the same platform as in the previous experiments.
We use the TPC-H queries that have at least one selection
on a non-string attribute, i.e., Queries 1, 3, 4, 6, 7, 8, 10,
12, 14, 15, 19, & 20 (cf., [14]). String cracking and base
table joins exploiting the already partitioned cracker maps
are expected to yield significant improvements also for the
remaining queries, but these are directions of future work
and complementary to this paper. For each query, we cre-
ated a sequence of 30 parameter variations using the random
query generator of the TPC-H release. For experiments on
presorted data, we created copies of all relevant tables such
that for each query there is a copy primarily sorted on its
selection column and (where applicable) sub-sorted on its
group-by and/or order-by column. We use MySQL to show
the effects of using presorted data on a row-store.

Figure 14 shows the costs for each query sequence. Side-
ways cracking achieves similar performance to presorted Mon-
etDB (ignoring the presorting cost). Depending on the query,
the presorting cost is 3 to 14 minutes, while as seen in Fig-
ure 14 the first sideways cracking query (in each query se-
quence) is between 0.75 to 3 seconds. In a self-organizing
way, sideways cracking continuously improves performance
without requiring the heavy initial step of presorting and
workload knowledge. For most queries, it outperforms plain
MonetDB as of the second run; for Queries 1 & 10, already

11

Q SiCr PrMo
1 64% 50%
3 44% -46%
4 4% 6%
6 80% 83%
7 62% 28%
8 20% -36%
10 12% 9%
12 41% 42%
14 19% 12%
15 62% 60%
19 61% 61%
20 67% 65%

the first run is faster. The table on the
left summarizes the benefits of sideways
cracking (SiCr) and presorted MonetDB
(PrMo) over plain MonetDB on the tested
TPC-H queries (Q). Having both efficient
selections and tuple reconstructions, both
sideways cracking and presorted MonetDB
manage to significantly improve over plain
MonetDB especially for queries with mul-
tiple tuple reconstructions on large tables,
e.g., Queries 1, 6, 7, 15, 19, 20. Queries
with multiple non tuple-order-preserving

operators (group by, order by, joins) and subsequent tuple
reconstructions yield significant gains by restricting tuple
reconstructions to small column areas, e.g., Queries 1, 3, 7.
Query 19 is an example where a significant amount of tuple
reconstructions are needed as it contains a complex disjunc-
tive where clause. The column-store has to reconstruct each
attribute multiple times to apply the different predicates
whereas the row-store processes the tables tuple-by-tuple.
Sideways cracking minimizes significantly this overhead pro-
viding a comparable performance to the row-store.

In certain cases (e.g., Queries 3, 7, 8), cracking manages
to even outperform presorted MonetDB. The TPC-H data
comes already presorted on the keys of the Order table.
Plain MonetDB (and MySQL) exploit the sorted keys espe-
cially during joins (most queries join on Order keys). Fully
sorting on the selection attribute completely destroys this
order, making the presorted case even slower than the orig-
inal one (both with MonetDB and MySQL). With sideways
cracking, though, the initial order is only partially changed,
providing more efficient access patterns during joins.

 0

 0.5

 1

 1.5

 2

 2.5

 60 1 13 25 37 49R
es

po
ns

e
tim

e
re

la
tiv

e
to

 M
on

et
D

B

Query sequence

B1 B2 B3 B4 B5

MonetDB
Sideways Cracking

Our final experiment features
a mixed workload. We run 5
sequential batches (B1..B5) of
12 different TPC-H queries with
varying parameters. The fig-
ure on the left shows the per-
formance of sideways cracking
relative to MonetDB. Already
within the first batch (B1),
sideways cracking outperforms
MonetDB in many queries. This

is because queries can reuse maps and partitioning informa-
tion created by different queries over the same attributes.
The high peak in the first batch comes from Query 12 that
uses a map set not used by any other query. Naturally, after
the first batch sideways cracking improves even more.

6. RELATED WORK
Self-organization has become an active research area, e.g.,

[3, 5, 11, 13]. Pioneering literature mainly focuses on pre-
dicting the future workload as a basis for an appropriate
physical design. This is mainly an off-line task that works
well in stable environments or with a delay in dynamic ones.
In contrast, cracking instantly reacts to every query, refining
the physical data organization accordingly without the need
for a workload predictor, or lengthy reorganization delays.

The only other column-store that uses physical reorga-
nization is C-Store [12, 1, 2]; each attribute sort order is
propagated to the rest of the columns in a relation R, main-
taining multiple projections over R. It targets read-only
scenarios using the luxury of time to pre-sort the database

completely and exhaustively. Cracking targets exactly the
opposite environments with continuous and sudden work-
load shifts and updates [8]. Direct comparison with C-store
was not possible as it does not provide a generic SQL in-
terface. However, we believe that our experiments against
MonetDB on presorted data give a fair comparison of side-
ways cracking against a presorted column-store.

A very interesting area is the opportunity to improve per-
formance using compression. This naturally gives a boost
in presorted data performance [1], while it is a promising
research direction for database cracking too.

7. CONCLUSIONS
In this paper, we introduce partial sideways cracking, a

key component in a self-organizing column-store based on
physical reorganization in the critical path of query exe-
cution. It enables efficient processing of complex multi-
attribute queries by minimizing the costs of late tuple re-
construction, achieving performance competitive with using
presorted data, but requiring neither an expensive prepara-
tion step nor a priori workload knowledge. With its flexi-
ble and adaptive chunk-wise architecture it yields significant
gains and a clear self-organizing behavior even under ran-
dom workloads, storage restrictions, and updates.

Database cracking has only scratched the surface of this
promising direction for self-organizing DBMSs. The research
agenda includes calls for innovations on cracker-joins, com-
pression, aggregation, distribution and partitioning, as well
as optimization strategies, e.g., cache-conscious chunk size
enforcement in partial sideways cracking. Furthermore, row-
store cracking is a fully unexplored and promising area.

8. REFERENCES
[1] D. Abadi et al. Integrating compression and execution

in column-oriented database systems. SIGMOD 2006.

[2] D. Abadi et al. Materialization Strategies in a
Column-Oriented DBMS. ICDE 2007.

[3] S. Agrawal et al. Database Tuning Advisor for
Microsoft SQL Server. VLDB 2004.

[4] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. CIDR 2005.

[5] N. Bruno and S. Chaudhuri. To Tune or not to Tune?
A Lightweight Physical Design Alerter. VLDB 2006.

[6] S. Harizopoulos et al. Performance Tradeoffs in
Read-Optimized Databases. VLDB 2006.

[7] S. Idreos, M. Kersten, and S. Manegold. Database
Cracking. CIDR 2007.

[8] S. Idreos, M. Kersten, and S. Manegold. Updating a
Cracked Database. SIGMOD 2007.

[9] M. Kersten and S. Manegold. Cracking the Database
Store. CIDR 2005.

[10] S. Manegold et al. Cache-Conscious Radix-Decluster
Projections. VLDB 2004.

[11] K. Schnaitter et al. COLT: Continuous On-Line
Database Tuning. SIGMOD 2006.

[12] M. Stonebraker et al. C-Store: A Column Oriented
DBMS. VLDB 2005.

[13] D. C. Zilio et al. DB2 Design Advisor: Integrated
Automatic Physical Database Design. VLDB 2004.

[14] TPC Benchmark H. http://www.tpc.org/tpch/.

[15] MonetDB. http://monetdb.cwi.nl/.

12

