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Abstract

Research design is of paramount importance when attempting to overcome con-
founding. In this paper, we propose a unified graphical approach for the consideration
of cross-sectional research designs. Specifically, we argue that at least five distinct
strategies may be discerned for coping with the presence of a common-cause con-
founder: (1) blocking backdoor paths, (2) mechanisms, (3) instrumental variables, (4)
alternate outcomes, and (5) causal heterogeneity. All of these strategies enlist a facil-
itating variable, whose role defines the corresponding research design. This resulting
framework builds on the foundational work of Pearl (2000, 2009) but incorporates addi-
tional research designs into the graphical framework, providing a more comprehensive
typology of designs for causal inference.
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1 Introduction

Observational data is prone to common-cause confounders (C), i.e., factors that

affect both the theoretical variable of interest (X) and the outcome of interest (Y ),

and whose presence renders the covariation between X and Y spurious. This may be

labeled an assignment problem, a selection effect, or non-ignorability. All refer to the

fact that the potential outcomes are not independent of assignment to treatment, a

problem lying at the heart of causal inference with observational data. Indeed, the

great variety of research designs and econometric strategies that social scientists and

statisticians have developed are, in large part, attempts to deal with threats emanating

from common-cause confounders.

With the assistance of a causal-graph framework, we identify five strategies for

achieving identification in the presence of a common-cause confounder: (1) blocking

backdoor paths, (2) mechanisms, (3) instrumental variables, (4) alternate outcomes,

and (5) causal heterogeneity. All of these strategies enlist a facilitating variable, labeled

Z in the following discussion. Likewise, the specific role of Z defines the distinguishing

characteristic of each research design, as illustrated in graphs that accompany the text.

Solving problems of causal inference in the presence of a common-cause confounder can

thus be thought of as an attempt to identify additional variables that, in one way or

another, overcome problems of inference where conditioning on X and Y alone will not

suffice. We note at the outset that these strategies are not equally promising, but the

following discussion will reveal the pros and cons of each strategy.

This strategy builds on Pearl (2000, 2009) and Morgan and Winship (2007: 26),

who focus on the first three strategies. We provide a more comprehensive typology by

presenting additional graphical representations of some of the strategies considered in

Angrist and Pischke (2008), and the “devices” presented in Rosenbaum (2002, 2009),
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as well as some minor variations. In this manner, we hope to identify a capacious

toolkit of methods for causal inference, while clarifying the similarities/differences and

strengths/weaknesses of each.

Causal graphs have several attractive properties as a framework for thinking about

research design. First, with minimal notation they allow us to formalize, and thereby

unify, the problem of confounders and methods for dealing with them across diverse

research traditions. It is our contention that many cross-sectional research designs -

including those employing quantitative and qualitative methods - can be subsumed

within the foregoing typology. Second, causal graphs provide a link between a pre-

sumed data generating process and econometric techniques that might be employed

for estimating causal effects. Properly deployed, they embed statistics in social real-

ity. Third, the framework is highly intuitive. A visual representation of key research

design elements often helps to clarify the varying logics of causal inference and may

assist in the practical task of identifying appropriate research designs to suit various

settings. Finally, causal graphs provide a mathematically rigorous framework consis-

tent with nonparametric structural equations models and potential outcomes models

(Pearl, 1998, 2000, 2009; Spirtes et al. 1998, 2000). Granted, some of the designs

require the addition of parametric information to the nonparametric graphs in order to

explain the assumptions utilized in a particular research design. This suggests a further

utility of the five-part typology: designs differ in their structure (denoted by the graph

associated with each design) and in the assumptions required for the identification of

average effects.

The paper begins by introducing the problem of confounders and the framework

of causal graphs. In succeeding sections we present the five research design strategies.

For each strategy, we provide a graph (or set of graphs), an example (or several), and

a discussion of key assumptions. A short conclusion adds some important caveats and

3



discusses the import of a graphical approach to causal inference.

2 Confounders through the Lens of Causal Graphs

We begin with a brief review of directed acyclic graphs (DAGs), as developed by

Judea Pearl (2009). In this framework, the variables in a model are represented as

nodes in a graph. Each node may represent a single variable or a vector. We shall

speak of variables rather than vectors in order to simplify the exposition; however,

readers should bear in mind that a node may represent a vector if a set of variables

bears a similar relationship to other nodes.

The key nodes in any DAG are X and Y , exemplifying the factors of theoretical

interest. Other factors may be included if they serve a role in causal identification.

Other factors must be included if they impact more than one node of the graph. An

example of this is the common-cause confounder, which by definition affects X and Y

and thus must be included in a DAG if it is thought to exist. A DAG with a confounder

(C) is illustrated in Figure 1.

Variables represented in a DAG may be measured and potentially conditioned (sig-

naled by a solid circle) or not (signaled by an open circle). This evidently makes a

great deal of difference in any analysis of causal effects, so the reader will want to

keep a close eye on the way in which nodes are represented in the following graphs.

In Figure 1, the confounder is not measured. Under the circumstances, the resulting

relationship between X and Y may be spurious: a correlation between X and Y might

be the product of (a) a causal relationship or (b) the unmeasured and unconditioned

factor, C, which impacts both X and Y .

Whenever one variable is suspected of affecting another, an arrow is drawn between

the two nodes. Missing arrows correspond to exclusion restrictions, i.e., the presumed

lack of a direct causal effect. A DAG is “acyclic” in that arrows point in only one
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●

X

●

Y

●

C

Figure 1: Directed Acyclic Graph (DAG). Open circles correspond to unmeasured (and there-
fore unconditioned) variables. Solid circles correspond to measured variables. Missing arrows
correspond to exclusion restrictions (the lack of a direct causal effect) and all common causes
are represented on the graph.

direction. Likewise, there is no way to start at one variable and return to that same

variable by following the arrows on the graph.

In order to see how this works it is necessary to familiarize oneself with several

rules of conditioning. Consider the four panels in Figure 2. In panel (a), we expect

an association between X and Y because X causes Y . In panel (b), after conditioning

on Z, we expect no association between X and Y because we have conditioned on Z,

an intermediary variable, which thereby breaks the flow of information from X to Y

(or Y to X). In panel (c), after conditioning on Z, we expect no association between

X and Y because we have conditioned on Z, a common cause of both X and Y . In

panel (d), we expect no unconditional association between X and Y but we do expect

a conditional association between X and Y because we have conditioned on Z, a factor

that is affected by both X and Y . This setting, where Z serves as a “collider,” is

somewhat counterintuitive and therefore bears special emphasis: a relationship can be

created between two orthogonal variables by conditioning on a third variable that both
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affect. The full set of rules for reading conditional independence relationships from a

graph is known as d-separation (Pearl 2000, pg. 16).

(a)

●

X

●

Y

(b)

●

X

●

Y

●

Z

(c)

●

X

●

Y

●

Z

(d)

●

X

●

Y

●

Z

Figure 2: Basic Principles of Conditional Association Illustrated for DAGs. In panel (a), we
expect an association between X and Y because X causes Y . In panel (b), after conditioning
on Z, we expect no association between X and Y because we have conditioned on Z, an
intermediary variable, which thereby breaks the flow of information from X to Y (or Y to X).
In panel (c), after conditioning on Z, we expect no association between X and Y because
we have conditioned on Z, a common cause of both X and Y . In panel (d), we expect
no unconditional association between X and Y but we do expect a conditional association
between X and Y because we have conditioned on Z, a factor that is affected by both X
and Y .

For heuristic purposes it is helpful to develop a single research question that can

be applied to numerous empirical settings, thus unifying our discussion of diverse ap-

proaches to causal inference. Our exemplar is an imaginary after-school ESL (English

as second language) program established as a supplement for secondary school students

in the United States who are not native speakers. The research question of theoretical

interest is whether the program has a causal impact on English-language capacities,

all other things being equal. Impact refers to average treatment effects (ATE), un-

less otherwise noted in the following discussion. Importantly, the program is free and

sign-up is voluntary and thus open to potential confounders: non-native speakers who
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sign-up may be different from those who do not, in ways that affect their acquisition

of English. (In this respect, our chosen examplar is similar to other settings that have

received extensive commentary in recent years such as job-training programs [Heckman

et al. 1998; Lalonde 1986].) Specifically, those who attend may be more motivated or

better prepared, and this in turn may be the product of a prior factor: the educational

attainment of their parents.

Returning to Figure 1, X represents the treatment (attendance in the ESL pro-

gram), Y represents the outcome (English proficiency, as measured by language tests),

and C represents various possible confounders (as listed above). Of course, this figure,

like all DAGs, encodes a set of assumptions, which in the event may or may not be

true. In this respect, it is no different from other models of causal inference - formal,

statistical, or expository. Nonetheless, insofar as all causal inference rests on assump-

tions it is important to be explicit about what these are, and the properties of the DAG

are enormously helpful in clarifying some (but not all) of the necessary assumptions.

3 Blocking Backdoor Paths

The usual approach to dealing with a common-cause confounder involves blocking

“backdoor” paths. Specifically, if there are no causal cycles, and if all values of the

causal factor X are possible for all values of the conditioning variables (e.g., at least

some children of both high and low education parents must have signed up for the

ESL program), then the average effect of X on Y can be identified when (a) the set

of conditioning variables does not include variables affected by X, and (b) the set of

conditioning variables blocks all paths between X and Y that point back into X (i.e.,

the backdoor paths of spurious correlation/confounding). These two conditions are

known as the backdoor criterion (Pearl 2000, pg. 79).

Returning to our example, let us stipulate that the key difference between partic-
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ipants and non-participants in the after-school ESL program is that the former are

more likely to have parents who are well educated. These college-educated parents

sign their children up for the after-school program (affecting assignment to treatment)

and help motivate their children to work on the assignments (affecting the outcome of

achievement tests), thus serving as a common-cause confounder.

One approach to blocking backdoor paths involves conditioning on the confounder

itself. Thus, one might measure the educational status of parents, including this as

a covariate in the analysis. As illustrated in panel (a) of Figure 3, we write this

conditioning variable as Z (rather than C) in order to emphasize its role in the causal

analysis. This is the first example of what we will refer to as a facilitating variable - a

variable of no theoretical interest that facilitates causal inference.

Another approach is to block the path from C to Y , i.e., the effect of the confounder

on the outcome, as illustrated in panel (b) of Figure 3. Returning to our example, one

can imagine measuring the impact of parents on student work efforts, e.g., by asking

students whether their parents helped to motivate them to complete class assignments,

and then including the resulting variable as a covariate in the analysis.

A third approach is to block the path from C to X, i.e., the effect of the confounder

on assignment to treatment, as illustrated in panel (c) of Figure 3. This might be

accomplished in the present setting by measuring the selection process, i.e., the mech-

anism by which students decided to sign up for the after-school class. Specifically, one

might find a way to distinguish those who signed up of their own accord from those

who signed up due to parental pressure, including the resulting variable as a covariate

in the analysis.

It will be seen that blocking backdoor paths does not necessarily entail conditioning

on the confounder. Equally important, although not the focus of this article, condi-

tioning on ”irrelevant variables” (i.e., variables that neither affect nor are affected by X
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or Y ) can lead to spurious correlation when these variables are colliders (as in Figure

2 (d)) on a backdoor path. Depending on the definition of irrelevant, this result is

contrary to advice in many econometrics textbooks.1

(a)

●

X

●

Y

●

Z

(b)

●

X

●

Y

●

C

●

Z

(c)

●

X

●

Y

●

C

●

Z

Figure 3: Blocking Backdoor Paths. In panel (a), the backdoor path is blocked by condi-
tioning on the common cause. In panel (b), the backdoor path is blocked by conditioning
on a variable that blocks the path from the confounder to the outcome (Y ). In panel (c),
the backdoor path is blocked by conditioning on a variable that blocks the path from the
confounder to the causal variable of interest (X).

4 Mechanisms

If we cannot find variables to block backdoor paths, a second approach to con-

founding uses causal mechanisms, understood as the variables on connecting path(s)

between X and Y , as facilitating variables. This approach has been invoked in a num-

ber of forms by qualitative and quantitative researchers and is referred to variously as

process tracing, process analysis, causal narrative, colligation, congruence, contiguity,

discerning, intermediate processes, or microfoundations.2

1See Elwert and Winship (2012) for examples.
2Terms and associated works are as follows: process-tracing (George and McKeown, 1985, pg. 34ff),

discerning (Komarovsky, 1940, pg.135-46), process analysis (Barton and Lazarsfeld, 1969), pattern-matching
(Campbell, 1975), microfoundations (Little, 1998), causal narrative (Abbott, 1996a,b; Abrams, 1982; Am-
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Pearl’s contribution to this literature is the demonstration that mechanisms can be

used to nonparametrically identify the average effect of X on Y , even when confounding

cannot be blocked. Pearl (2000, 2009) demonstrates that a set of mediating variables

(Z) can be used to identify the average effect of X on Y when (a) Z intercepts all

directed paths from X to Y , (b) there is no path from X to Z with an arrow into X

that is not blocked, and (c) there is no path from Z to Y with an arrow into Z that is

not blocked by X (Pearl 2000, pg. 82). This is known as the front-door criterion. Tian

and Pearl (2002) provides a generalization and Knight and Winship (2012) provides

some additional extensions.

Figure 4 (a) presents a DAG where the front-door criterion holds. Although the

open circle at C indicates that this variable is unmeasured, and therefore there is no

conditioning set that will satisfy the backdoor criterion for the average effect of X on

Y , notice that the variable Z in this graph satisfies the front-door criterion. There is

only one directed path from X to Y and Z intercepts this path. The only path from

X to Z with an arrow into X goes through the collider at Y , so it is blocked by the

empty set. This implies that the backdoor criterion is satisfied for the effect of X on

Z. Finally, the only path from Z to Y with an arrow into Z goes through the chain at

X, so it is blocked by X. This implies that the backdoor criterion is satisfied for the

effect of Z on Y by conditioning on the variable X. Because the backdoor criterion is

satisfied for both the effect of X on Z and the effect of Z on Y , we can recompose the

average effect of X on Y by combining the two component effects (Pearl 2000, pg. 83).

To date, there have been relatively few applications of the front-door criterion (al-

though see Winship and Harding (2008)), and it remains a largely hypothetical research

inzade, 1992; Bates et al., 1998; Griffin, 1992, 1993; Katznelson, 1997; Kiser, 1996; Mink, 1987; Quadagno
and Knapp, 1992; Roth, 1994; Rueschemeyer and Stephens, 1997; Sewell, 1992, 1996; Somers, 1992; Stone,
1979; Stryker, 1996; Watkins, 1994), congruence (George and Bennett, 2005), colligation (Roberts, 1996),
intermediate processes (Mill, 1843/1872). For general discussion see Bennett (1999), (Brown, 1984, pg.228),
(Collier and Mahoney, 1996, pg.70), Goldstone (1997). For philosophical discussion in the realist tradition,
see Bhaskar (1975/1978); Harre (1972); McMullin (1984); Salmon (1984).
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(a)

●

X

●

Y

●

C

●

Z

(b)

●

X

●

Y

●

C

●

Z
αi

Figure 4: DAGs associated with the strategy of mechanisms In panel (a), the front-door
criterion holds. Z intercepts all directed paths from X to Y , there is no path from X to Z
with an arrow into X that is not blocked by the empty set, and there is no path from Z to
Y with an arrow into Z that is not blocked by X. In panel (b), the front-door criterion does
not hold, but we assume a linear heterogeneous effect of X on Z (denoted by the inclusion
of αi on the graph). If X is binary then linearity holds trivially, but if we further assume
that αi ≥ 0 and Zi ≥ 0 for all i, causal effects can be ruled out for all i with Xi = 1 and
Zi = 0.

design (Vanderweele, 2009). However, there are alternative mechanistic approaches to

ruling out causal effects that follow some aspects of the front-door approach. Specif-

ically, the assumption of a missing arrow from C to Z is replaced with assumptions

regarding the possible values of X, Z and the effect of X on Z. Often this takes the

form of binary X and Z ≥ 0 with a monotonicity assumption– that X can’t have

negative effects on Z for any individual. If we define the effect of X on Z in terms of

potential outcomes,

Z(x) = εi + αix

then the monotonicity assumption implies that αi ≥ 0 for all i. As with path diagrams

of linear structural equations models (linear SEMs), when we are assuming linear ef-

fects, we will include the parameters associated with these effects on the arrows of the
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graph (see Figure 4 (b)). However, note that the inclusion of i subscripts denotes the

possibility of effect heterogeneity.

In our running example, such a mechanistic approach might take the form of mea-

suring class attendance as Z. If we are willing to assume that the ESL program only has

an effect through attendance (i.e., the missing arrow from X to Y ), and we are willing

to assume that you cannot attend without signing up, then monotonicity holds and we

can assume that the program has no effect for those that sign up but do not attend.

If the outcome variable Y is bounded (e.g., pass/fail), this approach can provide an

upper bound on the average treatment effect among those that actually signed up for

the program, sometimes known as Average Treatment effect on the Treated (ATT).3

5 Instrumental Variables

One of the most familiar research designs for dealing with an unmeasured con-

founder uses a facilitating variable known as an instrument. Structurally, this strategy

is somewhat similar to the front-door approach of the previous section in that the facil-

itating variable Z must be unaffected by the confounder. However, unlike a mediating

variable, an instrument is antecedent to X. This strategy also requires an assumption

that Z has no direct effect on Y that does not go through X.

The DAG associated with this strategy is presented in Figure 5 (a), and the struc-

ture of the graph provides some idea of how the instrumental variables (IV) design

provides information about the effects of X on Y . The structure implies that the back-

door criterion holds for the effect of Z on X and also for the effect of Z on Y . This

result is straightforward for the effect of Z on X because the arrow from X to Z is the

only path. For the effect of Z on Y it is useful to note that there are two paths from Z

to Y : a directed path (Z → X → Y ) and a path with a collider (Z → X ← C → Y ).

3See Glynn and Quinn (2011) for a discussion in the context of registration laws and voting.
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Notice that as in the path with a collider in Figure 2 (d), association is blocked along

the Z → X ← C → Y path, so that only the directed path transmits association.

The idea behind the IV strategy is that the effect of Z on Y is composed of the effect

of Z on X and the effect of X on Y ,4 and therefore, we might be able to remove the Z on

X effect, leaving the X on Y effect. However, unlike the mechanisms strategy from the

previous section, the instrumental variables strategy requires additional assumptions

to identify the average effect of X on Y .

●

Xi

●

Yi

●

Ci

●

Zi

βi

γi

Figure 5: DAG depicting the strategy of instrumental variables. The variable C is the con-
founder, variable Z is the instrument, the variable X is treatment of interest, and the variable
Y is the outcome. The parameters γi and βi have been added in order to indicate heteroge-
neous linear effects.

The additional assumptions required for a binary instrument (Z) and a binary causal

variable of interest (X) are discussed generally in Angrist et al. (1996) (see Morgan

and Winship (2007) for another presentation). Here, we use a generalization of this

model to a continuous X (Angrist and Pischke, 2008, pg. 187), assuming linear but

heterogeneous effects. As in the previous section, we include the parameters associated

with heterogeneous effects on the arrows of the graph (see Figure 5 (b)).

4X is a collider on the Z → X ← C path, so this path is blocked.
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To see the necessity of additional assumptions for the instrumental variables design,

consider that a regression of X on Z will provide an unbiased estimate of E[γi], and a

regression of Y on Z will provide an unbiased estimate of E[γi · βi]. Recall, that the

individual level effect of Zi on Yi on the path through Xi is just the product γi · βi,

therefore, the regression of Y on Z recovers an unbiased estimate of the average of

these effects. Unfortunately, the instrumental variables ratio of E[γi · β1i]/E[γi] will

not generally recover the average effect of X on Y E[βi], because unless γi and βi

are uncorrelated, E[γi · β1i] does not equal E[γ2i] · E[β1i]. Angrist and Pischke (2008)

notes that when the effect of Z on X is monotonic (i.e., γi ≥ 0 for all i), then the

instrumental variables ratio will recover a weighted average of the effects of X on Y ,

with weights determined by the strength of the Z on X effect for each unit.5 Whether

such a weighted average represents the parameter of interest will be application specific.

Returning to our exemplar, imagine that we are able to identify a factor that

enhances the probability of attending the after-school ESL program, while having no

direct impact on the outcome. If the after-school program occurs at the same school

that students attend during the day we can suppose that some students will have

an easier time attending an after-school program than others. In particular, we can

anticipate that those who live far away from the school may need to take advantage of

the regular bus service - which leaves at the end of the school day and does not operate

a second-shift for after-school programs. If so, geographic distance from the school may

serve as an instrument, predicting attendance in the after-school program. Knowing

the addresses of students we may construct an instrument that satisfies the assumptions

of IV analysis - assuming, e.g., that geographic distance is not also correlated with the

location of highly educated parents or other potential confounders.

5Even if monotonicity doesn’t hold, the ratio can still be interpreted in terms of an affine combination of
the effects.
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6 Alternate Outcomes

In the previous section, we discussed nonparametric graphical assumptions and

some additional parametric assumptions that allowed the instrumental variables strat-

egy to identify the average effect of X on Y . In this section, we demonstrate that such

a combination of graphical and parametric assumptions can be used to implement

another strategy based on facilitating variables that we refer to as alternate outcomes.6

The first variant of the alternate outcomes strategy utilizes an outcome that is

not affected by the treatment but may be affected by the unmeasured confounder. A

formalization of this procedure is presented in Figure 6 (a), with the facilitating variable

(Z) as a secondary outcome that is affected by the potential confounder but not by

the treatment. The key graphical assumptions are the missing arrow from X to Z and

the missing arrow between Z and Y . As in the previous sections, we will additionally

assume that causal effects are heterogeneous and linear, although we now extend this

assumption to all of the arrows in the graph. In order to simplify the presentation of

this approach, we will also assume that these effects combine additively. The structural

equation model associated with this graph is presented in the Appendix A. A similar

model was used in Glynn (2012) and Imai and Yamamoto (2012). Note that in this

model, the average effect of X on Y can be written as E[β1i].

It is straightforward to demonstrate that a regression of Y on X will identify E[β1i]+

E[β2i/γ1i], and therefore, the covariational relationship will be biased by E[β2i/γ1i] (a

proof is also provided in the Appendix A). It is similarly straightforward to demonstrate

that a regression of Z on X will identify E[α1i/γ1i]. Therefore, when E[β2i/γ1i] =

6This design might also be referred to as a nonequivalent dependent variables design (Cook and Campbell,
1979; Marquart, 1989; McSweeny, 1978; Minton, 1975; Reynolds and West, 1987; Shadish et al., 2001;
Trochim, 1985, 1989), or a placebo test (Green et al., 2009) or a device Rosenbaum (2002).Note that a
”placebo test” may also refer to other settings such as (a) where an effect is known to be zero and non-zero
estimates can therefore be regarded as disconfirming evidence (Abadie et al., 2010), or (b) where meaningful
variation can be found in heterogeneous treatment effects (as discussed below).
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E[α1i/γ1i], we can identify the average effect of X on Y by taking the difference between

the two regression estimates. Intuitively, this approach works when the confounding

is equal for the two regressions, and a special case will occur when the effect of C on

Z is the same as the effect of C on Y for all individuals (i.e., when α1i = β2i for all

i). These assumptions for identification are quite strong, but they can be relaxed in a

number of ways if only partial identification is required.

In our running example, an alternate outcome might be student test scores in other

subjects (other than English) covered in a high school curriculum. A student who is

especially motivated or well-prepared to learn English is probably also especially moti-

vated and well-prepared to take on other subjects. Consequently, if these confounders

are responsible for the improvements in English proficiency found among those in the

treatment group (relative to the control group) then we should find the same differen-

tial scores in other courses of study. That is, when we compare how members of the

treatment and control group perform in math, science, and social studies we should find

the treatment group out-performing the control group. If, on the other hand, we find

no difference between members of the treatment and control group in other subjects we

might conclude that the confounder is not present: assignment is as-if random. (The

foregoing analysis is stronger if one measures rates of improvement rather than levels

of performance at the end of the observation period, i.e., a pre-/post-test difference

rather than a simple post-test.)

A second variant of the alternate outcomes strategy enlists an outcome that is corre-

lated with the outcome of interest while being unaffected by the potential confounder.

The formal description of this design can be found in Figure 6 (b), where the effect of

X on Y is confounded by C, but the effect of X on Z is unconfounded. When this

structure holds, the average effect of X on Z (E[α1i]) can be estimated by regressing Z

on X, and if we are willing to make assumptions about the relationship between E[α1i]
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(a)

●

Xi

●

Yi

●

Ci

●Zi β2iγ1i

β1i

α1i

(b)

●

Xi
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Yi

●
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●Zi β2iγ1i

β1i

α1i

Figure 6: DAG depicting strategies of alternate outcomes. Parameters with i subscripts have
been added in order to imply linear heterogeneous effects. Multiple effects (e.g. β1i and
β2i) are assumed to combine additively. Panel (a) presents the strategy with a confounded
outcome that is not affected by the treatment. Panel (b) presents the strategy with an
unconfounded outcome that is affected by the treatment.

and E[β1i], then this design will provide information about the effect of interest.

For example, we might worry that the apparent effect of an after-school ESL pro-

gram on improved English proficiency is due to greater exposure to spoken English

outside of class on the part of individuals that self-select into the program. This is a

difficult matter to control for since we cannot easily monitor the experience of students

outside of class. Suppose, however, that there is a distinctive aspect of the after-school

ESL course that is not likely to be replicated in other settings: the instructor speaks

with British accent. If students in the program are found to speak with this accent

then we might take this as evidence that the relationship between attendance in an

after-school ESL program and improvement English proficiency is not spurious, i.e.,

the program - rather than the potential confounder - has generated the causal effect.

In the extreme case where we are willing to assume that E[α1i] = E[β1i], then the

graph in panel (b) of Figure 6 allows one to identify the average effect of X on Y .
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However, it would often be more likely that we could make weaker assumptions and

arrive at partial identification. For example, we may be willing to assume only that

E[α1i] ≥ E[β1i]). In this setting, the regression of Z on X will identify E[α1i] and this

will provide a lower bound on the parameter of interest E[β1i].

7 Causal Heterogeneity

Causal heterogeneity – the varying impact of a causal factor, X, on units within a

sample – is often regarded as noise.7 However, in certain situations such heterogeneity

may serve as a facilitating variable. This is so in situations where the relevant moder-

ators (Z) can be measured, in which the interaction effect of X ·Z on Y is not subject

to confounding, and in which the entire effect of X on Y is due to the interaction.

In effect, the varying impact of X and Y across the sample constitutes as-if random

assignment.

To formalize this approach, suppose that Z is such a moderator, and that Z has been

parameterized so that when Z = 0, X has no effect on Y . Assume further that X and

Z have a multiplicative interaction (if X and Z are both binary, then this assumption is

trivially satisfied). The DAG that expresses these assumptions is presented in Figure

7. Note that we will again assume linear heterogeneous effects for the edges in the

graph and additive combination rules unless otherwise specified. However, in order

to accommodate the interaction, we have included the multiplicative term Zi · Xi on

the graph. The assumption that X has no effect when Z = 0 is represented by the

missing edge from Xi to Yi once the multiplicative term Zi ·Xi has been included in

the graph. The combination of these assumptions implies that the parameter E[β3i] is

identified by the interaction term in the regression of Y on X, Z, and Z ·X (a proof

is provided in Appendix A). The average effect of X on Y for a particular value of

7Heckman (2001); Heckman and Vytlacil (2007a,b); Rhodes (2010)
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Z = z is E[β3i] · z. Note that the strategy of using an interaction term from a linear

regression to identify a causal effect is often used in a difference-in-difference design

(see Angrist and Pischke (2008) for a textbook discussion), though in our discussion it

does not require repeated measurements over time. Note as well that the assumptions

stated here can be relaxed along the lines of Abadie (2005).

●

Xi

●

Yi

●

Ci

●

Zi ⋅ Xi

● Zi
β1i

β2iγ1i

β3i

α1i

Figure 7: A DAG consistent with the strategy of causal heterogeneity. Parameters with i
subscripts have been added in order to imply linear heterogeneous effects. Multiple effects
(e.g. β1i, β2i, and β3i) are assumed to combine additively although interaction terms (e.g.
Zi ·Xi) may be included explicitly in the graph.

For a concrete example we return to the hypothetical after-school ESL program,

which we shall stipulate includes students with varying linguistic backgrounds and a

plurality of Hispanics. Let us further stipulate that the program is geared toward the

plurality group, i.e., those whose native language is Spanish. All students in the course

receive the same treatment; however, by virtue of fixed characteristics (Hispanic/non-

Hispanic), subjects can be expected to respond differently. In particular, one expects

faster progress for Hispanic students relative to non-Hispanic students if the program

is working as intended. In effect, the Hispanics in the class are treated and the non-

Hispanics are not (or receive only a partial treatment). If we can assume that Hispanics
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and non-Hispanics are similar in other relevant respects (i.e., in whatever ways might

impact their ability to acquire English), then we can measure the average treatment ef-

fects by comparing scores among the Hispanic and non-Hispanic students who take the

class. Likewise, we can narrow the comparison set to include only those with Romance-

language backgrounds (Spanish versus French, Italian, Portuguese, Romanian, et al.),

if we have reason to believe that the character of one’s mother tongue is important in

the acquisition of English.

8 Discussion

The most straightforward way to infer causation and to measure a causal effect

is to observe the pattern of covariation across the two factors of theoretical interest

- X and Y . This strategy is usually flawed, however, when assignment to treatment

is not randomized. In nonexperimental settings there are likely to be one or more

confounders, rendering X/Y covariation spurious. In this paper we have laid out five

core strategies for dealing with common-cause confounders: blocking backdoors, mech-

anisms, instrumental variables, alternate outcomes, and causal heterogeneity. Each of

these strategies enlists a third variable, Z, which plays a facilitating role in achieving

identification. The distinctive role of this facilitating variable in each of these research

designs is articulated through a series of causal graphs using the DAG framework de-

veloped by Judea Pearl.

In some cases our presentation formalizes strategies that are already well-known. In

other cases the typology serves to highlight strategies that may be widely practiced in

an informal fashion but whose methodological status remains unclear. It seems likely

that some of the strategies introduced here are under-utilized in social science simply

because they are not well-understood.

The presentation also serves to clarify several points of a more specific nature.
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First, we have sought to show the difference in assumptions required for the different

strategies. Some of these strategies– the alternate outcomes strategy and the causal

heterogeneity strategy – require significantly stronger assumptions than the other two

strategies. At the same time, we have demonstrated that the assumptions required for

IV analysis are similar to assumptions utilized for the mechanisms strategy (when the

front-door criterion does not hold).

Second, and relatedly, we recognize that these strategies are not equally promising

across the varied terrain of social science. Some encounter greater difficulties (even

if they can be implemented) than others. Most fall far from the experimental ideal,

and thus represent second-best (or third- or fourth-best) options. The spirit of this

endeavor is one of methodological pragmatism - doing the best that we can with the

resources and evidence available to us at a given time (Gerring, 2011).

Third, some of the identified strategies, such as blocking back door paths and

mechanisms, may be applicable to small-N samples although they require stronger

assumptions or only allow certain effects to be ruled out (such as in Manski (2003)).

In this respect, they apply to both quantitative and qualitative styles of analysis. In

order to clarify this point let us return to our all-purpose exemplar, an afterschool

ESL program. To envision the qualitative (small-N) version of the foregoing research

designs, imagine that there are a small number of units in each group. Thus, in our

discussion of blocking backdoor paths, the first strategy is to condition directly on the

confounder, C. Suppose we have three students in the treatment group (attending the

voluntary after-school ESL program) and three students in the control group (non-

native speakers who attend only the regular high school ESL program). And suppose,

further, that one student in each group is from a high SES background, one is from

a middle SES background, and one is from a low SES background. The qualitative

version of conditioning on C is to compare the two high- SES students with each other,
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the two mid- SES students with each other, and the two low-SES students with each

other (i.e., blocking on pre-treatment characteristics). Granted, this style of analysis is

open to threats from stochastic error, and is also limited in the number of factors that

can be conditioned after matching (a degrees-of-freedom problem). Even so, if certain

modeling assumptions hold (e.g., the assumptions required for the paired t-test), then

it may be possible to learn something about the effect of the ESL program from this

analysis. Furthermore, despite the threat of stochastic error, a small-N cross-case

comparison may be more informative for a subpopulation than a large-N cross-case

comparison for the larger population where the population of interest is comprised

of a limited number of extremely heterogeneous units, e.g., nation-states, political

parties, or governmental agencies. That is, small-N approaches find their justification

in precisely those settings where the large-N analog is not similar in relevant respects.

Although we do not have the space to sketch out the qualitative version of each of the

identified strategies, we consider this an important objective for future research. Note,

however, that some strategies, such as instrumental variables have poor small sample

properties (Nelson and Startz, 1990).

A final caveat concerns the limitations of causal graphs as a language of causal

inference. It should be clear that, like other languages (e.g., potential outcomes),

causal graphs have strengths and weaknesses. On the one hand, the visual language

of causal graphs may help researchers identify new ways of approaching problems of

causal inference and new sorts of evidence that would not occur to someone educated

only with equations. Note that causal graphs allow one to illustrate a data generating

process (DGP) - including key assumptions - that must be in place in order for an

analysis to be viable. It therefore clarifies our thinking about causal inference in a

specific research setting, tying together the DGP with the data model (statistical or

non-statistical). On the other hand, some assumptions such as linearity or monotonicity
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must be appended to the graph, while others, such as the assumption that all values

of X are possible for all values of the conditioning variables, are not well represented.

Finally, there are other causal quantities of potential interest, such as probabilities

of causation (Tian and Pearl, 2000), pure/natural direct effects (Pearl, 2001; Robins,

2003), and principal effects (Frangakis and Rubin, 2002), that must be represented with

counterfactual notation. However, causal graphs are compatible with other notational

systems, such as potential outcomes, and can be used fruitfully in combination.

With these caveats noted, the typology developed in this paper places research

design - rather than data analysis - front-and-center, in keeping with current trends

in methodological thinking (Rubin, 2008). It should also serve to broaden the toolkit

of social science. In particular, we hope to have demonstrated that disparate research

designs can be understood within a unified framework through the use of causal graphs

and facilitating variables.

A Mathematical Appendix

Alternate Outcomes

For the model used in Figure 6 (a) of Section 6, and for the units of analysis

i = 1, ..., n, we utilize Yi to denote the outcome, Xi to denote treatment, Ci to denote

the common-cause confounder, and Zi to denote the alternate outcome. The intu-

ition of this can be easily represented within a simple heterogeneous linear structural

equations/potential-outcomes model for Y ,X, Z, and C:

Yi(x, c) = β0i + β1ix+ β2ic

Xi(c) = γ0i + γ1ic

Zi(c) = α0i + α1ic

Ci = δi (1)
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This model looks similar to a classical constant-effects SEM, but there are a number

of important differences. First, heterogeneous effects are allowed in this model by

the inclusion of the “i” subscripts on the coefficients. Second, error terms have been

omitted because they are redundant in a model with heterogeneous intercepts (e.g.,

β0i = β∗0i + εi). Third, the potential outcomes notation on the left-hand side of the

equations clarifies the causal interpretation of these equations. Xi(c) represents the

value that Xi would take if Ci took the value c, and Yi(x, c) represents the value that

Yi would take if Ci took the value c and if Xi took the value x. Furthermore, we can

use this model to define the observed values of X, Z, Y , and the potential outcome of

Y in terms of only X:

Xi = γ0i + γ1iCi

Zi = α0i + α1iCi

Yi = β0i + β1iXi + β2iCi

Yi(x) = (β0i + β2iCi) + β1ix (2)

where the observed values of Xi and Zi are determined by the actual (although un-

measurable) value of Ci, the observed value of Yi is determined by the actual value of

Ci and the observed value of Xi, and the potential outcome Yi(x) is the value that Yi

would take if Ci took its actual value and if Xi took the value x. Within this model,

the individual-level effect of X on Y is Yi(x + 1) − Yi(x) = β1i, and hence we might

take the causal effect of interest to be the average of these individual effects, denoted

as E[Yi(x+ 1)− Yi(x)] = E[β1i].

Because we can write Ci = (Xi − γ0i)/γ1i, the equation for Y can be rewritten in

terms of only X:

Yi = β0i + β1iXi + β2i(Xi − γ0i)/γ1i

= [β0i − β2i(γ0i)/γ1i] + [β1i + β2i/γ1i]Xi
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Hence, a regression of Y on X identifies E[β1i + β2i/γ1i] instead of the parameter of

interest. Similarly, Z can be rewritten in terms of X:

Zi = α0i + α1i(Xi − γ0i)/γ1i

= [α0i − α1i(γ0i)/γ1i] + α1i/γ1iXi

Therefore, a regression of Z on X identifies E[α1i/γ1i]. Depending on the relationship

between α1i and β2i, it may be possible to use a regression of Z on X to correct the

bias in the regression of Y on X. For example, if E[β2i/γ1i] = E[α1i/γ1i], then the two

regression estimates can be differenced in order to identify E[β1i].

Causal Heterogeneity

The model presented in Figure 7 in Section 7 can be represented as the following

structural equation model:

Yi(x, z, c) = β0i + β1iz + β2ic+ β3i [x · z]

[Xi · Zi] (x, z) = x · z

Xi(c) = γ0i + γ1ic

Zi(c) = α0i + α1ic

Ci = δ0i

Note that for this model, the absence of a direct effect of X on Y implies that a unit

change in X results in an effect of β3i · Zi change in Y . Therefore under the modeling

assumption that β3i and Zi don’t covary, the average effect of a unit change in X on

Y is E[β3i] · E[Zi].

The observed values of Y can be written as the following:

Yi = β0i + β1iZi + β2iCi + β3i [Xi · Zi]
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So as long as the following four conditions hold,

E[β0i|Xi = x, Zi = z] = E[β0i]

E[β1iZi|Xi = x, Zi = z] = E[β1i] · z

E[β2iCi|Xi = x, Zi = z] = ν + ξx+ ζz

E[β3i [Xi · Zi] |Xi = x, Zi = z] = E[β3i] · x · z

the parameter E[β3i] can be identified with the coefficient on the interaction term for

the following regression,

E[Yi|Xi = x, Zi = z] = E[β0i] + E[β1i]z + ν + ξx+ ζz + E[β3i]x · z,

and the average effect can be identified with E[β3i] ·E[Zi]. Notice that these conditions

allow for the possibility that both X and Z are confounded. However, it is critical that

X not have a direct effect on Y and that there be no interactive relationship between

X and Z in the regression for the unmeasured confounder.
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