Post-Nasal Devoicing and a Probabilistic Model of Phonological Typology

Gašper Beguš
begus@fas.harvard.edu

Abstract

This paper addresses one of the most contested issues in phonology: the derivation of phonological typology. The phenomenon of post-nasal devoicing brings new insights into the standard typological discussion. This alternation — “unnatural” in the sense that it operates against a universal phonetic tendency — has been reported to exist both as a sound change and as synchronic phonological process. I bring together eight identified cases of post-nasal devoicing and point to common patterns among them. Based on these patterns, I argue that post-nasal devoicing does not derive from a single atypical sound change, but rather from a set of two or three separate sounds changes, each of which is natural and well-motivated. When these sound changes occur in combination, they give rise to apparent post-nasal devoicing. Evidence from both historical and dialectal data is brought to bear to create a model for explaining future instances of apparent unnatural alternations. By showing that sound change does not operate against universal phonetic tendency, I strengthen the empirical case for the generalization that any single instance of sound change is always phonetically motivated and natural, but that a combination of such sound changes can lead to unnatural alternations in a language’s synchronic grammar. Based on these findings, I propose a new probabilistic model for explaining phonological typology within the channel bias approach: on this model, unnatural alternations will always be rare, because the relative probability that a combination of sound changes will occur collectively is always smaller than the probability that a single sound change will occur. This approach is shown to encounter no major difficulties explaining phonological typology, contrary to what has been claimed in the literature.

Keywords: phonological typology, sound change, naturalness in phonology, devoicing, channel bias, analytic bias, probabilistic model

1 Introduction

One of the most contested issues in phonology concerns whether typological patterns found in phonological data result from constraints in the innate grammar and speakers’ cognitive predispositions (UG) or from channel of transmission (constraints on sound change). Two opposing proposals emerge from this discussion: the analytic bias hypothesis and the channel bias hypothesis (Moreton 2008). The analytic bias approach assumes that typological patterns

An adequate phonological theory must, at minimum, predict attested grammars and rule out unattested (or impossible) ones. Any conclusive evidence in favor of either the analytical or the channel bias approach is difficult to reach primarily because extant typological patterns can be derived equally well by both approaches. Take an example from Moreton (2008), who shows that vowel-height harmony is common, whereas consonant-continuacy harmony is non-existent. Analytic bias accounts for this pattern by positing that UG contains the constraint AGREE(high), but not AGREE(continuant). The learner is thus unable to acquire consonant-continuacy harmony or will acquire it at a much slower (lexicalized) pace, precisely because of the constraints on UG. The channel bias, on the other hand, explains this typological discrepancy by assuming the phonetic viability of a process of subtle variation in vowel height of two consecutive vowels due to coarticulation. Most of the time, speakers are able to recover the “intended phonological height” of a phoneme, but when this recovery fails, the phonetic process becomes a phonological process in the hearer’s grammar. Consonant-continuacy harmony is ruled out by the fact that there is no “phonetic precursor” for variation and the phonetic process that would lead to phonologization is therefore not possible.

The fact that both hypotheses can derive surface typology equally well is actually not surprising, since both approaches rely heavily on surface typology to begin with. The analytical bias approach begins with typological generalizations and sets up its constraint inventory accordingly. The channel bias approach seeks to explain the phonetics behind phonological processes and allows or disallows certain phonetic processes based on typology too. It is not the goal of this paper to discuss the explanatory power of one approach over the other. Rather, the aim of this study is to describe and explicate an exemplar phenomenon that bears implications for the contest between the two approaches: post-nasal devoicing (PND).

Because the two approaches are equally powerful in explaining typological generalizations, the typology itself will not yield decisive arguments in favor of either proposal; thus, we must look for decisive evidence elsewhere. The discussion has recently turned to experimental evidence (for the discussion, see Zuraw 2007, Moreton and Pater 2012, Yu 2012, Hayes and White 2013, White 2013), but here, too, no firm conclusions have yet been drawn. In this paper, I will focus on one salient vector along which the two approaches crucially differ: the degree to which they constrain either innate grammar or sound change. As Kiparsky (2006) points out, the analytic bias approach allows sound change to be “fairly unconstrained”: the learner’s grammar is the component that filters impossible alternations. Sound change should thus, in principle, operate in any direction. As Kiparsky (2008) notes: “Whatever change can create, it can also destroy” — in other words, it’s the structure that constrains change, and not vice-versa (Kiparsky 2008). Channel bias, on the other hand, arrives at typological predictions by restricting the operation of sound change: sound change can only operate in certain (phonetically justified)

These two approaches have also been given other labels, such as “amphichronic” vs. “evolutionary” phonology (Blevins 2004, 2006, Kiparsky 2008).
directions and is assumed to be impossible in other (non-justified) directions. This restriction on directionality of sound change results in phonological typology.

1.1 Background

Probably the most thoroughly discussed typological oddity on both sides of the analytical spectrum is word-final or coda voicing (T → D / _#). Word-final voicing is assumed to be highly unnatural process that is either impossible or unattested as a synchronic phonological process. If this process were to exist and persist synchronically, it would operate against a universal phonetic tendency of coda devoicing (D → T / _#). Voicing is generally a difficult process to maintain, and this difficulty is only enhanced word-finally, where stops are produced “with reduced pulmonary pressure” (Iverson and Simon 2011: 1633, Blevins 2004) and the voicing process loses its cues (Steriade 1997, Iverson and Simon 2011). Indeed, the pressure in the opposite direction from such a process is so great that phonetic devoicing is expected even in languages without phonological devoicing. Word-final devoicing fits the bill for a universal phonetic tendency: (a) it has a well-motivated phonetic explanation; (b) there exists a phonetic tendency to devoice final stops even in languages without phonological devoicing; (c) it is very common and well-attested cross-linguistically. Thus, any putative process of word-final voicing would necessarily operate against a universal phonetic tendency.

Proponents of the analytic bias hypothesis assume word-final voicing to be non-existent in synchronic grammar cross-linguistically. For instance, Kiparsky (2006) argues that the apparent cases of final voicing reported in Blevins (2004) do not to qualify as cases of synchronic final voicing — or, at least, they have competing alternative explanations. A more robust example of coda voicing is found in Lezgian (Yu 2004, Haspelmath 1993). Yu (2004:77) reports that Lezgian distinguishes four stop series prevocally (plain voiced, voiceless ejective, voiceless aspirated, and plain voiceless), which in coda position get reduced to a three-way distinction: the plain voiceless series and voiced series merge into a single voiced series. The distinction is illustrated in (1).

(1)

Lezgian (from Yu 2004: 77)

<table>
<thead>
<tr>
<th>V</th>
<th>/σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>/D/</td>
<td>D</td>
</tr>
<tr>
<td>/T'/</td>
<td>T'</td>
</tr>
<tr>
<td>/T’h/</td>
<td>T’h</td>
</tr>
<tr>
<td>/T/</td>
<td>T</td>
</tr>
</tbody>
</table>

The merger of the plain voiceless and voiced series into a voiced series in coda position indicates that Lezgian has a synchronic phonological process of coda voicing (T → D / _#), which is limited to monosyllabic words. The examples in (2) (from Yu 2004) illustrate this process.
The phonetic study in Yu (2004), however, shows that underlying voiced and plain voiceless series do not neutralize completely: there exists a statistically significant difference between the outcome of the two series even in word-final position. Voiced consonants that derive from underlying plain voiceless stops have a significantly longer closure duration as well as a longer duration of voicing into closure. If we wish to maintain that Lezgian voices coda consonants, we must, at the same time, assume that these consonants receive (at least phonetic) lengthening as well. It is unclear from a synchronic perspective why this should happen.

The fact that the two series do not neutralize completely allows Kiparsky (2006) to propose an alternative analysis. He assumes that the Lezgian synchronic phonological system has four series of stops — but unlike Yu, he proposes that the fourth series consists of voiced geminates. Thus, instead of coda voicing, he assumes that the process in (2) consists of onset degemination and devoicing. His analysis is illustrated in (3).

(3)

Lezgian (from Kiparsky 2006)

<table>
<thead>
<tr>
<th>V</th>
<th>(J_\sigma)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pab</td>
<td>pap-a</td>
<td>‘wife’</td>
</tr>
<tr>
<td>rab</td>
<td>rap-unii</td>
<td>‘needle’</td>
</tr>
<tr>
<td>seb</td>
<td>sep-erar</td>
<td>‘curse’</td>
</tr>
<tr>
<td>rad</td>
<td>rat-unii</td>
<td>‘intestine’</td>
</tr>
<tr>
<td>gad</td>
<td>gat-u</td>
<td>‘summer’</td>
</tr>
<tr>
<td>pad</td>
<td>pat-ar</td>
<td>‘side’</td>
</tr>
<tr>
<td>legw</td>
<td>lekw-e</td>
<td>‘tub’</td>
</tr>
<tr>
<td>rug</td>
<td>rukw-adi</td>
<td>‘dust’</td>
</tr>
<tr>
<td>pagw</td>
<td>pakw-ar</td>
<td>‘rib’</td>
</tr>
</tbody>
</table>

\[V \quad J_\sigma \]
\[/D/ \quad D \quad D \]
\[/T^\prime/ \quad T^\prime \quad T^\prime \]
\[/T^h/ \quad T^h \quad T^h \]
\[/D:/ \quad T \quad D: \]

This analysis, too, has its shortcomings: like Yu, Kiparsky has to devise a two-step process — devoicing and degemination of voiced geminates in onset position — and onset devoicing is not a particularly common process in its own right. However, this derivation is by no means impossible, and Kiparsky (2008) provides evidence from other languages such as Mordva, Ewondo, and Lac Simon Algonquian (Iverson 1983) demonstrating that initial devoicing is a possible synchronic phonological process. As a sound change, such development may be attested in Anatolian and in Selkup of the Samoyedic group (Kümmel 2007).
Interestingly, the historical background for Lezgian alternation provided by Yu (2004) better reflects Kiparsky’s degemination analysis than his own final voicing analysis. The alternation in Lezgian arises, according to Yu (2004), through a combination of sound changes (pretonic gemination; stop devoicing; degemination) and stress assignment. Stress in Lezgian surfaces on the second syllable of non-mono-syllabic words, while stress on monosyllabic words occurs on the only syllable; in the latter case, word-final voiced stops remain unchanged. In suffixed forms, however, the stress shifts, causing the underlying voiced stop to become pretonic and therefore devoiced, geminated, and finally degeminated. The development is illustrated in (4) (from Yu 2004: 87).

(4)

\[CVD + V > CVTT - V > CVT - V\]

e.g. *'dyd > *'ttyd > tyd ‘throat’
*dy’d-y > *tty’tt-y > tyty

Although Lezgian provides an apparently compelling example of final voicing, this analysis encounters two major problems. First, the voicing process does not apply in all environments, but only in a subset of monosyllabic words. Second, the plain voiceless and voiced series do not neutralize completely in coda position; a phonetic difference remains detectable between the two series. These problems pave the way for alternative proposals that analyze the alternating series as underlyingly voiced and assume that the synchronic phonological process in Lezgian is in fact onset devoicing rather than final voicing. Additionally, a lack of speaker data from nonce-word tests makes it difficult to determine how productive this process actually is.

Kiparsky (2006, 2008) concludes that coda or final voicing is an impossible phonological process and is therefore unattested, because it would operate against UG. If this is so, then sound change appears to be less constrained than synchronic grammar in at least one respect — final devoicing — since Kiparsky correctly points out that there are several potential historical scenarios through which final voicing could have arisen (he lists five in total). For example, one potential scenario would produce final voicing from a combination of intervocalic lenition and degemination. If voiceless stops were to undergo postvocalic voicing followed by degemination, the resulting synchronic system would exhibit final voicing.

(4)

One possible scenario for final voicing (from Kiparsky 2006)

<table>
<thead>
<tr>
<th></th>
<th>*T</th>
<th>*T</th>
<th>*TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>stage 1</td>
<td>tat</td>
<td>tata</td>
<td>tatta</td>
</tr>
<tr>
<td>lenition</td>
<td>tad</td>
<td>tada</td>
<td>tatta</td>
</tr>
<tr>
<td>degemination</td>
<td>tad</td>
<td>tada</td>
<td>tata</td>
</tr>
</tbody>
</table>
The fact that final voicing is unattested is often offered as proof that the speaker’s grammar filters impossible systems. To maintain this position, we must acknowledge that sound change is less constrained than learners’ grammar: it is capable of producing final devoicing, but internal biases in speaker’s mental grammar rule out such alternations. In fact, Kiparsky (2008) goes even further and suggest that “changes that subvert universals must either be blocked, or the system they appear to give rise to must be reanalyzed.” In other words, any potential sound change that would cause the system to operate against UG would be blocked.

The non-existence of final voicing speaks in favor of the analytic bias approach, since it suggests that UG is more constrained than sound change. In further favor of the analytic bias approach, Kiparsky (2006) claims that the channel approach has difficulty explaining why systems like the one seen in Lezgian are impossible. In this paper, I show that no such problem exists, and I propose a model for deriving surface typology within the channel bias approach.

1.2 Aims

Before we turn to the focal case of this paper, through which I aim to provide insight into the channel bias/analytic bias debate, it is first necessary to clarify the distinction between a single sound change and a combination of sound changes. A (single instance of a) sound change constitutes a change from A to B in an environment X; a combination of sound changes is a set of such individual sound changes. I posit that there is no limit to how many combinations of sound changes can occur during a particular period of a language’s history, nor even to the order in which they occur. This stipulation might seem very obvious, but it is important to make this distinction explicit, especially in preparation for our discussion on the relative constraints on synchronic grammar vs. sound change. The use of the term “sound change” in the literature is often confusing and fluctuates between denoting a single instance of sound change and a combination of sound changes. I will strictly distinguish between these two notions in the remainder of this paper.

The issue of post-nasal devoicing (PND) sheds useful light on the analytic/channel bias discussion for several reasons. Just like final voicing, PND operates against a universal phonetic tendency: in this case, the tendency to voice post-nasal stops. Just like final voicing, the inverse of PND — post-nasal voicing (PNV) — is phonetically well motivated and very common cross-linguistically. However, unlike final devoicing, PND is attested as a synchronic phonological process in Tswana and Shekgalagari. Neutralization is shown to be complete in the case of PND (Coetzee and Pretorius 2010), and no alternative analyses are forthcoming. Moreover, the nonce-word test presented in Coetzee and Pretorius (2010) shows that PND is a productive process and not lexicalized or unproductive in any other respect.

It is, however, not entirely clear how PND came into being. For Tswana and Shekgalagari, where PND is attested as a synchronic process, various hypotheses have been offered as to how the system arose. Outside of this context, PND as a sound change has been proposed in six additional languages from three different language families. For these cases, too, several different explanations have been offered, ranging from proposals that assume PND operated as a single instance of sound change (Blust 2005, Solé et al. 2010; Solé 2012) to proposals that analyze PND as the result of a combination of sound changes (Dickens 1984, Hyman 2001).
If PND were indeed found to operate as a single sound change (as is proposed in the literature), it would constitute an example of sound change operating against a strong and universal phonetic tendency. This would, in turn, provide evidence in favor of the analytic bias approach, which has the freedom to assume sound change to be fairly unconstrained and places the burden of constraining the typology on the learner’s grammar. If PND were found not to operate as a sound change, we would have the opposite situation: it would seem that sound change is more constrained than synchronic grammar. Such a finding would indicate that sound change cannot operate against universal phonetic tendency, but that unnatural alternations can nevertheless be implemented into synchronic phonological grammars.

The existence of so many opposing explanations of PND’s origins stems from the fact that all cases of PND have so far been studied in isolation. The aims of this paper are twofold: to address the existence of PND devoicing as a sound change, and to discuss the implications of these results for our broader understanding of phonological typology. First, I discuss all known cases of PND, identifying common patterns among those cases that provide strong evidence against analyses that invoke PND as a unitary sound change. I show that PND did not operate as a single sound change in any of the eight languages in which it is attested. Instead, I show that, in each case, a set of two or three sound changes occurring in tandem gave rise to apparent, but not actual, PND; I propose a model for explaining such “unnatural” alternations in the future. This study also has implications for the discussion of the need for sound change to be natural and phonetically motivated (for an overview of this discussion, see Blust 2005, Blevins 2008a, 2008b, Wedel 2009). I argue that a single instance of sound change does strictly follow phonetic tendencies, is always phonetically natural and motivated, and is more constrained than synchronic grammar.2

This final point is clear from the fact that PND is not attested as a single sound change, but, as is shown in Coetzee and Pretorius (2010), is attested as a single synchronic process. The existence of at least one clear example where a single instance of sound change is more constrained than synchronic grammar provides evidence against the radical view of the analytic bias approach, which constrains the synchronic grammar and leaves sound change unconstrained. In the final section of this paper, I will capitalize on the fact that sound change is more constrained than synchronic grammar to develop a model that accounts for phonological typology based on a purely external factor: the relative probability of sound change occurrences.

On the basis of the eight examples of PND described in the literature, I argue that combinations of sound changes, as opposed to single instances of a sound change, are unconstrained. Any number of natural sound changes can operate one after another, with no restrictions on the nature or order of these sound changes. This means that the final sound change in a series of sound changes does not get blocked by UG (pace Kiparsky 2008) even though it causes unnatural alternation to arise. I further show that unnatural alternations operating against

2 One could argue that a single instance of sound change can produce PND, but that the alternation would be unlearnable and would never surface in language. Contra this possibility, I will show that PND is learnable and was in fact incorporated into the synchronic system of Tswana and Shekgalagari as a productive synchronic alternation. Such an argument is therefore impossible to maintain.
universal phonetic tendencies can become incorporated productively into synchronic phonological grammars via such sound changes.

Similar positions have already been held in the literature: “telescoping,” for example, describes a phenomenon in which a sound change $A \rightarrow B$ in the environment X is followed by $B \rightarrow C$, resulting in a sound change $A \rightarrow C$ that may not be phonetically motivated in environment X (Kenstowicz and Kisseberth 1977: 64, cf. also Stausland Johnsen 2012). This paper takes the concept of telescoping one step further, by focusing on alternations that are not only unmotivated, but that operate in exactly the opposite direction from universal phonetic tendencies. I will make a distinction between “unmotivated” and “unnatural” sound changes throughout the paper: the former lack phonetic motivation, while the latter operate against universal phonetic tendency.

The main contribution of the paper is the model I introduce for deriving phonological typology. If it is true that combinations of sound changes are unconstrained, we still have to explain why some alternations are rare or non-existent. In fact, Kiparsky (2006) claims that one of the major shortcomings of the channel bias approach is that it cannot derive surface typology and rule out “impossible” alternations. This paper shows that this is false: in the last section, I develop a model for explaining why phenomena like PND and final voicing are typologically rare or even unattested without relying heavily on the constraints of synchronic grammar. If synchronic grammar is capable of incorporating a process as phonetically unnatural as PND and extending it to new words, we might not expect it to play a crucial role in constraining surface typology. This new model shows that surface typology can easily be derived within the channel bias approach.

The structure of the paper is as follows: in section 2, I discuss PND as a sound change. I bring together all eight reported cases, point to common patterns, and argue that in each of these cases, PND did not operate as a single sound change, but arose as a result of a combination of two or three separate sound changes, each of which was independently phonetically motivated. This section also includes a discussion of previous proposals. In section 3, I discuss PND as a synchronic phonological process and summarize the main findings from Coetzee et al. (2007) and Coetzee and Pretorius (2010), which show that PND in Tswana is a productive phonological process. In section 4, I propose a new model for explaining typological patterns in phonology on the basis of the historical and synchronic analysis of PND.

2 Post-nasal devoicing as a sound change

Before we turn our discussion to PND, let us look into post-nasal voicing, $(T \rightarrow D / N_\)$, the exact inverse process to PND. Post-nasal voicing (PNV) is well attested and phonetically well motivated, both as a synchronic process and as a sound change. Locke (1983) identifies 15 languages, out of a sample of 197, that exhibit PNV as a synchronic process. The high number of languages with PNV is not surprising, as voicing of stops in post-nasal position is phonetically well motivated.

3 As reported in Hayes and Stivers (2000).
The phonetics of PNV is thoroughly investigated in Hayes and Stivers (2000). Building on previous work by Ohala and Ohala (1991) and others, the authors identify two phonetic factors that render stops in post-nasal position prone to voicing: nasal leak and “compression/rarification” by the velum (Hayes and Stivers 2000). It has long been known that coarticulation occurs in the transition from nasal to oral stops: the velum must rise from a low position to a high position, at which point it closes the nasal cavity. Just before full closure is reached, nasal leakage is present “and voicing is facilitated” (Hayes and Stivers 2000). Moreover, when the velum rises from a high position to complete closure, it increases the volume of the oral cavity, which again favors voicing (Hayes and Stivers 2000).

Not only is post-nasal voicing phonetically motivated, it is also universally present as a passive phonetic tendency: that is to say, phonetic voicing is found even in languages without phonological PNV, such as English. Hayes and Stivers (2000) show that speakers produce more passive phonetic voicing on voiceless stops in post-nasal position than elsewhere. Speakers produce “significantly more closure voicing” in words like *tampa* that in words like *tarpa*. PNV thus meets all the criteria for being a universal phonetic tendency. In this respect, PNV is very similar to final devoicing: both processes are well attested, have clear phonetic precursors and motivation, and operate passively even in languages without corresponding phonological processes.

PNV is commonly attested not only as phonological and phonetic process, but also as a sound change. Kümmel (2007, 53f.) lists at least 32 languages in which PNV operated as a sound change. This is, of course, expected if we assume that sound change strictly follows phonetic naturalness.

If voiceless stops tend to be universally voiced in post-nasal position — and if this process is phonetically well motivated and natural — then devoicing of voiced stops in the same position should be unnatural or even non-existent, just as we see with final voicing. In other words, the post-nasal environment is antagonistic to devoicing and is universally avoided (for a discussion on phonetics, see also Coetzee and Pretorius 2010).

Despite its unnatural status, the existence of PND as a sound change has been reported in eight languages and dialects from four language families: Yaghnobi (Xromov 1972, 1987), Tswana and Shekgalagari (Solé et al. 2010), the south Italian dialects Sicilian and Calabrian (Rohlfs 1949), and the Austronesian languages Murik, Buginese, and Land Dayak (Blust 1974, Blust 2013). PND has also been confirmed as a synchronic phonological process in Tswana and Shekgalagari (Hyman 2001, Coetzee et al. 2007, Coetzee and Pretorius 2010, Gouskova et al. 2011). In Shekgalagari, for example, voiced stops are devoiced synchronically when preceded by a nasal. Consider the following examples:

\[(5)\]

4 Some speakers show an increased VOT in post-nasal voiceless stops in *tampa* as opposed to *tarpa* (Hayes and Stivers 2000), reflecting another common change reported in many Bantu languages: aspiration of post-nasal voiceless stops (Hayes and Stivers 2000). Nevertheless, there is still significantly more voicing into closure in these stops (for all speakers).
Shekgalagari (from Solé et al. 2010)

\[
/\chiʊ-m-bōn-á/ \rightarrow [\chiʊmpöná] \\
/\chiʊ-m-dʊʒ-a/ \rightarrow [\chiʊntʊʒa]
\]

In the remainder of this section, I will assess the eight putative instances of PND as a sound change. If PND can indeed be shown to have occurred diachronically, this finding will indicate that sound change can operate even against the universal phonetic tendency and is therefore unconstrained.

Various explanations have been proposed to account for isolated cases of PND, but no account has yet attempted to examine this phenomenon from a cross-linguistic perspective. I will show below that, if we take all eight attested cases together, a common feature emerges: each language with PND presents evidence, direct or indirect, for a stage with complementary distribution between voiced stops (in post-nasal position) and fricatives (elsewhere). Building on this evidence, I argue against analyses that invoke PND as a self-contained sound change. Instead, I propose that each of the languages listed above underwent a set of either two or three well-motivated and well-attested sound changes that gave rise to apparent, but not actual, PND.

The aims of this section are twofold: first, I show that each instance of sound change is constrained to follow phonetic naturalness, without exception. Second, I provide a model for explaining similar cases of seemingly unnatural sound changes in the future.

2.1 The data

2.1.1 Yaghnobi

PND was first proposed for Yaghnobi by Xromov (1972). Yaghnobi is an Iranian language, spoken by approximately 13,500 speakers in five different areas of Tajikistan (Paul et al. 2010, 4). It is the only living descendant of Sogdian, an Eastern Iranian language that was spoken around the fourth century CE. Xromov observes that NT sequences in Yaghnobi correspond to ND sequences in ancestral Sogdian; on the basis of this observation, he posits a sound change ND \(\rightarrow\) NT in the development from Sogdian to Yaghnobi. The following table lists cognates from Yaghnobi and Sogdian that confirm this correspondence\(^5\) (from Xromov 1972: 128).\(^6\)

<table>
<thead>
<tr>
<th>Sogdian</th>
<th>Yaghnobi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ɣandum</td>
<td>ɣantum</td>
</tr>
<tr>
<td>əәʃkamb</td>
<td>ʃikampa</td>
</tr>
<tr>
<td>sang</td>
<td>sank(a)</td>
</tr>
<tr>
<td>ranga:n</td>
<td>ranki:na</td>
</tr>
</tbody>
</table>

\(^5\) In addition to the list below, Xromov (1972) provides several place names which, according to him, also underwent the same sound change: e.g. Ankatak, Antark, Varvant, Zāmpi, Ispantić, Kantuk, Tagrimpot; however, these examples are difficult to verify.

\(^6\) Data from older descriptions has been adjusted throughout this paper, as accurately as the descriptions allow, to fit IPA conventions.

Yaghnobi does in fact contrast NT and ND sequences, but this is likely secondary, introduced late in the language’s development through borrowings from Tajik (cf. Xromov 1972). Some examples of borrowed ND sequences from Tajik are given in Xromov (1972: 128): *angíʃ* ‘coal’, *ʧang* ‘dust’, *balánd* ‘high’, *lúnda* ‘round’. It is even possible to find instances of the inherited Yaghnobi *vant* ‘tie’ — with an unvoiced stop after a nasal — in contrast to the borrowed *band* ‘tie’ with a voiced variant.

2.1.2 Tswana and Shekgalagari

As already mentioned, PND has been reported a synchronic phonological process in Tswana and Shekgalagari (Hyman 2001, Solé et al. 2010), two closely related Southern Bantu languages; Tswana is spoken by approximately 4–5 million people in Botswana, Namibia, Zimbabwe, and South Africa (Coetzee and Pretorius 2010), and Shekgalagari by approximately 40,000 people in Botswana (Lewis et al. 2015).

The table below shows that voiced stops become voiceless when preceded by a nasal (data from Solé et al. 2010). Voiceless stops remain unchanged both post-nasally and elsewhere. Solé (2012) assumes that this alternation is a consequence of a sound change that devoiced post-nasal voiced stops.

<table>
<thead>
<tr>
<th>No N-prefix</th>
<th>N-prefix</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>χʊ-pak-a</td>
<td>χʊ-m-pak-a</td>
<td>‘to praise’</td>
</tr>
<tr>
<td>χʊ-tot-a</td>
<td>χʊ-n-tot-a</td>
<td>‘to respect’</td>
</tr>
<tr>
<td>χʊ-cób-á</td>
<td>χʊ-ŋ-cób-á</td>
<td>‘to beat’</td>
</tr>
<tr>
<td>χʊ-kɛl-a</td>
<td>χʊ-ŋ-kɛl-a</td>
<td>‘to show’</td>
</tr>
<tr>
<td>χʊ-bón-á</td>
<td>χʊ-m-pón-á</td>
<td>‘to see’</td>
</tr>
<tr>
<td>χʊ-dɔȥ-a</td>
<td>χʊ-n-tɔȥ-a</td>
<td>‘to anoint’</td>
</tr>
<tr>
<td>χʊ-ʃis-a</td>
<td>χʊ-ŋ-cis-a</td>
<td>‘to feed’</td>
</tr>
<tr>
<td>χʊ-at-a</td>
<td>χʊ-ŋ-kat-a</td>
<td>‘to like’</td>
</tr>
</tbody>
</table>

Several peculiarities need to be noted with respect to Tswana and Shekgalagari (cf. Solé et al. 2010). First, /ɡ/ never surfaces as a voiced stop: while it is devoiced to [k] post-nasally, it gets deleted elsewhere, e.g. [χʊ-at-a] for *χʊ-gat-a* (cf. [χʊ-ŋ-kat-a]). Second, voiced stops in nasal clusters of secondary origin (after syncope) do not undergo devoicing, but remain voiced in Shekgalagari and undergo assimilation in Tswana.

Sh. /χʊ-m-bón-á/ → [χʊmpɔná]
2.1.3 South Italian Dialects

Sicilian and Calabrian are dialects of Italian spoken in the corresponding regions of Italy by approximately 4.7 million speakers (Lewis et al. 2015). PND has been reported for these dialects in Rohlfs (1949, 424f.). The peculiarity about South Italian PND is that the sound change targets only the voiced affricate /ʤ/, which is devoiced to [ʧ] after the nasal n (/ʤ > [ʧ]/ N_; Rohlfs 1949, 424f.; Kümmel 2007, 376); regular voiced stops are not reported to be devoiced in the post-nasal position. The table below illustrates PND in Sicilian and Calabrian.

<table>
<thead>
<tr>
<th>S.-Ital. dial.</th>
<th>Standard</th>
<th>意义</th>
</tr>
</thead>
<tbody>
<tr>
<td>anʧɨlu</td>
<td>andʧelo</td>
<td>‘angel’</td>
</tr>
<tr>
<td>pinʧiri</td>
<td>pindʧere</td>
<td>‘push’</td>
</tr>
<tr>
<td>chainʧiri</td>
<td>plandʧere</td>
<td>‘to cry’</td>
</tr>
<tr>
<td>finʧiri</td>
<td>findʧere</td>
<td>‘to feign’</td>
</tr>
<tr>
<td>tinʧiri</td>
<td>tindʧere</td>
<td>‘to dye’</td>
</tr>
</tbody>
</table>

2.1.4 Buginese, Murik, and the Bengoh dialect of Land Dayak

PND has been reported in three Austronesian languages: Buginese, Murik, and the Bengoh dialect of Land Dayak. PND in the latter is simply mentioned without accompanying data (Rensch et al. 2006:69; Blust 2013); I therefore leave Land Dayak out of discussion that follows. Buginese is spoken by approximately 5 million people in Sulawesi, an island of Indonesia; Murik is spoken in Sarawak, in Malaysia and Brunei, by approximately 1,000 speakers. These three Austronesian languages are not particularly closely related, so we cannot attribute PND to developments in a common ancestor; it is likely that PND developed independently in all three branches.

Apparent PND in Buginese is represented by the following table showing the development of Proto-Malayo-Polynesian voiced stops (data from Blust 2013). Labial stops appear devoiced after nasals, but surface as [w] initially and word-internally (with a sporadic reflex [b] in initial position). The dental stop /d/ is not implicated in PND; Pre-Buginese *d develops to /r/ in all positions, which does not undergo devoicing, e.g. *dindiŋ > renriŋ. Word-initially, however, *d is sporadically preserved as a voiced stop. The voiced fricative *z gets occluded to a voiced palatal stop initially, probably via rhotacism to *r intervocally. Post-nasally, *z it is devoiced to [ʔ], as expected. Word-finally, all stops converge as [ʔ].

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>V_V</th>
<th>N_</th>
</tr>
</thead>
<tbody>
<tr>
<td>*b</td>
<td>b/w</td>
<td>w</td>
<td>p</td>
</tr>
<tr>
<td>*d</td>
<td>d/r/l</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>*g</td>
<td>g</td>
<td>g</td>
<td>k</td>
</tr>
</tbody>
</table>

7 Land Dayak is included in the count: the eight languages with PND include Land Dayak.
The data cited as evidence of PND as a sound change in Buginese are as follows, taken from (Blust 2005, 2013):

<table>
<thead>
<tr>
<th>Proto-SS</th>
<th>Buginese</th>
<th>‘description’</th>
</tr>
</thead>
<tbody>
<tr>
<td>*bemba</td>
<td>bempa</td>
<td>‘water jar’</td>
</tr>
<tr>
<td>*lambuk</td>
<td>lampuʔ</td>
<td>‘pound rice’</td>
</tr>
<tr>
<td>*limboŋ</td>
<td>lempoŋ</td>
<td>‘deep water’</td>
</tr>
<tr>
<td>*rambu</td>
<td>rampu</td>
<td>‘fringe’</td>
</tr>
<tr>
<td>*rumbia</td>
<td>rumpia</td>
<td>‘sago palm’</td>
</tr>
<tr>
<td>*tambiŋ</td>
<td>tampiŋ</td>
<td>‘addition to a house’</td>
</tr>
<tr>
<td>*barumbun</td>
<td>warumpuŋ</td>
<td>‘a color pattern’</td>
</tr>
<tr>
<td>*bumbun</td>
<td>wumpuŋ</td>
<td>‘heap up’</td>
</tr>
<tr>
<td>*geŋgem</td>
<td>geŋkeŋ</td>
<td>‘hold in the hand’</td>
</tr>
<tr>
<td>*tungal</td>
<td>tuŋkeʔ</td>
<td>‘each, single’</td>
</tr>
<tr>
<td>*angŋap</td>
<td>anŋkaʔ</td>
<td>‘price’</td>
</tr>
<tr>
<td>*aŋŋap</td>
<td>anŋcaʔ</td>
<td>‘offerings to spirits’</td>
</tr>
<tr>
<td>*janji</td>
<td>janci</td>
<td>‘to promise’</td>
</tr>
<tr>
<td>*punjuC</td>
<td>ma-poncoʔ</td>
<td>‘short’</td>
</tr>
</tbody>
</table>

In Murik, both labials and alveolars undergo devoicing; velars are also sporadically devoiced elsewhere. Voiced dentals appear as [l] word-initially and [r] word-internally. PMP *z develops to the voiced palatal affricate [ɟʝ] initially, [s] word-internally, and to the voiceless palatal affricate [çç] post-nasally. The table below illustrates the development of stops from Proto-Kayan-Murik (as reconstructed in Blust 2005).

<table>
<thead>
<tr>
<th></th>
<th>V_V</th>
<th>N_</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>p</td>
</tr>
<tr>
<td>l</td>
<td>r</td>
<td>t</td>
</tr>
<tr>
<td>g/k</td>
<td>g/k</td>
<td>k</td>
</tr>
<tr>
<td>jj/j</td>
<td>s</td>
<td>çç</td>
</tr>
</tbody>
</table>

Similarly, PND is confirmed for Murik by the following examples (data from Blust 2005: 259f.; Blust 2013: 668):

<table>
<thead>
<tr>
<th>Proto-KM</th>
<th>Murik</th>
<th>‘description’</th>
</tr>
</thead>
<tbody>
<tr>
<td>*kelembit</td>
<td>kəlampit</td>
<td>‘shield’</td>
</tr>
<tr>
<td>*bumbuŋ</td>
<td>umpuŋ</td>
<td>‘ridge of a roof’</td>
</tr>
<tr>
<td>*lindem</td>
<td>lintəm</td>
<td>‘dark’</td>
</tr>
<tr>
<td>*-inda</td>
<td>t-inta</td>
<td>‘beneath, below’</td>
</tr>
<tr>
<td>*mandaŋ</td>
<td>mantaŋ</td>
<td>‘to fly’</td>
</tr>
<tr>
<td>*tundek</td>
<td>tuntuk</td>
<td>‘beak of a bird’</td>
</tr>
</tbody>
</table>
The data presented in this subsection seem to suggest, at first glance, that PND operated as a single sound change in the development of all eight languages. However, I will demonstrate below that these data are misleading. A thorough investigation reveals a common pattern of complementary distribution in all eight cases, strongly suggesting that a combination of natural sound changes operated in place of a single PND. In section 2.2, I discuss the explanations of PND that have been proposed in the literature so far, and introduce some further difficulties faced by analyses invoking PND as a single sound change.

2.2 Explanations of PND

Several accounts in the literature understand PND as a single sound change; explanations for such an analysis run the gamut from appeals to sociolinguistic factors (Xromov 1972) to arguments that PND is actually a phonetically plausible or even natural process (Solé et al. 2010, Solé 2012). Three problems arise with such accounts: first, they all struggle to explain why a sound change should operate against the strong phonetic tendency to maintain voiced stops in post-nasal position; second, they each examine and account for only a single instance of PND, examined in isolation from relevant cross-linguistic data; third, most of them rely on the reconstruction of hypothetical, unattested dialects for which there is no comparative evidence.

Xromov (1972) invokes socio-linguistic factors to explain PND in Yaghnobi. He postulates the existence of two unattested dialects in pre-Yaghnobi, the first of which (Dialect 1) voiced all post-nasal stops, and the second of which (Dialect 2) retained the contrast for voice in post-nasal position. To arrive at PND, Xromov suggests that speakers of Dialect 2 generalized voiceless stops in post-nasal position based on hypercorrection to Dialect 1. The stages of this process are represented schematically in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Dialect 1</th>
<th>Dialect 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>ND</td>
<td>NT, ND</td>
</tr>
<tr>
<td>Stage 2</td>
<td>ND</td>
<td>NT</td>
</tr>
</tbody>
</table>

The major drawback of this explanation is its total lack of evidentiary basis; there are no data providing support for the reconstruction of Xromov’s two hypothetical dialects. Furthermore, if
such dialects had existed, it remains unclear on Xromov’s account why the postulated hypercorrection should have occurred in the phonetically disfavored direction of PND. Finally, it is generally preferable to avoid invoking socio-linguistic factors in historical explanation.

Blust (2005, 2013) offers three arguments in explanation for the emergence of PND in Buginese, Murik, and Land Dayak. First, he notes that, much as PNV can be understood as an assimilation of stops to a voiced environment, PND can be explained as dissimilation. This assumption, however, lacks explanatory power: it simply restates that PND is the opposite process from PNV. Blust (2013: 668) himself notes that “this does little to explain why a change of this type would occur.” Moreover, as Hayes and Stivers (2000) show, PNV is not merely an assimilation, but rather a phonetic tendency.

Blust’s second explanation for Austronesian PND postulates that the three languages in question first underwent PNV: voiceless stops became voiced in post-nasal position, thus eliminating NT sequences. According to Blust (2013), after the shift to PNV, “voice was free to vary” post-nasally, and the “voiceless variant of postnasal obstruents prevailed over time.” There are two major issues with this approach. First, it is difficult to explain why a voiceless variant would prevail in an environment that strongly favors voicing. Second, it not parsimonious to assume the independent occurrence of PNV three times without any comparative evidence.

A third explanation offered in Blust (2005) invokes dissimilation by hypercorrection. Blust notes that NT sequences in Buginese and Murik develop either to T or TT. This means that, at a certain point, NT sequences were absent from the language and only voiced stops surfaced after nasals (ND). At this point, according to Blust, speakers “may have assumed that prenasalized obstruents had acquired voicing by assimilation” and then “undid” that assumed voicing. This account faces three major difficulties. As already pointed out by Blust (2005), it is unclear what would “prompt speakers to assume that voicing assimilation had taken place in earlier clusters” of ND. Second, even if they had made this assumption, the speakers would still have to apply dissimilation in a phonetically unnatural direction. Finally, this approach lacks broader explanatory power, since it cannot be extended to cases of seeming PND in other languages, where the sound change NT > TT, T is not attested.

Some analyses have attempted to account for PND by motivating the process phonetically. Solé et al. (2010) and Solé (2012) specifically identify PND as a “historical process,” meaning that they assume PND operated as a single instance of sound change. Moreover, these authors claim that PND is not necessarily an unnatural process and may in fact have a phonetic explanation. The main evidence for this claim comes from Shekgalagari, which is assumed to feature “early velic rising” in NT sequences. This process is supposed to follow from the fact that (i) speakers don’t show any passive voicing in the NT sequences in Shekgalagari and (ii) underlying nasal–fricative sequences /nz/ yield a nasal affricate [nts]. This process of early velic rising, which is argued to account for both these observations, would also have caused a “long stop closure” in ND sequences. Because voicing is difficult to maintain, especially during longer closure, the result would be devoicing of the stop (Solé et al. 2010: 612).
This explanation has two major drawbacks. First, secondary ND sequences surface as NN in Tswana and ND in Shekgalagari. The following two examples illustrate this distribution (data from Solé et al. 2010):

\[
\text{Sh. } /χʊ-m-bón-á/ \rightarrow [χʊmpóná]
\]
\[
\text{Sh. } /χʊ-mo-bón-á/ \rightarrow [χʊmbóná]
\]
\[
\text{Ts. } /χʊ-mo-bón-á/ \rightarrow [χʊmmóná]
\]

If early velic rising in Shekgalagari were indeed a phonetic process, we should expect to see devoicing in secondary ND sequences as well. The fact that the stops in secondary ND sequences surface as voiced speaks strongly against the proposal in Solé et al. (2010) and Solé (2012).

Second, the explanation proffered in Solé et al. (2010) neglects dialectal data from Tswana that point against the early-velic-rising proposal. Several Tswana dialects show unconditioned devoicing that is most likely connected to the devoicing seen in Shekgalagari. For these cases, appeal to early velic rising in NT sequences is of no value. Likewise, such an explanation fails to account for other, cross-linguistic cases of seeming PND where no traces of early velic rising can be found.

Finally, Dickens (1984) and Hyman (2001) propose an explanation for PND in Tswana that assumes a set of three non-PND sound changes that conspire to produce apparent PND: fricativization, devoicing of stops, and occlusion of fricatives. As I will argue in the remainder of paper, this is in fact the correct explanation, and an essentially similar historical scenario played out in all eight cases of reported PND described above. Unfortunately, at the time of Dickens’ and Hyman’s work, a lack of typological parallels undermined their proposals and the validity of their arguments.

2.3 Combination of sound changes

A closer look into the collected data from 2.1 reveals an important generalization: for all eight cases, either direct evidence or clear indirect evidence can be found that, at some stage of development, voiced stops surfaced as fricatives except in post-nasal position. Below, I show that, during that stage of complementary distribution, an unconditioned devoicing of voiced stops occurred in all eight languages. Because voiced stops surfaced only in post-nasal position, seeming PND arose. The explanation I pursue, which invokes a set of two or three (natural) sound changes, accurately captures the data for all eight cases of apparent PND. As part of this analysis, I provide new direct diachronic evidence that confirms the existence of a stage with complementary distribution in the development of Yaghnobi. I also show that unconditioned devoicing after a stage with complementary distribution is not limited to stops, but can operate on other segments as well (e.g. devoicing of affricates in South Italian dialects). This account provides a model for explaining similar cases of “unnatural” sound changes in the future.

The historical evidence that complementary distribution underlies PND is best preserved in Yaghnobi and Sogdian. It is true that, post-nasally, original Sogdian voiced stops surface as voiceless in Yaghnobi. However, a closer look into the stop system of Sogdian reveals a pattern
of complementary distribution that caused voiced stops to surface as voiced fricatives except in post-nasal position (D > Z / [-nas]). This process is well attested in Sogdian and is confirmed by the writing system, thus leaving no doubt as to its existence (cf. Sims-Williams 1987:178).

Given this historical background, I postulate that, on the way to Yaghnobi, only one additional sound change operated: unconditioned devoicing of voiced stops (D > T). Because voiced stops surfaced only after nasals, this combination of sound changes resulted in apparent PND.

The development is summarized in the following table:

<table>
<thead>
<tr>
<th>Proto-Iranian</th>
<th>Sogdian</th>
<th>Yaghnobi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D > Z / [-nas]</td>
<td>D > T</td>
</tr>
<tr>
<td>band</td>
<td>βand</td>
<td>vant</td>
</tr>
</tbody>
</table>

Sogdian thus provides indirect historical evidence showing that the apparent case of PND in Yaghnobi is a side effect of two natural and well-attested sound changes: (i) fricativization of voiced stops except in post-nasal position (D > Z / [-nas]), and (ii) unconditioned devoicing of voiced stops (D > T).

Note that PND is not a completely systematic phonological alternation in modern-day Yaghnobi yet: the original voiced labial and velar stops still surface as voiced fricatives in the “elsewhere” position (e.g. vant ‘tie’ from *band). Nevertheless, the voiced alveolar fricative (ð) gets occluded in Yaghnobi and surfaces as a voiced stop (d) (Xromov 1972: 123). Apparent PND in Yaghnobi thus holds only for the dental series of stops, because only this series of stops underwent a sound change that turned the original voiced fricatives “back” to stops (Z > D). (6) illustrates the three sound changes that operated on the alveolar series of stops to produce synchronic PND.

(6)

\[
\begin{align*}
d &> \delta / [-nas] \\
d &> t \\
\delta &> d
\end{align*}
\]

Modern-day Yaghnobi thus offers an intriguing snapshot of a synchronic stage in which voiced stops are in the process of being occluded, but only in the alveolar series. This process demonstrates that the occlusion of voiced fricatives (which surface in all but post-nasal position) “back” to stops is a possible sound change. In Murik and Buginese, too, occlusion did not target all places of articulation. In Tswana and Shekgalagari, however, the occlusion occurs for all series of stops. Yaghnobi thus provides ongoing diachronic evidence for a development that will be shown to have occurred in all eight examples of PND.

Yaghnobi and Sogdian bear yet more crucial evidence that the proposal above is correct. Novák (To appear) reports that Sogdian sequences of voiced fricative plus voiced stop appear
devoiced in Yaghnobi. The table below shows cognates of consonant clusters in Sogdian and Yaghnobi that have undergone devoicing.

<table>
<thead>
<tr>
<th>Sogdian</th>
<th>Yaghnobi</th>
</tr>
</thead>
<tbody>
<tr>
<td>γd</td>
<td>xt</td>
</tr>
<tr>
<td>βd</td>
<td>ft</td>
</tr>
<tr>
<td>zd</td>
<td>st</td>
</tr>
</tbody>
</table>

This process of devoicing in clusters automatically follows from our proposal and confirms that the proposal is correct: voiced stops after a fricative did not undergo fricativization, but remained stops just like their post-nasal counterparts. We have already seen that, in Yaghnobi, a sound change operated that regularly devoiced all voiced stops in the alveolar series (D > T); now, we can add that unconditioned devoicing of voiced stops was followed by voicing assimilation of the preceding fricative — a very well-motivated and expected change. The development is illustrated in the table below.

<table>
<thead>
<tr>
<th>Sogdian</th>
<th>yd</th>
</tr>
</thead>
<tbody>
<tr>
<td>D > T</td>
<td>yt</td>
</tr>
<tr>
<td>Yaghnobi</td>
<td>assimilation</td>
</tr>
</tbody>
</table>

In the other seven languages with PND, clusters are usually not allowed (or they became simplified before the emergence of PND), so we don’t see devoicing anywhere other than in post-nasal position. Devoicing in clusters in Yaghnobi thus offers another piece of evidence that unconditioned devoicing of voiced stops is a regular sound change; if it were not, we would not be able to explain why these clusters devoice, as there are no other clear phonetic precursors for such a development. The series of facts revealed here indicate that apparent PND in the development of Yaghnobi actually emerged from a confluence of three sound changes and did not operate as a single sound change. I now turn to Tswana and Shekgalagari, which provide dialectal evidence for the same conclusion.

If Sogdian offered clear indications that a combination of sound changes can produce apparent PND on the historical front, Tswana brings crucial evidence for this proposal on the dialectal front. There are at least three different systems of stops in the micro-dialects of Tswana. In one set of speakers, voiced stops get devoiced in all environments: no voiced stops are allowed in the system. Speakers of this system have been labelled “devoicers” (Coetzee et al. 2007). Another set of speakers changes voiced stops into fricatives in all positions but post-nasally (these speakers are called “leniters”). A third set of speakers use the so-called PND system: for these speakers, voiced stops surface as voiceless only post-nasally. The three systems of Tswana are represented below (from Zsiga et al. 2006, Solé et al. 2010).

<table>
<thead>
<tr>
<th>*#ba</th>
<th>*aba</th>
<th>*mba</th>
</tr>
</thead>
<tbody>
<tr>
<td>devoicers</td>
<td>#pa</td>
<td>apa</td>
</tr>
<tr>
<td>leniters</td>
<td>#βa</td>
<td>aβa</td>
</tr>
<tr>
<td>PND</td>
<td>#ba</td>
<td>aba</td>
</tr>
</tbody>
</table>
I suggest that the PND system arises precisely through the combination of the other two (devoicing and leniting) systems: leniters take on fricativization except after nasals (D > Z / [-nas]_), while devoicers undergo unconditioned devoicing (D > T). Following Dickens (1984), Hyman (2001) shows that post-nasal devoicers undergo both sound changes. Because voiced stops surfaced only after nasals, the result is apparent PND. This pattern is obscured, however, by an additional change in the dialect with PND: unconditioned occlusion of fricatives (Z > D). This change crucially blurs the initial complementary distribution of consonants, with the result that the synchronic alternation becomes PND: voiced stops surface as voiceless only after nasals. Recall that this final sound change also occurred in Yaghnobi, but only for the alveolar series of stops.

The pattern of development of Tswana voiceless stops also speaks in favor of the proposed explanation. As Hyman (2001) points out, voiceless stops underwent fricativization along with voiced stops. The table below shows the development (from Hyman 2001).

<table>
<thead>
<tr>
<th></th>
<th>V_V</th>
<th>N_</th>
</tr>
</thead>
<tbody>
<tr>
<td>*p</td>
<td>ɸ</td>
<td>ɸ p^h</td>
</tr>
<tr>
<td>*t</td>
<td>ɾ</td>
<td>ɾ t^h</td>
</tr>
<tr>
<td>*k</td>
<td>h, x</td>
<td>h, x kx^h, k^h</td>
</tr>
</tbody>
</table>

The synchronic alternation is exemplified below (Hyman 2001):

* p ɸена mp^hена ‘conquer’
* t ɾátá nt^hátá ‘love’
* k xátá ŋkx^hátá ‘trample’

These data provide yet another confirmation that complementary distribution first occurred in Tswana and Shekgalagari, in both the voiced and voiceless series of stops. The voiceless and voiced series underwent lenition except in post-nasal position, and then voiced stops underwent further changes to produce PND, whereas voiceless stops retained the complementary distribution.

So far, I have shown that the cases of seeming PND in Yaghnobi, Tswana, and Shekgalagari can be accounted for through a combination of two or three well-motivated sound changes. I now turn to a case of PND from the South Italian dialects to illustrate that such sound change combinations involving complementary distribution are not limited to stops, but can apply to other segments as well.

On the surface, the data in South Italian suggest that /ʤ/ devoices to [ʧ] only in post-nasal position. However, if we look at the development of /ʤ/ elsewhere, we observe that it gets de-occluded to [ʒ] except after nasals (e.g. faʤina > fažina). Again, we have evidence for a stage with complementary distribution. At this point, an unconditioned devoicing of voiced affricates occurs. This, too, is a well-attested and motivated sound change: voiced affricates are highly marked. Voice is difficult to maintain, especially in affricates, and one possible resolution of this markedness is to devoice the affricates.
I propose a new explanation for the emergence of apparent PND in South Italian, which postulates a two-step process: (i) de-occlusion of voiced affricates except after nasals (DZ > D /-[nas]_), followed by (ii) unconditioned devoicing of voiced affricates (DZ > TS). The table below illustrates the development. Stage 1 shows a period of complementary distribution, with deocclusion of voiced affricates except in post-nasal position. Stage 2 represents the development after unconditioned devoicing of voiced affricates.

<table>
<thead>
<tr>
<th>elsewhere</th>
<th>post-nasally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>fažina</td>
</tr>
<tr>
<td>Stage 2</td>
<td>fažina</td>
</tr>
</tbody>
</table>

Note that this set of sound changes is in principle the same as in previous cases, but here complementary distribution targets affricates instead of stops.

The emergent pattern that we have seen in all three cases of seeming PND so far can be generalized as follows: (1) a set of segments enters complementary distribution; (2) a sound change occurs that operates on the unchanged subset of those segments; (3) optionally, another sound change occurs that blurs the original complementary distribution environment. Note that, according to Kiparsky (2008), the third sound change in this series is expected to be blocked by UG, since the combination would result in an unnatural process. However, this blocking clearly does not happen: sound change that blurs the original complementary distribution and thus produces unnatural process is limited to dentals in Yaghnobi, but operates on all stops in Tswana and Shekgalagari.

Let us now turn to the three Austronesian languages. On the surface, the data from Buginese and Murik seem to point to PND operating as a sound change. Moreover, there is no direct historical or dialectal evidence that suggests otherwise, as is the case for Yaghnobi and Tswana. If the only attested instances of PND were those found in Austronesian languages, we would likely be forced to assume the operation of a single sound change — PND. However, these languages do, at least, show clear traces of complementary distribution. Below, I will show that the set-of-three-sound-changes explanation will again better capture the data.

The major evidence against PND as a sound change in Austronesian comes from the voiced labial stop in Buginese. Already in Proto-South-Sulawesi (from which Buginese developed), /b/ had developed to /w/ except word-initially and in post-nasal position (Mills 1975, 547). Later, the change b > w also targeted the word-initial position. Thus, at one stage in the language’s development, voiced stops surfaced only post-nasally: again, we have clear evidence for complementary distribution. From there, the development followed the trajectory described above: unconditioned devoicing of voiced stops occurred, producing apparent PND because voiced stops surfaced only post-nasally. The development is illustrated by the following example from Buginese:

<table>
<thead>
<tr>
<th>PSS</th>
<th>*bumbun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Buginese</td>
<td>b > w /-[nas]_</td>
</tr>
<tr>
<td>Buginese</td>
<td>D > T</td>
</tr>
</tbody>
</table>
In Buginese, /w/ kept surfacing as a non-obstruent, but the voiced velar fricative /ɣ/ underwent secondary occlusion to [g], thus obscuring evidence for an inter-stage with complementary distribution. Note that this is precisely the same scenario described for Yaghnobi, with the only difference being that, in Yaghnobi, it was the alveolar series of fricatives that underwent occlusion, whereas in Buginese it was the velar series. The development leading to apparent PND is illustrated in the table below.

<table>
<thead>
<tr>
<th>PSS</th>
<th>Pre-Buginese</th>
<th>Buginese</th>
</tr>
</thead>
<tbody>
<tr>
<td>*aŋɡəәp *giliŋ</td>
<td>*aŋɡəәp *yiliŋ</td>
<td>aŋkəәp giliŋ</td>
</tr>
<tr>
<td>D > Z / [-nas]_</td>
<td>D > T</td>
<td>Z > D</td>
</tr>
</tbody>
</table>

The dental series of stops in Buginese escapes PND because *d developed to [r] in all positions and, as such, became ineligible for devoicing of voiced stops. The development of *z also conforms to the proposal above: intervocally, it undergoes rhotacism to [r]; post-nasally, it occludes and devoices to [c] (according to the unconditioned devoicing of voiced stops which predictably targets the palatals); initially, it remains a fricative *j and later occludes together with [ɣ] to [j].

In Murik, complementary distribution is still attested today and can be found in the development of voiced dental stops. Proto-Kayan-Murik *d lenited to [l] or [r] (probably through an inter-stage with ð) initially and inter-vocally. After a nasal, however, *d remained a stop. The development is repeated in the table below (see section 2.1.4).

<table>
<thead>
<tr>
<th>#_</th>
<th>V_V</th>
<th>N_</th>
</tr>
</thead>
<tbody>
<tr>
<td>*d</td>
<td>l</td>
<td>r</td>
</tr>
</tbody>
</table>

Again, these facts point to a stage with complementary distribution. Since voiced stops surfaced only after nasals and an unconditioned devoicing of voiced stops occurred, apparent PND is the result.

A peculiarity of the development in Murik is that it combines the “PND of stops” that we saw, for example, in Tswana, with the “PND of affricates” that we saw in Sicilian and Calabrian — i.e., whereas most languages devoice either stops are affricates, Murik devoices both. The development of stops in this language is straightforward — it follows the usual trajectory of PND: complementary distribution, unconditioned devoicing, and then optionally occlusion to stops. The development of affricates is more complicated, but nevertheless revealing. PMP *z develops to *s intervocally already in Proto-Kayan-Murik (Blust 2005); this development cannot be considered part of PND, because it happens at an earlier stage. Elsewhere, *z is preserved as voiced and gets occluded to an affricate *ɟʝ. Word-initially, deocclusion to *j takes place, just as in South Italian, whereas /ɟʝ/ surfaces as an affricate in post-nasal position. The affricate then gets devoiced, exactly as in Sicilian and Calabrian, together with devoicing of
other voiced stops. The initial fricative *j then gets occluded together with other voiced affricates in Murik to a voiced stop.

In sum, devoicing that operated on voiced stops operated also on voiced affricates in Murik, and this single difference caused Murik to combine both patterns: “PND of stops” and “PND of affricates.” Thus, even though Buginese and Murik offer neither dialectal nor historical evidence for complementary distribution, there is enough language-internal evidence to posit that, at one stage, voiced stops (and affricates) surfaced only after nasals. In fact, the original voiced labial stops surface as fricatives even today in Buginese, whereas in Murik voiced dental stop surface as lenited [r] or [l].

I have argued in this section that in none of the eight reported cases of PND does this phenomenon operate as a single sound change; instead, in each case, a combination of two or three sound changes results in apparent PND. I now turn to a discussion of PND as synchronic phonological process.

3 Post-nasal devoicing as a synchronic phonological process

We saw in section 2 that a combination of natural and phonetically motivated sound changes can result in a phonetically unnatural outcome: PND. The question now arises whether such an unnatural alternation can be incorporated into the synchronic grammar as a phonological process, and if so, to what degree such a process is productive. For final voicing, it has been claimed that no grammar exists that can permit such a process as a synchronic alternation. The best example, from Lezgian, is at least problematic, and alternative approaches are possible. Moreover, voiced and voiceless stops do not neutralize completely in word-final position. Also, there are no nonce-words studies that would test the productiveness of final voicing. The aim of this section is to illustrate that, unlike final voicing, PND is a productive phonological process. I summarize findings from Hyman (2001), Solé et al. (2010) and Coetzee and Pretorius (2010) that clearly show PND to be productive as a synchronic process in Tswana and Shekgalagari. Unlike for final voicing, voiced and voiceless stops neutralize completely in these languages in post-nasal position, are productively extended to nonce-words, and no alternative explanations are forthcoming. Tswana and Shekgalagari thus provide the most informative example for the discussion of the relationship between synchrony and diachrony and for the question of how to derive phonological typology. In Yaghnobi, Buginese, and Murik, PND is not productive anymore. This fact is, however, also informative by itself and is discussed in section 5.

The putative status of PND as a productive synchronic phonological process has received quite some attention since Hyman’s (2001) description of PND in Tswana. While some scholars have argued against the existence of PND (Zsiga et al. 2006, cf. Gouskova et al. 2011), most studies have provided strong evidence to suggest that PND is a productive synchronic phonological process (Coetzee et al. 2007). The most important contribution in this respect is provided in Coetzee and Pretorius’ thorough (2010) phonetic and phonological study of the

8 The affricate articulation in initial position (Blust 1974) is likely secondary: there exists variation between affricate and stop articulation. It is well known that palatal stops often develop into affricates.
phenomenon, which experimentally tests the productivity of PND using nonce-words and measures the degree to which the process is applied to novel vocabulary.

The first thorough phonetic study of Tswana PND as a synchronic process is presented in Coetzee (2007). Twelve speakers were recorded, four of which had a clear PND pattern. The other six were either leniters (see above) or had voiced stops preserved in all positions. The experiment only dealt with the four speakers with PND: the sequences of voiced and voiceless stops they produced in post-nasal position (m-pV, m-bV), and post-vocalic position (re-pV, re-bV) were recorded and analyzed (Coetzee et al. 2007). Note that nasals in both Tswana and Shekgalagari are always realized as syllabic: because clusters are disallowed, nasals become syllabic in an [mp] sequence. The results are straightforward, and strongly point to the fact that voiced stops in Tswana devoice and completely merge with the voiceless series post-nasally: m-bV clearly “patterns” like m-pV and re-pV, the only difference being the closure duration (longer after vowels). In terms of voicing percentage, the two do not differ; indeed, m-bV has an even smaller VOT, which make it even less voiced. Moreover, “the contrast between /m+bV/ and /re+bV/ is significant in percentage voicing and VOT” (Coetzee et al. 2007).

Very similar results are presented in Solé et al. (2010), who offer a phonetic study of one speaker of Shekgalagari. From the results, it is clear that in Shekgalagari, too, devoicing occurs and is confirmed on all phonetic levels: it occurs “categorically,” which means that voiceless and devoiced stop are phonetically completely neutralized in post-nasal position. Voiceless and devoiced (underlying voiced) stops in post-nasal position pattern together and show no statistically significant differences in any of the four measured categories: closure duration, preceding nasal duration, VOT, and vocal fold vibration during closure (Solé et al. 2010). Voiced stops, on the other hand, show statistically significant differences along all four parameters. This means that post-nasal devoiced stops are phonetically identical to post-nasal voiceless stops and contrast with post-nasal voiced stops (from secondary ND sequences).

Solé et al. (2010) argue for a phonetic account of PND. It is, however, unnecessary and unparsimonious to maintain such a position. As is clear from the dialectal data in Tswana and from other cases of PND discussed above, PND is the result of three sound changes and there is therefore no need to motivate PND phonetically. As Coetzee and Pretorius (2010: 417) point out, all phonetic factors are “antagonistic” to voicing in post-nasal position. This fact is not the only difficulty faced by the proposal in Solé et al. (2010). Solé et al. (2010) argue that early velic rising is responsible for PND (see above). The fact that voicing into closure in Shekgalagari is no more pronounced in post-nasal than in post-vocalic position is argued by the authors to suggest early velic rising. However, if early velic rising (and consequently PND) were indeed a synchronic phonetically motivated process, we would expect devoicing to operate on secondary ND sequences as well. This does not happen: in Shekgalagari, the secondary ND sequence remains unchanged. One of the aims of this paper is to show that attempts to phonetically motivate a process that works against a universal phonetic tendency are unnecessary.

Both phonetic studies of Tswana and Shekgalagari come to the same conclusion: that PND is a synchronic process and that neutralization for voice is complete and categorical in post-nasal position. A question that remains, however, is whether an unnatural process that results from a
combination of sound changes can become incorporated into the synchronic phonology so that it is completely productive, applying freely to novel words and nonce-words.

The major contribution to the question of productivity of PND is offered in Coetzee and Pretorius (2010). Again, 12 speakers of Tswana were recorded and the experiment included both native vocabulary and nonce-words. The paper offers two major contributions. First, the authors show that PND is extended to nonce-words at the same rate as it applies in the native vocabulary in Tswana (Coetzee and Pretorius 2010: 411). This means that PND is not lexicalized, but rather it is a productive phonological process in the synchronic grammar of Tswana. Thus, we can see that unnatural alternations produced by combinations of sound changes can incorporate into synchronic grammars and become productive.

Second, the paper shows that the natural process of PNV operates passively even in cases in which PND is a phonological process: “all of our post-nasal stops, whether underlyingly voiced or voiceless, were realized with voicing during the initial part of the stop closure” (Coetzee and Pretorius 2010: 417). The authors continue to note that some speakers nevertheless have voiceless (devoiced) stops post-nasally: voicing there is only passive and does not extend through more than half of the closure (Coetzee and Pretorius 2010: 417). This system — the one containing the unnatural synchronic phonological process PND — is attested for seven of the twelve speakers. For the other five speakers, however, Coetzee and Pretorius (2010: 417) observe that they often voice the whole closure. These results suggest that these speakers have introduced a new rule into their system: the natural, phonetically motivated, and exact inverse process to PND — post-nasal voicing.9 This natural tendency to voice post-nasal stops is expressed to different degrees and varies from speaker to speaker. For one speaker, almost all post-nasal stops were voiced, with less than 25% of stops being voiceless in post-nasal position. It is thus clear that, at least in Tswana, PNV is operating even in systems that have PND as a synchronic phonological process.

4 Discussion

The data presented above show that in none of the eight reported examples of PND does this process operate as a single sound change. Instead, in all eight cases, a combination of either two or three natural sound changes operated historically, together giving rise to apparent PND. These findings suggest that individual sound changes are constrained: they may not operate against the universal phonetic tendency. Two or more natural sound changes, however, can occur such that the result of the combination is an unnatural alternation. The aim of this section is to explain why unnatural alternations are rare or non-existent despite the fact that any combination of single sound changes is possible. The standard explanation offered for typology within the channel bias approach is that “common sound patterns often reflect common instances of sound change” (Blevins 2013). In other words, the more common a sound change is, the more common the synchronic alternation that it will produce. However, by assuming only this factor, we face problems motivating the wide spectrum of pattern frequencies — in particular, why some patterns are very common, whereas others are non-existent. Below, I propose a model that crucially relies on the distinction between a single instance of sound change and a combination of sound changes and adds a probabilistic dimension to the derivation of typology. I argue that

9 If we don't interpret the data in Coetzee and Pretorius (2010) as dialect mixing.
this approach captures surface typology better than the proposals entertained so far: I explain why natural alternations are the most common, unmotivated alternations less common, and unnatural alternations rare or even non-existent. The intuitive notion that the probability of occurrence of a given combination affects the relative frequency of associated phenomena has been employed before in the morphological literature, but to my knowledge it has not yet been used in phonology.

Let’s assume that all sound changes have to be natural, but that any combination of single instances of natural change is possible. Let A > B in an environment X be a universal phonetic tendency and a natural sound change:

(7)

A > B / X

Let the following sound changes all be instances of natural sound change and phonetic tendencies:

(8)

B > C / Z
B > A
C > B

The result of the combination of the sound changes in (8) is B > A, whereas B stays B in the environment Z. If the environment Z is precisely the complement of X, we get B > A / X: the exact opposite process of the natural process in (7). This is exactly the scenario attested in the eight cases of PND discussed above.

(9)

B > A / X

Another possible scenario in which a combination of sound changes results in the inverse of a natural process A > B / X is illustrated in (10). Again, assume that all instances of sound change in (10) are natural and follow phonetic tendencies.

10 The lower occurrence probability for combinations of changes has been previously employed to account for the rarity of some morphological processes. Blevins (2004:310) briefly mentions that the rarity of certain morphological processes (such as tense marking on pronouns in Gurnu) might be explained by the low probability of co-occurrence of the factors that led to this system. This approach is employed more thoroughly in Harris (2003, 2008), who notes: “the more changes are involved, the less likely all will happen to co-occur” and “it is an idea that is necessary to discuss, because the role of probability has not been included in previous discussions of rare phenomena.”
In order to distinguish the two developments described here from the phenomenon of “telescoping,” I will refer to the development in (8) as the “blurring cycle” and the development in (10) as the “blurring chain”. The motivation for the term “cycle” is clear: one of the three sound changes in (8) targets the outcome of another sound change in (8) and results in the target of that other change. The term “chain” is likewise motivated: in (10), the outcomes of a sound change are targets for following sound changes. Both developments “blur” the original complementary distribution, resulting in an alternation that operates against universal phonetic tendency.

The data from Tswana and Shekgalagari confirm that the unnatural alternation $B \rightarrow A / X$ — the result of the “blurring cycle” — can be implemented as a synchronic process $B \rightarrow A / X$. This means that speakers can implement a process into their grammar that a single instance of sound change cannot produce. From this evidence, it follows that we have at least one example of a sound change that is more constrained than UG, and thus, a piece of evidence against the radical view of the analytic bias approach, which operates with unconstrained sound change and constrained UG.

We saw that, while a single sound change is constrained to follow phonetic naturalness, a combination of sound changes is unconstrained: any number of single instances of sound change can operate on each other, and even if such a combination results in unnatural alternation, the synchronic grammar can still incorporate it. However, if we assume that combination of sound changes is unconstrained, we still need to explain why unnatural processes ($B \rightarrow A / X$) are rare — as in the case of PND — or even unattested — as in the case of final voicing.

We could assume analytic bias to be responsible for the rarity of such patterns. It is conceivable that, when a combination of sound changes would result in an unnatural process, the speaker’s grammar filters this combination out. Such an analysis would explain why final voicing is unattested: any combination of sound changes that would give rise to final voicing (of which there are at least five, of shown above) is ruled out in the synchronic phonological grammar by constraints in UG, rendering such an alternation impossible. But if this were the case, why would we not expect the same for PND? Why is PND attested as the synchronic end result of a combination of sound changes, while final voicing is not? Both processes are
alterations that operate in the exact opposite direction of a universal phonetic tendency — so if speakers’ grammars filter out one alternation, why can they implement the other?

It might be possible to argue that final voicing is somehow more unnatural or more constrained in UG than PND. However, there are not many compelling arguments in favor of this conclusion. Alternatively, we could argue that devoicing is a necessary strategy in the repair of some unstable contrast, for example between \(nd \) and \(n \). Here, too, however, problems arise. Should devoicing really be a viable repair strategy, we would expect it to be attested as such, independently of the three sound changes outlined above. There are no instances of PND as a repair strategy: all cases of PND that we have are the result of a set of sound changes. It seems suspicious to suggest that a problematic contrast will only get repaired when a set of three (unrelated) sound changes happen to operate in the pre-history of a system. Moreover, PND is not attested as a repair strategy even in cases where we should expect it. For example, many languages disallow \(NC_1VNC_2 \) sequences. A recent study in Stanton (2015) suggests that avoidance of these sequences constitutes a strategy to repair the contrast in \(NC_1VNC_2 \). The vowel in \(NC_1VNC_2 \) is universally phonetically nasalized, a process which reduces cues of the contrast between NC and N. One way to repair this contrast would be to devoice the consonant. However, the survey in Stanton (p.c.) show that \(NDVNC > NTVNC \) is not attested. It is therefore difficult to maintain the position that PND is permitted to surface due to its role as a repair strategy.

If PND is attested as synchronic phonological process despite its violation of universal phonetic tendency, perhaps final voicing is not impossible, but simply possible and unattested. Unless new evidence is provided to show that the two processes are radically different, then, if one is attested as a fully productive phonological process, we should assume the other to be possible as well.

Let’s assume that both processes are possible and that PND is simply very rare whereas final voicing is unattested. Any valid theory must still address the overall rarity of these unnatural alternations. If combination of sound changes is unconstrained, as I have argued above, we should in principle expect unnatural alternations to be just as common as natural and phonetically well-motivated processes.

To solve this problem, I propose a new model for deriving the typology of phonological processes that avoids heavy reliance on UG and analytic bias. First, it is important to note that even proponents of the analytic bias approach acknowledge that the high frequencies of some alternations arise due to channel bias. For example, Kiparsky (2006) points out that the frequent alternation \(k → tf \) before front vowels is not due to any particular “UG-based account,” but rather to the fact that \(tf \) “is the end of a chain of natural processes set in motion by the palatalization of \(k \) in that environment” (Kiparsky 2006). If channel bias is responsible for explaining the typology of at least some phonological alternations, then parsimony dictates that we should attempt to explain all phonological alternations within this approach alone; a theory that does not introduce new theoretical apparatus is preferable. My contribution in this discussion is to show that channel bias encounters no major difficulties in explaining surface typology, contrary to what has been claimed in the literature.
Crucial to the process of deriving surface typology using the channel bias approach is the distinction between a single sound change and a combination of sound changes. Capitalizing on this distinction, we can explain the rareness of alternations such as PND and final voicing as follows: the probability of a combination of sound changes operating in such a way that they influence each other and yield an unnatural result is relatively small, and always smaller than the probability of a single sound change. Furthermore, even when a combination of sound changes does result in an unnatural alternation, the opposite phonetic tendency will begin operating against it, ultimately resulting in the likely loss of the unnatural alternation.

Let’s see how this account works schematically. First, in a given phonological system, let the probability that a sound change \(A \) will happen be \(P(A) \). The probability that a combination of sound changes \(A \) and \(B \) will happen must be smaller than \(P(A) \), because this probability is the product of the probabilities of each individual sound change, and therefore a subset of \(P(A) \).

\[P(A \cap B) = P(A)P(B) < P(A) \]

The probability that a combination of sound changes will happen such that one sound change will affect the target, the source, or the context of another sound change is even smaller than \(P(A) \) and \(P(A \cup B) \), because such mutually influential combinations of sound changes comprise a subset of all combinations. And even smaller still is the probability that that combination will yield a process that will operate against a universal phonetic tendency. Thus, of all possible mutually influential combinations of sound changes, only a small subset will result in an unnatural alternation. On the other hand, the occurrence of a single sound change (which will always result in a natural process) is considerably more frequent. The upshot is that unnatural processes are vastly less frequent than natural processes just by virtue of the complexity of their occurrence.

To illustrate this point, let’s assume that a single instance of a natural sound change \(A \) has a probability \(P(A) = .2 \) in a given timespan \(t \) (for computing frequencies of sound changes, see Gilman 2015). In operational terms, then, sound change \(A \) has a 20% probability of occurring in a given language within a given timespan. Now consider the probability that a combination of three sound changes \((A, B, \text{and } C) \), each with an individual probability of .2, will occur: the probability of the union of all three changes is the product of all three probabilities, equaling .008. The formula is given in (13).

\[P(A \cap B \cap C) = .2 \times .2 \times .2 = .008 \]

The probability that a combination of sound changes will happen is thus 25 times smaller than the probability that a single sound change will happen. Note that this probability includes all combinations of sound changes — even those that have no effect on each other. Of this group of all combinations, only a small subset will be such that the sound changes will affect each other,
and an even smaller subset of these will result in an unnatural process. The probability of an unnatural process occurring will thus be considerably smaller than .008.

The probabilistic model thus not only predicts that unnatural alternations will be rare and natural ones common, but it also captures the continuum of increased probability between unnatural, unmotivated, and natural changes. As already mentioned above, unmotivated changes are comparatively frequent in languages and arise through “telescoping.” They do not necessarily operate against universal phonetic tendency, but they lack any obvious phonetic motivation. As was shown in Kenstowicz and Kisseberth (1977: 64), unmotivated alternations can arise from as few as two sound changes that affect each other. For unnatural processes that operate against universal phonetic tendency, on the other hand, we need at least a combination of three sound changes (via the “blurring cycle” or “blurring chain”) and only a subset of those combinations will result in an unnatural process. From this, it automatically follows that natural alternations will be the most common, because they arise from a single sound change. Unmotivated alternations are predicted to be less common than natural alternations, because they can only arise through a combination of sound change; by the same token, any combination of sound changes that affect each other will likely result in an unmotivated process. Unnatural alternations operating against universal phonetic tendency are predicted to be the most rare because at least three sound changes have to operate in combination to yield an unnatural alternation.

However, the low probability is not the only reason why unnatural processes are rare. Crucially, as soon as an unnatural process operating against universal phonetic tendency does arise and become fully and productively incorporated into the synchronic phonological grammar (B → A / X), the inverse universal phonetic tendency (A > B / X) will begin operating against it. As a result, the probability that an unnatural alternation will survive is even further reduced by the fact that a common sound change (and universal passive phonetic tendency) operates progressively against its existence.

This erosion is precisely what we see happening in Tswana: in a system with unnatural alternation (PND), a single instance of natural and opposite sound change (PNV) is in the process of imposing its will against the unnatural alternation.

In five cases in my typological survey (South Italian dialects and Land Dayak), PND operates in the absence of the original environment of complementary distribution that produced it. In three of these cases, the PND alternation has ceased to be productive, due to the universal tendency to voice post-nasal stops militating against it or due to borrowing; in the other two cases, PND has been incorporated productively into the synchronic grammar, but sound change in the opposite and natural direction is in the process of destroying this alternation.

If, by a historical accident, Tswana and Shekgalagari had not been attested, we would continue to consider PND to be impossible. Because of Tswana and Shekgalagari, we hold PND to be a rare, but possible, synchronic process. It is quite likely that final voicing is unattested by the same historical accident. It is possible that final voicing is even rarer than PND, perhaps because final devoicing is itself a frequent and strong phonetic tendency and sound change; however, the fact that one of these processes is rare and one unattested need not be the consequence of any UG constraints.
One could argue that, even though combinations of sound changes are less frequent than any single instance of sound change, in the course of an almost unlimited timespan, sound changes ought to “stack up,” yielding multiple unnatural alternations in any given language; given that every language has a several-thousand-year history during which sound changes have occurred continuously, we should perhaps expect many more unnatural alternations than are actually attested. Consider, however, that any given sound change has a time of operation \(t \). In other words, a sound change becomes active at one point in time and ceases to operate at another point in time. This is primarily evident from the fact that, at some point in any language, certain sound changes cease to apply to novel vocabulary, loanwords, and morphological alternations. For an unnatural phonological alternation to arise, all the sound changes that play a part in this alternation must be active simultaneously. Thus, the timespan available to produce such unnatural alternations is not unlimited, but rather limited by the time \(t \) in which all single sound change that combine to yield the alternation in question are active. In probabilistic terms, we would say that language history is not a pure-birth process, but rather a birth-death process.

The argument in favor of channel bias pursued here is not meant to suggest the non-existence of learning biases, tendencies, and preferences in the learning process: the proof of existence of channel biases in phonological typology does not automatically exclude all other possible mechanisms. In fact, several studies have shown that learning bias does exist; some processes are more difficult to learn than others (see Hayes et al. 2009 and the literature therein). At the same time, it has also been shown that, given enough input, more or less anything can be learned. The present study supports this finding, as it offers several examples of unnatural alternations that have been learned as fully productive synchronic alternations. A combination of three active sound changes in a history of a language provides enough input for an unnatural alternation to be learned, and once it has been learned, it is not easy to see how learning bias might militate against such unnatural system. Obviously, more research is needed, but the model that I proposed above faces no particular difficulties on this front. A channel-bias explanation of PND is well motivated, relies on verifiable claims, and employs external (and therefore not circular) evidence based on relative frequencies of combinations of sound changes and phonetic tendencies that destroy unnatural processes.

Incidentally, this model also accounts for the phonetic groundedness of most phonological alternations as a natural outgrowth of their development: since, probabilistically speaking, most alternations will arise a single instance of sound change, they are highly likely to be natural and phonetically motivated. By contrast, the analytic bias approach faces problems accounting for for the fact that precisely those alternations that arise through a combination of sound changes are considered unlearnable/ruled out by UG.

5 Conclusion

The main goal of this paper has been to discuss how phonological typology arises and to propose a new model for deriving that typology within the channel bias approach. I discussed two undisputedly unnatural alternations, final voicing and PND, and argued that final voicing is not the optimal example for deciding between the analytic and channel bias approach. Instead, I discussed PND and explored the implications of this process for the derivation of phonological typology. Based on data from eight different languages that exhibit PND, I presented a model
that permits, on the one hand, single instances of sound change that are strictly natural and phonetically motivated and, on the other hand, combinations of sound changes that are unconstrained by naturalness or phonetics. I showed that this model, which follows the channel bias approach, has no difficulties deriving uncommon or unattested patterns.

In the first part of the article, I addressed the status of post-nasal devoicing (PND) as a sound change. I discussed all known cases of PND and pointed to common patterns among those cases that provide evidence against analyses that invoke PND as a sound change. I argued that so far, all explanations offered for PND have been limited to particular languages (or language families), and have therefore failed to provide a good typological rationale. The range of explanations inspired by these isolated cases variously invoked sociolinguistic factors, reconstructed hypothetical dialects for which there is no comparative data, or argued that PND is a natural phonetic process. The present paper argued instead for a unified account of all eight cases, demonstrating that the explanation proposed for Tswana in Dickens (1984) and Hyman (2001) is essentially correct and pertains cross-linguistically.

Building on these data, I argued that in all eight attested cases, apparent PND is a side effect of two or three phonetically well-motivated and well-attested sound changes. The strongest argument in favor of this proposal is the fact that, in all eight cases, either direct evidence or clear traces of complementary distribution can be found, revealing a developmental stage in which voiced stops surfaced as fricatives except in post-nasal position. The best evidence for such a stage comes from Sogdian, where it is in fact historically attested. Next, I argued that, following the emergence of this complementary distribution, unconditioned devoicing of voiced stops (or voiced affricates) occurred in all eight cases. The strongest evidence for this sound change comes from dialectal data in Tswana. Some systems of modern-day Tswana undergo unconditioned devoicing of voiced stops (devoicers) and other systems undergo fricativization (leniters). The combination of the two sound changes yields PND, as has been argued previously by Dickens (1984) and Hyman (2001). Finally, a third sound change occurs optionally, blurring the original complementary distribution through the occlusion of voiced fricatives. This sound change operates in Tswana and partially in Buginese, Murik, and Yaghnobi.

The fact that PND does not operate as a single sound change, but rather is the result of a combination of sound changes, means that we don’t have to posit that a single sound change can operate in an unnatural direction nor that PND is a natural and phonetically motivated process. The existence of PND also bears implications for considerations of how natural a sound change must be. I showed that a single instance of sound change is always phonetically motivated and operates in the natural direction. Additionally, I provided a model for explaining similar cases of apparent unnatural sound changes in the future: (1) a set of segments enters complementary distribution; (2) a sound change occurs that operates on the (un)changed subset of those segments; (3) optionally, another sound change occurs that blurs the original complementary distribution. I proposed the terms “blurring cycle” and “blurring chain” for the two types of possible combinations of sound changes that produce unnatural alternations. This model has the potential to explain other unnatural developments and alternations beyond PND. Pursuing this line of research is beyond the scope of the present paper, but some unnatural alternations that will likely prove solvable using this model include intervocalic devoicing in Murik and the

Finally, I proposed a categorical distinction between a single instance of sound change and a combination of sound changes. This distinction allowed me to build a model that correctly predicts surface typology and is grounded in external, not internal (and therefore not circular) factors. I argued that a single instance of sound change is always natural and follows universal phonetic tendencies, while a combination of sound changes may be unconstrained and can result in unmotivated or unnatural processes. Because a single sound change is more frequent and likely to occur, most alternations that we observe in languages will be natural. Conversely, combinations of sound changes are less probable (less likely to occur), and combination of sound changes that result in unnatural patterns are even less probable; as a result, such unnatural patterns will be rare or non-existent cross-linguistically, just by virtue of the infrequency of their derivation. The proposal thus captures the continuum of decreased probability between natural, unmotivated, and unnatural changes. Furthermore, when unnatural alternations do arise, they immediately get militated against by the inverse process, which is itself a natural phonetic tendency. Thus, the rarity of an unnatural alternation may directly depend on how strong its phonetic tendencies and precursors are and on how many single instances of sound change we need to get the alternation.

The paper does not claim that analytic bias does not exist: the exact relationship between the channel and analytic bias remains to be determined in future research. It is likely that the two types of bias are more interrelated that they appear. The primary contribution of this paper has been to illustrate that the channel bias approach can satisfactorily derive surface phonological typology using the model I propose.
References

Stanton, Juliet. 2015. Constraints on contrast motivate nasal cluster effects. Handout at LingLunch. May 14, 2015, MIT.

