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not hold. Expected asset returns seem to vary through time so 
that investment opportunities are not constant; the evidence for 
predictable variation in the equity premium, the excess return on 
stock over Treasury bills, is particularly strong (see Campbell 
[1987]; Campbell and Shiller [1988a, 1988b]; Fama and French 
[1988, 1989]; Hodrick [1992]; or the textbook treatment in Camp- 
bell, Lo, and MacKinlay [1997, Chapter 7]). Economists research- 
ing the equity premium puzzle find that average excess stock 
returns are too high to be consistent with a representative- 
investor model in which the investor has log utility (see Campbell 
[1996]; Cecchetti, Lam, and Mark [1994]; Cochrane and Hansen 
[1992]; Hansen and Jagannathan [1991]; Kocherlakota [1996]; 
Mehra and Prescott [1985]; or the textbook treatment in Camp- 
bell, Lo, and MacKinlay [Chapter 8]). 

In response to these empirical findings, several recent papers 
have used numerical methods to solve for optimal portfolios in 
models with realistic predictability of returns. Investors are 
generally assumed to have power utility defined over wealth at a 
single terminal date. Different papers choose different investment 
horizons and make different assumptions about investors' ability 
to rebalance their portfolios. Kandel and Stambaugh [1996] 
consider the effects of predictability on the optimal portfolio of a 
single-period Bayesian investor who takes account of parameter 
uncertainty, while Barberis [1999] extends this work to study the 
optimal portfolio of a long-horizon Bayesian investor who rebal- 
ances annually or not at all. Brennan, Schwartz, and Lagnado 
[1997] consider a long-horizon investor who rebalances fre- 
quently, while Balduzzi and Lynch [1997a, 1997b] consider a 
long-horizon investor who faces fixed and proportional transac- 
tions costs which reduce the frequency of optimal rebalancing.1 
The results in these papers, though dependent on the particular 
parameter values they assume, illuminate the effects of predictabil- 
ity on portfolio choice. Kim and Omberg [1996] work with a 
similar framework but, by assuming continuous time and zero 
transactions costs, are able to solve the portfolio choice problem 
analytically.2 

A limitation of these models is that they abstract from the 

1. Most of these papers, like our paper, work with a single state variable 
driving the equity premium. Only Brennan, Schwartz, and Lagnado [1997] 
consider multiple state variables. 

2. Kim and Omberg study the choice between a riskless asset with a constant 
return and a risky asset whose expected return follows a continuous-time AR(1) 
(Ornstein-Uhlenbeck) process. They assume that the investor is finitely lived and 
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choice of consumption over time. Since the investor is assumed to 
value only wealth at a single terminal date, no consumption takes 
place before the terminal date, and all portfolio returns are 
reinvested until that date. This simplifies the analysis but makes 
it hard to apply the results to the realistic problem facing an 
investor saving for retirement. In addition, these models cannot 
easily be related to the macroeconomic asset pricing literature in 
which consumption is used as an indicator of marginal utility. 

This paper extends the previous literature in three major 
respects. First and most important, we consider a model in which 
a long-lived investor chooses consumption as well as an optimal 
portfolio, to maximize a utility function defined over consumption 
rather than wealth.3 Second, we assume that the investor has 
Epstein-Zin-Weil preferences [Epstein and Zin 1989; Weil 1989]. 
This allows us to distinguish the coefficient of relative risk 
aversion from the elasticity of intertemporal substitution in 
consumption; power utility restricts risk aversion to be the 
reciprocal of the elasticity of intertemporal substitution, but in 
fact these parameters have very different effects on optimal 
consumption and portfolio choice. Third, like Kim and Omberg 
[1996] but unlike other previous research, we solve the problem 
analytically. This provides economic insights that are hard to get 
from numerical solutions, and it enables us to distinguish general 
properties of the solution from results that depend on particular 
parameter values. 

In order to keep our problem analytically tractable, we make 
several simplifying assumptions. We assume that there are two 
assets: a riskless asset with a constant return, and a risky asset 
whose expected return, the single state variable for the problem, 
follows a mean-reverting AR(1) process. The assumption that the 
riskless return is constant simplifies our analysis and enables us 
to isolate the effects of time variation in the equity premium. 

We work in discrete time, and assume that the investor is able 
to rebalance the portfolio every period. Our approximate solution 
method becomes more accurate as the period length shrinks; thus, 

has HARA utility defined over terminal wealth. They find that the optimal 
portfolio weight is linear and the value function is quadratic in the state variable. 

3. Since the first version of this paper was circulated, some numerical results 
have been obtained for the long-horizon portfolio choice problem with utility 
defined over consumption. Balduzzi and Lynch [1997a, 1997b] consider some cases 
with endogenous consumption, and Brandt [1999] uses the Generalized Method of 
Moments to estimate consumption and portfolio rules that best satisfy the 
intertemporal Euler equation given the stochastic properties of historical data. 
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our model applies to an investor who is able to rebalance 
frequently. We also abstract from transactions costs and restric- 
tions on borrowing or short sales. We make these assumptions not 
only for tractability, but also because we want to focus on the pure 
intertemporal effects of return predictability on optimal consump- 
tion and portfolio choice for long-horizon investors. Transactions 
costs and portfolio restrictions, while interesting in their own 
right, may obscure these effects. 

Finally, we assume that the investor is infinitely lived. In a 
model with endogenous consumption every period, Fischer [1983] 
notes that "the notion of the horizon loses its crispness. Date T is 
still the horizon in the sense that the individual looks no further 
ahead than T. But now events that occur at t < T matter not only 
because they affect the situation at T but also because consump- 
tion at t and later depends on the state of the world at time t" 
[p. 155]. An infinite horizon is particularly convenient analytically 
because the problem becomes one of finding a fixed point rather 
than solving backward from a distant terminal date. It may be an 
appropriate assumption for investors with bequest motives, as 
discussed in the macroeconomic literature on Ricardian equiva- 
lence, and it approximates well the situation of investors with 
finite but long horizons.4 

The endogeneity of consumption in our model makes it 
impossible for us to follow Kim and Omberg [1996] and derive an 
analytical solution that is exact for all parameter values.5 Instead, 
we find an approximation to the portfolio choice problem that can 
be solved using the method of undetermined coefficients. We 
approximate the Euler equations of the problem using second- 
order Taylor expansions, and we replace the investor's intertempo- 
ral budget constraint with an approximate constraint that is 
linear in log consumption and quadratic in the portfolio weight on 
the risky asset. This enables us to find approximate analytical 
solutions for consumption and the portfolio weight. Like Kim and 

4. Brandt [1998] compares his finite-horizon results to ours. For the parame- 
ter values he uses, the finite-horizon solution converges quickly to the infinite- 
horizon solution and is very similar by the time the finite horizon reaches twenty 
years. 

5. The lack of an exact analytical solution is not due to the fact that we work 
in discrete time. Schroder and Skiadas [1998] use stochastic differential utility, a 
continuous-time version of Epstein-Zin-Weil preferences due to Duffie and Epstein 
[1992], and show that it is possible to characterize the solution in terms of 
quasi-linear parabolic partial differential equations-which are relatively easy to 
solve numerically-but an exact closed-form solution exists only in the same 
special cases as in discrete time. 
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Omberg [1996] we find that the optimal portfolio weight is linear 
in the state variable, while the log consumption-wealth ratio and 
the log value function are quadratic in the state variable. 

The approximate solution holds exactly in some special, but 
important, cases noted by Giovannini and Weil [1989]. In all other 
cases its accuracy is an empirical issue. Campbell, Cocco, Gomes, 
Maenhout, and Viceira [1998] compare the approximate analytical 
solution to a discrete-state numerical solution, and find that the 
two are very similar except at the upper extreme of the state 
space. We briefly summarize these findings in subsection IV.6 of 
this paper. 

Our solution method uses the intertemporal Euler equation 
as its starting point. In this sense, it belongs to the class of 
stochastic dynamic programming methods. Cox and Huang [1989] 
have proposed an alternative solution method which transforms 
an intertemporal optimization problem with complete markets 
into an equivalent static optimization problem that can be solved 
using standard Lagrangian theory. He and Pearson [1991] have 
extended the Cox-Huang approach to settings with incomplete 
markets. In a related paper [Campbell and Viceira 1998] we 
formulate a problem of optimal consumption and portfolio choice 
with time-varying interest rates, constant risk premiums, and 
complete markets, and we explore the relation between the 
log-linear approximate solution method and the Cox-Huang 
approach. 

Our paper builds on the work of Campbell [1993]. Campbell 
considers the simpler problem where only one asset is available 
for investment and so the agent need only choose consumption. He 
shows that this problem becomes tractable if one replaces the 
intertemporal budget constraint by a log-linear approximate 
constraint. He uses the solution in a representative-agent model 
to characterize the equilibrium prices of other assets that are in 
zero net supply, in the spirit of Merton's [1973] intertemporal 
CAPM. Campbell [1996] estimates the parameters of the model 
from U. S. asset market data, while Campbell and Koo [1997] 
evaluate the accuracy of the approximate analytical solution by 
comparing it with a discrete-state numerical solution. 

The organization of the paper is as follows. Section II states 
the problem we would like to solve, while Section III explains our 
approximate solution method. Section IV calibrates the model to 
postwar quarterly U. S. stock market data and briefly discusses 
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intertemporal substitution, and the parameter 0 is 
defined as 0 = (1 - -y)/(l - ij-1). It is easy to see that (6) 
reduces to the standard time-separable, power utility 
function with relative risk aversion -y when p = -y-1. In 
this case 0 = 1, and the nonlinear recursion (6) becomes 
linear. 

(A5). The investor is infinitely lived. 
Assumptions (Al) and (A2) on the number of risky assets and 

state variables are simplifying assumptions, which we adopt for 
expositional purposes. The approach of this paper can be applied 
to a more general setting with multiple risky assets and state 
variables, at the cost of greater complexity in the analytical 
solutions to the problem. Assumption (A3) is also a simplification 
that can be relaxed in order to study the effects of conditional 
heteroskedasticity on portfolio choice. Assumption (A4) on prefer- 
ences allows us to separate the effects on optimal consumption 
and portfolio decisions of the investor's attitude toward risk from 
the investor's attitude toward consumption smoothing over time. 
Finally, assumption (A5) allows us to ignore the effects of a finite 
horizon on portfolio choice, but this assumption too can be relaxed 
in future work. 

11.2. Euler Equations and the Value Function 

The individual chooses consumption and portfolio policies 
that maximize (6) subject to the budget constraint, 

(7) Wt+1 = Rpt+l(Wt - cd, 

where Wt is total wealth at the beginning of time t and Rp,t+1 is the 
return on wealth (1). 

Epstein and Zin [1989, 1991] have shown that with this form 
for the budget constraint, the optimal portfolio and consumption 
policies must satisfy the following Euler equation for any asset i: 

(8) 1 =Et[I ( C | )Ri . 

Equation (8) holds regardless of how many tradable assets are 
available. In our simple model, i denotes the riskless asset, the 
single risky asset, or the investor's portfolio p. When i = p, (8) 
reduces to 

(9) 1 = Et[I8 (C+;i) RPlAR jO] 
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Hence, U1,C-Wt depends on the individual's future portfolio and 
consumption decisions, and (19) falls short of a complete solution 
to the model. 

III.4. Solving for the Optimal Policies 

The final step in solving the dynamic optimization problem is 
to guess a functional form for the optimal consumption and 
portfolio policies and to identify the parameters of these policies 
using the method of undetermined coefficients. We guess that the 
optimal portfolio weight on the risky asset is linear in the state 
variable, and that the optimal log consumption-wealth ratio is 
quadratic in the state variable. Hence, we guess that 

(i) ott = ao + alxt, 

(ii) ct - wt = bo + blxt + b2xt, 

where jao,aj,b0,bj,b2} are fixed parameters to be determined. 
Under assumptions (A1)-(A5) we can show that guesses 

(i)-(ii) are indeed a solution to the intertemporal optimization 
problem of the recursive-utility-maximizing investor, and we can 
solve for the unknown parameters jao,aj,bo,bj,b2}. Details are 
provided in Appendices 1 and 2; here we give a brief intuitive 
explanation of the solution. 

The linear portfolio rule (i) has the simplest form consistent 
with time variation in the investor's portfolio decisions. This 
portfolio rule implies that the expected return on the portfolio is 
quadratic in the state variable xt, because an increase in xt affects 
the expected portfolio return both directly by increasing the 
expected return on existing risky-asset holdings and indirectly by 
changing the investor's optimal allocation to the risky asset. 
Equation (20) shows that the log consumption-wealth ratio is 
linearly related to the expected portfolio return, so it is natural to 
guess that the log consumption-wealth ratio is quadratic in the 
state variable xt. 

Of course, variances and covariances of consumption growth 
and asset returns also affect the optimal consumption and portfo- 
lio decisions. But the homoskedastic linear AR(1) process for xt 
implies that all relevant variances and covariances are either 
linear or quadratic in the current state variable, and thus 
second-moment effects do not change the linear-quadratic form of 
the solution. Appendix 1 states nine lemmas that express impor- 
tant expectations, variances, and covariances as linear or qua- 
dratic functions of the state variable. 
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We now state two propositions that enable us to solve for the 
unknown coefficients of the model. The propositions are proved in 
Appendix 2, using the lemmas from Appendix 1. 

PROPOSITION 1. The parameters defining the linear portfolio policy 
(i) satisfy the following two-equation system: 

a o (= 2)( Y 1) Wr _ _ _ _ _ _ 

ai = (2 ) - 
_ Y -_2 -1 - 1 2 

al = - 
)-( _) 2(+. 

Proof of Proposition 1. See Appendix 2. 

The first term in each of these equations is the myopic 
component of asset demand in equation (19). Therefore, the 
remaining terms represent intertemporal hedging demand. They 
depend on the consumption coefficients b1 and b2, divided by one 
minus the intertemporal elasticity of substitution (1 - tp), as well 
as on the scaled deviation of risk aversion from one, (-y - 1)/by, and 
the scaled covariance of the risky asset return with revisions in 
the expected future return uqu/u 2. There is no hedging demand if 
this covariance is zero, for then the risky asset cannot be used to 
hedge changes in investment opportunities. We discuss the effects 
of these parameters on portfolio selection in more detail in our 
calibration exercise in Section IV. 

Proposition 1 expresses the coefficients of the optimal portfo- 
lio policy as linear functions of the parameters of the optimal 
consumption rule. Proposition 2 shows that these parameters 
solve a recursive, nonlinear equation system whose coefficients 
are known constants: 

PROPOSITION 2. The parameters defining the consumption policy 
(ii), 1b0,b1,b21, are given by the solution to the following 
recursive nonlinear equation system: 

(21) 0 = A10 + A11bo + A12b1 + A13bl + A14b2 

+ 1 + 16bjb2, 

(22) 0 = A20 + A21b, + A22b2 + A23b2 + A24bb2, 

(23) 0 = A30 + A31b2 + A32b2, 



CONSUMPTION AND PORTFOLIO DECISIONS 447 

where Aij; i= 1,2,3,j= 1, . . ., 61 are constants given in 
Appendix 2. These constants depend on the exogenous param- 
eters of the model and on the log-linearization parameter p. 

Proof of Proposition 2. See Appendix 2. 

The equation system given in Proposition 2 can be solved 
recursively, starting with the quadratic equation (23) whose only 
unknown is b2. This equation has two possible roots, which 
are always real when -y - 1, and are real when -y < 1 if 

-(,2 - (l/p))2(T2 + (1 - )(+2 - (1/p))4(aq]u - (1 - -y)4+2U2 2, 0. 
The existence of real roots is necessary (but not sufficient) for the 
value function of the problem, given in Property 1 below, to be 
finite. We argue in the next section that one of the two roots, the 
positive root of the equation discriminant, delivers the correct 
solution to the model. 

Once we have solved for b2, the second equation in the system 
becomes a linear equation in b1. Finally, given 1b1,b21, the first 
equation of the system is also linear in bo. Using the known values 
of {b0,b1,b2j in Proposition 1, we can find lao,ail. 

All of these calculations are conditional on a value for p, since 
p helps to determine the constants Aij in (21), (22), and (23). One 
can write the parameters as functions of p, for example bo(p), b1(p), 
and b2(p), to express this dependence. But p itself depends on the 
optimal expected log consumption-wealth ratio and hence on 
the parameters: p = 1 - exp IE(ct - wt)l = 1 - exp lbo(p) + 
b1(p)jt + b2(p)(jt2 + o.2)J. The solution of the model is complete only 
when a value of p has been found to satisfy this nonlinear 
equation. Unfortunately, an analytical solution is available only 
in the case t+ = 1, where the optimal consumption policy is myopic 
and p = 6. In all other cases, we resort to a numerical method. We 
first set p = 8 and then find the optimal values of {a0,aj,b0,b1,b21 
given this value of p. For these optimal values we then compute 
E(ct - wt) and a, new value of p, for which a new set of optimal 
policies is computed. We proceed with this recursion until the 
absolute value of the difference between two consecutive values of 
p is less than lO-4. 

This procedure converges extremely rapidly whenever there 
exists a solution for p between zero and one. For some parameter 
values, however, p converges to one, and the implied value 
function of our model is infinite. It is well-known that this can 
occur in infinite-horizon optimization problems; Merton [1971] 
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and Svensson [1989], for example, derive parameter restrictions 
that are required for finite value functions in continuous-time 
models with constant expected returns. Unfortunately, the nonlin- 
earity of the equation for p prevents us from deriving equivalent 
analytical restrictions in our model with time-varying expected 
returns, but the problem tends to arise whenever the utility 
discount rate is too low or the expected excess equity return is too 
high on average or too variable relative to the risk of equity 
investment. 

III.5. Properties of the Solution 

Propositions 1 and 2 identify the parameters of the optimal 
policies and the value function per unit of wealth. If we pick the 
solution for b2 given by the positive root of the discriminant in 
(23), Propositions 1 and 2 also imply the following properties of 
the solution. Here we merely state these properties; proofs are 
given in Appendix 3. 

PROPERTY 1. The approximate value function per unit of wealth is 
given by 

(bo - ) { log (1 - ) bi b2 } 

and b2/(1 - t]) > 0. Therefore, the value function per unit of 
wealth is a convex function of xt, the expected log excess 
return on the risky asset. 

PROPERTY 2. The slope of the optimal portfolio rule-the coeffi- 
cient a,-is positive. Also, lim. ax a, = 0 and lim-_0 a, = +xo. 

Property 1 characterizes the approximate value function per 
unit of wealth. Equation (24) shows that the log value function per 
unit of wealth is a quadratic function of the state variable whose 
coefficients are the coefficients of the log consumption-wealth 
function divided by one minus the elasticity of intertemporal 
substitution.8 

Property 1 tells us that the value function per unit of wealth 
is convex in xt, so it increases with xt when xt is large enough and 

8. This expression has a well-defined limit as i - 1. The solutions to 
equations (22) and (23) imply that b/(1 - tI) and b2/(1 - I) are functions only of p 
and -y, and do not depend directly on W. Property 3 shows that p = 8 when ' - 1. 
Finally, equation (21) implies that (bo - vi log (1 - 8))/(1 - vI) does not depend 
directly on t+ when p = 8. Thus, (24) is well defined as ' - 1. 
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decreases with xt when xt is small enough. The intuition for this 
result is as follows. The investor can profit from predictable excess 
returns on the risky asset, whether these are positive or negative. 
Property 2 implies that the investor increases the allocation to the 
risky asset as its expected excess return increases. If excess 
returns are expected to be sufficiently positive, the investor will 
profit by going long; whereas if they are expected to be sufficiently 
negative, the investor will profit by going short. Thus, movements 
in xt to extreme positive or negative values increase the investor's 
utility. 

Property 2 generalizes a known comparative-statics result for 
an investor with power utility facing constant expected returns in 
a continuous-time model. In that setting the allocation to the risky 
asset is constant over time, and it increases with the expected 
excess return on the risky asset. In static models with more 
general utility functions, however, it is possible for the allocation 
to the risky asset to decline with the expected excess return on the 
risky asset, because the income effect of an increase in the risk 
premium can overcome the substitution effect [Ingersoll 1987, 
Chapter 3]. Property 2 shows that this does not happen in our 
dynamic model with Epstein-Zin-Weil utility. The coefficient a, is 
always positive and increases from zero when My is infinitely large 
to infinitely large values as My approaches zero. 

PROPERTY 3. The solution given by Propositions 1 and 2 ap- 
proaches known, exact solutions as the parameters of utility 
approach the following special cases: 

a) When t] = 1 and My - 1, equation (23) becomes linear and 
b2/ - 0) - 1/2 2>(1/p - +2) > 0. In this case, the optimal 
portfolio rule is myopic: ao 1 l/2-y and a, 1b/yo2. This 
portfolio rule is the known, exact solution of Giovannini 
and Weil [1989], in which portfolio choice is myopic even 
though consumption choice is not. The portfolio rule 
maximizes the conditional expectation of the log return on 
wealth. 

b) When t- 1 and -y f 1, b, 0, b2 0, p 8, and bo 
log (1 - 6). This consumption rule is the known, exact 
solution of Giovannini and Weil [1989], in which consump- 
tion choice is myopic-in the sense that the consumption- 
wealth ratio is constant-even though the optimal portfo- 
lio rule is not. 
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c) When ] - 1 and My 1, so that utility is logarithmic, b, - 

0, b2 0 0, p - 8, bo log (1 - 6), ao - 1/2, and a, -- 1/of. 
This is the known, exact solution for log utility in which 
both the optimal consumption rule and the optimal portfo- 
lio rule are myopic. 

d) When a 2 0, so that expected returns are constant, both 
the optimal consumption rule and the optimal portfolio 
rule converge to the known, exact, myopic solution. The 
portfolio parameters ao - 1/2-y and a, 1/-y1y. 

It is important to note that the previously known results 
mentioned in parts a) and b) of Property 3 are only partial. That is, 
the exact portfolio rule is known for the case My = 1, but our 
approximate solution method is still needed to determine the 
optimal consumption rule. The exact consumption rule is known 
for the case tp = 1, but our solution method is still needed to 
determine the optimal portfolio rule. In this case our solution is 
exact (in continuous time) since the optimal consumption-wealth 
ratio is constant so our log-linear version of the intertemporal 
budget constraint holds exactly. 

Property 3 holds only if we choose the positive root of the 
discriminant in the quadratic equation for b2, (23). If instead we 
choose the negative root of the discriminant, the approximate 
solutions diverge as the preference parameters approach the 
known special cases. This is our main reason for choosing the 
positive root of the discriminant.9 

PROPERTY 4. The optimal portfolio rule does not depend on t] for 
given p. 

This property holds because only the ratios b1/(l - t]) and 
b2/(l- t]) appear in the portfolio rule, and these ratios do not 
depend on i for given p. The property shows that the main 
preference parameter determining portfolio choice is the coeffi- 
cient of relative risk aversion My and not the elasticity of intertem- 
poral substitution Wp. Conditioning on p, t+ has no effect on portfolio 

9. We would like to be able to show analytically that the unconditional mean 
of the value function, a measure of welfare we study in Section V below, is always 
higher when we choose the positive root of the discriminant in (23). Unfortunately, 
we have been unable to do this; but in our calibration exercise we have verified that 
the positive root always gives the higher unconditional mean for every set of 
parameter values we consider. We do have a stronger analytical result when -y < 1. 
In this case the negative root of the discriminant violates a necessary and 
sufficient condition (derived by straightforward extension of the results of Constan- 
tinides [1992]) for the existence of the unconditional mean of the value function. 
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choice. However, p itself is a function of W-recall that p = 1 - 
exp {E[ct - wt]1-so the optimal portfolio rule depends on tp indi- 
rectly through p. Our calibration results in Section IV show that 
this indirect effect is small. 

PROPERTY 5. The parameters a, and b2, the slope of the portfolio 
policy, and the curvature of the consumption policy, do not 
depend on jt for given p. 

Property 5 shows that some aspects of the optimal policy-the 
sensitivity of the risky asset allocation to the state variable and 
the quadratic sensitivity of consumption to the state variable - 

are independent of the average level of the excess return on the 
risky asset. Of course, other aspects-the average allocation to the 
risky asset, the average consumption-wealth ratio, and the linear 
sensitivity of consumption to the state variable -do depend on the 
average risk premium. We discuss this dependence in greater 
detail in subsection IV.3. 

IV. CALIBRATION EXERCISE 

IV1. Data and Estimation 

An important advantage of our approach is that we can 
calibrate our model using real data on asset returns. To illustrate 
this, we use quarterly U. S. financial data for the sample period 
1947.1-1995.4.10 In our calibration exercise, the risky asset is the 
U. S. stock market, and the risk-free asset is a short-term debt 
instrument. To measure stock returns and dividends, we use 
quarterly returns, dividends, and prices on the CRSP value- 
weighted market portfolio inclusive of the NYSE, AMEX, and 
NASDAQ markets. The short-term nominal interest rate is the 
three-month Treasury bill yield from the Risk Free File on the 
CRSP Bond tape. To compute the real log risk-free rate, the 
beginning-of-quarter nominal log yield is deflated by the end-of- 
quarter log rate of change in the Consumer Price Index from the 
Ibbotson files on the CRSP tape. Log excess returns are computed 
as the end-of-quarter nominal log stock return minus the begin- 
ning-of-quarter log yield on the risk-free asset. 

10. A similar exercise using annual U. S. data for the period 1872-1993 is 
reported in the NBER Working Paper version of this article [Campbell and Viceira 
1996]. 
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The state variable is taken to be the log dividend-price ratio, 
measured as the log of the total dividend on the market portfolio 
over the last four quarters divided by the end-of-period stock 
price. Campbell and Shiller [1988a], Fama and French [1988], 
Hodrick [1992], and others have found this variable to be a good 
predictor of stock returns. We estimate the following restricted 
VAR(1) model: 

rltl- rf' /00 El/01t (E 

(25) - + (01 -dt pt) + 
dt+1i Pt+i \1O/ 4Pi E2,t+lI 

where (Et+l,E2,t+1) - N(Oj), and report the maximum likelihood 
estimation results in Table I. Since (25) is equivalent to a 
multivariate regression model with the same explanatory vari- 
ables in all equations, ML estimation is identical to OLS regres- 
sion equation by equation. The standard errors for the slopes, 
intercepts, and the residual variance-covariance matrix are based 
on Proposition 11.2 in Hamilton [1994]; using these standard 
errors, which assume that the variables in the model are station- 
ary, the slopes and the elements of the variance-covariance matrix 
all appear to be statistically different from zero.1" 

The parameters in (3), (4), and (5) that define the stochastic 
structure of our model can be recovered from the VAR system (25) 
as follows: t = 0o + 01io/(l - P13), pig 13i, o] 02Q22, vu = , and 

9,qu = OJ112. Table I reports these implied parameters along with 
standard errors computed using the delta method. All of the derived 
parameters except ark are significantly different from zero at the 5 
percent confidence level. The unconditional expected log excess return 
jt is estimated at 5 percent per year (1.25 percent per quarter), while 
the log real risk-free rate rf is a meager .28 percent per year. 12 

1V2. Solution of the Model 

Using the parameter estimates in Table I, we compute the 
individual's optimal portfolio allocation and consumption-wealth 
ratio for a range of values of relative risk aversion and elasticity of 

11. Note, however, that 1i is close to one. Elliott and Stock [1994] have shown 
that the t-ratio for 0 under the null Ho: 0 = 0 does not have a standard asymptotic 
normal distribution when the log dividend-price ratio follows a unit-root or 
near-unit-root process, and fQ12 = 0. We do not pursue this issue further here, and 
proceed to calculate standard errors under the assumption that the estimated 
system is stationary, but we note that standard errors computed under this 
assumption should be treated with some caution. 

12. These parameter estimates differ slightly from those reported in the 
NBER Working Paper version of this article. The reason is that there, because of a 
computational error, we used the dividend-price ratio instead of its log when 
estimating (25). 





454 QUARTERLY JOURNAL OF ECONOMICS 

and consumption rules implied by low and high risk aversion 
coefficients. We consider low elasticities of intertemporal substitu- 
tion, both because we want to include the power-utility cases in 
which the elasticity of intertemporal substitution is the reciprocal 
of risk aversion, and because a low elasticity of intertemporal 
substitution seems to be required to explain the insensitivity of 
consumption growth to real interest rates in postwar U. S. data 
[Hall 1988, Campbell and Mankiw 1989]. 

Tables II, III, and IV and Figures I and II report the results of 
this exercise. To make it easier to interpret our results, we 
normalize the parameters defining the optimal portfolio and 
consumption policies (i) and (ii), so that the intercepts of the 
optimal policy functions are the optimal allocation to stocks and 
the optimal consumption-wealth ratio when the expected simple 
excess return, Et[R1,t~l] - Rf, is zero. At this point in the state 
space the risky asset is a "fair gamble" offering no risk premium. 
Thus, a myopic risk-averse investor would allocate no wealth to it, 
and all the demand for the risky asset is intertemporal hedging 
demand. The expected simple excess return is zero when the 
expected log excess return xt is equal to -of/2. Therefore, the 
parameters reported in the tables are a*, a,, b*, b j, and b2 in 

(26) Ott = a* + al(xt + o2 /2) 

and 

(27) ct - Wt = b* + b* (xt + (U2 /2)) + b2(xt + (2u/2))2, 

where a* = ao - a1(o2/2), bt = bo - b1(T2 /2) + b2 (G4/4), b* = b, - 
b2ff2, and a1 and b2 do not have asterisks because they coincide 
with the original parameters. 

The main diagonal of each panel in the tables corresponds to 
standard power-utility preferences, since the elasticity of intertem- 
poral substitution is the reciprocal of risk aversion along the main 
diagonal. The numbers reported in the tables summarize the 
optimal decisions of a recursive-utility individual who observes 
the true process for returns. Since we do not observe the true 
process but must estimate it, we have also computed-but we do 
not report here to save space-the standard errors for these 
parameters, using the delta method.13 These standard errors 

13. The delta method requires the computation of derivatives of the parame- 
ters of interest (for example, a,) with respect to 1oo,oi3op3,f}. Since no analytical 
formulas are available, we use two-sided numerical derivatives based on a 
proportional perturbation parameter equal to 10-4. The standard errors are 
reported in the NBER Working Paper version of this article. 
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TABLE II 
OPTIMAL PORTFOLIO POLICY 

R.R.A. E.I.S. 

(A) Exponentiated intercept: ao x 100 

11.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40 
0.75 -38.6 -29.4 -23.4 -21.0 - 18.2 - 16.7 -16.2 -16.0 
1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1.50 27.1 23.5 20.5 19.2 17.5 16.6 16.3 16.2 
2.00 33.8 30.7 27.9 26.6 24.8 23.9 23.6 23.5 
4.00 29.9 29.8 29.7 29.6 29.5 29.4 29.4 29.4 

10.00 16.0 17.2 18.5 19.2 20.4 21.2 21.4 21.6 
20.00 8.8 9.7 10.8 11.4 12.4 13.1 13.3 13.4 
40.00 4.6 5.2 5.8 6.2 6.8 7.3 7.4 7.5 

(B) Slope: a, 

1/.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40 
0.75 222.5 225.1 227.3 228.3 229.6 230.4 230.6 230.7 
1.00 188.8 188.8 188.8 188.8 188.8 188.8 188.8 188.8 
1.50 145.5 144.4 143.3 142.9 142.2 141.8 141.7 141.7 
2.00 118.5 117.5 116.6 116.1 115.5 115.1 115.0 115.0 
4.00 68.1 68.1 68.0 68.0 68.0 67.9 67.9 67.9 

10.00 29.9 30.3 30.7 30.9 31.3 31.5 31.6 31.6 
20.00 15.5 15.8 16.1 16.3 16.6 16.8 16.8 16.8 
40.00 7.9 8.1 8.3 8.4 8.6 8.7 8.7 8.7 

Panel A reports the optimal percentage allocation to stocks when the expected gross excess return is zero 
for different levels of relative risk aversion and elasticities of intertemporal substitution. Panel B reports the 
change-in percentage points-in the optimal allocation to stocks when the expected log excess return 
increases by 1 percent per quarter. These numbers are all based on the parameter estimates for the return 
process reported in Table II (sample period 1947:1-1995:4). The values on the main diagonal correspond to the 
power utility case. 

show that the intercepts of the optimal policies are estimated with 
less precision than the parameters determining the slope and 
curvature of the optimal policy. 

1V3. The Optimal Portfolio Rule 

Tables II Ind III and Figure I summarize the optimal 
portfolio decision. Panel A in Table II reports a*, the optimal 
allocation to stocks when the expected gross excess return is zero, 
while Panel B in the same table reports a,, the slope of the optimal 
portfolio policy. Panel A in Table III reports the average total 
demand for stocks as a fraction of wealth, while Panel B reports 
the share of this average total demand that is attributable to the 
average hedging demand for stocks. 

Figure I, which is divided into four panels, illustrates the 
portfolio rule at. Figure Ia fixes Wp at 1/0.75 and plots (t for a wide 
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across rows of the tables, as -y changes, is far greater than the 
variation across columns, as 4i changes. Similarly, the ott lines in 
Figures Ic and Id are all close together, whereas those in Figures 
Ia and Ib vary widely in both slope and intercept. This result can 
be understood by recalling Property 4 of our solution; i.e., that ott 
depends on 4i only through the dependence of p on 4i. Our calibration 
results show that this indirect effect through p is very small. 

Panel A in Table II shows that the intercept of at, a*, is 
positive when -y > 1. It is zero when -y = 1, as we already know 
from the analysis of the special case with unit relative risk 
aversion, and negative when y < 1. These results hold regardless 
of the value of Wp. To interpret this behavior, recall that a * is the 
optimal allocation to stocks when the expected excess gross return 
is zero. Since the myopic demand for stocks is zero at this level of 
the expected excess gross return, a o is completely determined by 
hedging demand. Thus, at the point in the state space where the 
risky asset has a zero expected excess return, the sign of hedging 
demand is positive for investors with -y > 1. 

Panel B in Table II shows that the coefficient a,, the slope of 
the at function, is positive for all levels of -y and 4i as implied by 
Property 2 of our solution. Like the intercept a*, the slope a, varies 
substantially across -y for a given level of 4, but changes very little 
across 4i for a given level of -y. As -y increases, a, rapidly approaches 
zero, indicating that the optimal portfolio rule is very responsive to 
changes in expected excess returns when the individual is close to 
risk-neutral but is almost flat when the individual is highly risk- 
averse. This finding is also implied by Property 2 of our solution.14 

Panel B in Table II also shows that whenever -y > 1, 
intertemporal hedging demand increases the slope of the portfolio 
rule; equivalently, hedging demand itself has a positive slope. To 
see this, note that when -y = 1, hedging demand is zero and the 
slope coefficient of 188.8 is entirely attributable to the myopic 
component of asset demand. For higher values of -y, the myopic 
slope shrinks in proportion to -y. Thus, it is 94.4 for -y = 2, 47.2 for 
-y = 4, and so forth. The slope coefficients reported in Panel B in 
Table II shrink more slowly than this, implying a positive slope 
contribution from hedging demand. The analytical foundation of 
this result is that from Proposition 1 the slope of hedging demand 

14. The standard errors not reported here show that the slope coefficient a, is 
much more precisely estimated than the intercept of the optimal portfolio rule. 
One reason for this greater precision is that, as we showed in Property 5, the slope 
of the portfolio rule is not sensitive to the mean excess stock return y whereas the 
intercept does depend on y. 
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is -(b2/(l - OA)Y - 1)/Y)(Uqu/u2)2, which is positive when -y > 1 
under our assumption of negative |u. This implies that conserva- 
tive long-horizon investors who are free to rebalance every period 
are actually more aggressive market timers than conservative 
short-horizon investors.15 

The results in Table II can be explained in intuitive terms as 
follows. We have estimated a return-generating process which has 
a negative sign for uq, the covariance between unexpected stock 
returns and revisions in expected future stock returns. This 
implies that stocks tend to have high returns when their expected 
future returns fall. Since the investor is normally long in stocks, a 
decline in expected future stock returns is normally a deteriora- 
tion in the investment opportunity set. There are offsetting 
considerations that determine an investor's attitudes toward 
assets that pay off when the investment opportunity set deterio- 
rates. On the one hand, an investor with low risk aversion (y < 1) 
wants to hold assets that deliver wealth when wealth is most 
productive; that is, when investment opportunities are good. This 
investor has a negative hedging demand. On the other hand, an 
investor with high risk aversion (by > 1) wants to hold assets that 
deliver wealth in unfavorable states of the world; that is, when 
investment opportunities are poor. This investor has a positive 
hedging demand. Interestingly, the hedging demand is not mono- 
tonic in risk aversion because an extremely risk-averse investor 
limits her exposure to the risky asset in all states of the world. 
Thus, the magnitude of hedging demand first rises and then falls 
with the coefficient of risk aversion. 

Although the investor is normally long in stocks, if the 
expected excess return becomes sufficiently negative, a decline in 
expected future stock returns can represent an improvement in 
the investment opportunity set because it creates a profitable 
opportunity to short stocks. At this point in the state space, the 
sign of hedging demand for stocks reverses. This explains why 
hedging demand has both a positive intercept and a positive slope, 
allowing a sign reversal of hedging demand for sufficiently 
negative Xt.16 

The average level of excess simple stock returns, jt + vu/2, 
plays an important role in this argument. We have estimated j + 
oU/2 to be positive and quite large; this leads the investor 
normally to maintain a long position in stocks for which a 

15. Barberis [1999] finds that conservative buy-and-hold investors who know 
the parameters of the stock return process are about equally aggressive market 
timers whether they have a short or a long horizon. 
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decrease in the expected stock return represents a deterioration 
in investment opportunities. If j + vu2/2 were negative, however, 
the investor would normally have a short position in stocks for 
which a decrease in the expected stock return represents an 
improvement in investment opportunities. In this case the normal 
sign of hedging demand would be negative for an investor with -y > 
1. The slope of hedging demand is unaffected by the average level 
of excess returns, however, as shown in Property 5, so in this case 
a sign reversal of the normal hedging demand occurs for suffi- 
ciently positive xt. 

This intuitive discussion suggests that we should be able to 
derive analytical results about the signs of the coefficients a * and 
b * in our model. Indeed, it is straightforward to show that when 
jt + o"2/2 = 0, a* = b0 = O. In this case the model is symmetrical; 
positive deviations of xt from its mean have exactly the same effect 
(in absolute value) as negative deviations, and both myopic and 
hedging demand for the risky asset are zero when xt is at its mean. 
Unfortunately, we have been unable to derive comparable analyti- 
cal results about the signs of a and bl when jt + vu2/2 # 0. 
However, in numerical explorations we have found that with -y > 1 
andu,|u < 0, a* and b1/(1 - 4i) always have the same sign as jt + 
-2a/2 whenever the value function is finite, consistent with our 

intuitive discussion of hedging demand.17 
Panel A in Table III reports the mean optimal allocation to 

stocks as a percentage of total wealth. The mean allocation is 
positive at all levels of -y and Wi. On average, a recursive-utility 
individual with low or moderate levels of risk aversion will short 
the riskless asset in order to hold more than 100 percent of her 
wealth in the risky asset. Large levels of relative risk aversion are 
needed to keep mean stock demand below 100 percent; this is a 
manifestation of the equity premium puzzle in our model with 
exogenous asset returns and endogenous portfolios. 

Panel B in Table III shows that average hedging demand is a 
very important part of total stock demand for investors whose 
relative risk aversion coefficients are not close to one. Average 
hedging demand is calculated using (19), by setting xt = j and 
subtracting from the total risky-asset allocation the total alloca- 

16. Kim and Omberg [1996] give a clear account of this effect [Figure 4 and pp. 
153-154]. 

17. Kim and Omberg [1996] obtain more general analytical results for their 
simpler model with utility defined over terminal wealth. 
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To interpret the patterns in Panel A of Table IV, consider first 
the right-hand column of the panel. This gives the exponentiated 
mean optimal log consumption-wealth ratio for an individual who 
is extremely reluctant to substitute consumption intertemporally 
(4' = o4o, close to zero). Such an individual wishes to maintain a 
constant expected consumption growth rate regardless of current 
investment opportunities. She can do this by consuming the 
long-run average return on her portfolio, with a precautionary- 
savings adjustment for risk. But in our model both the risk and 
the average return are endogenous. If the investor is highly 
risk-averse, as she is at the bottom of the column (-y = 40), then 
she holds almost all her wealth in the riskless asset and earns a 
low return with little risk; if she is close to risk-neutral, as she is 
at the top of the column (y = 0.75), she borrows at the riskless 
interest rate to earn a high but risky leveraged return. This 
explains why the mean consumption-wealth ratio is so much 
higher at the top of the column than at the bottom. 

To clarify this interpretation, Panel B in Table IV reports the 
unconditional mean log portfolio return, E[rpt+i].18 The mean log 
returns in the right-hand column are close to the optimal consump- 
tion-wealth ratios given in the right-hand column of the upper 
panel (Panel A). They are particularly close at high levels of risk 
aversion, shown at the bottom of the tables; at the top of the 
panels the two variables diverge because the mean log return 
reaches a maximum when the coefficient of relative risk aversion 
y = 1, and starts to fall when risk aversion declines from this 
level, whereas the optimal consumption-wealth ratio keeps on 
rising as y falls below one. The investor with unit risk aversion 
maximizes the conditional expectation of the log portfolio return; 
hence this investor must also have the highest unconditional 
expected log portfolio return. The increase in the average consump- 
tion-wealth ratio as y falls below one is caused by the precaution- 

18. We can compute the long-term or unconditional expected log return on 
wealth by taking unconditional expectations in Lemma 4 of Appendix 1, i.e., by 
calculating E[Et(rpt+ )], which gives 

E[rpt+,] = rf + PO + PlEXt + p2E4t 

= rf + po + Ply + P2(Ux2 + i2), 

where po, p1, and P2 are functions of ao and a1 defined in Lemma 4. We can rewrite 
Po, P1, andp2 as functions of the normalized parameters a* and a1 by noticing that 

ao - al((ou/2). 
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ary savings effect, which turns negative when ip and y are on the 
same side of unity as shown in equation (13). 

Now consider what happens as the individual becomes more 
willing to substitute intertemporally; that is, as ip increases and 
we move to the left in Panel A of the table. Equation (20) helps us 
understand this. If we hold fixed the variance terms in (20), the 
derivative of ct - wt with respect to ip is -[p/(1 - p)](Et[(1 - p)/p] 

1j'71 pJrp t~j + log 8), which is negative if the long-run expected 
portfolio return exceeds the rate of time preference and positive 
otherwise. Ignoring precautionary savings effects, an individual 
who is willing to substitute intertemporally will have higher 
saving and lower current consumption than an individual who is 
unwilling to substitute intertemporally if the time-preference- 
adjusted rate of return on saving is positive, but will have lower 
saving and higher current consumption if the adjusted return on 
saving is negative. Panel A in Table IV illustrates this pattern. 
Investors with low risk aversion y at the top of the table choose 
portfolios with high average returns, so a higher elasticity of 
intertemporal substitution ip corresponds to a lower average 
consumption-wealth ratio. Highly risk-averse investors at the 
bottom of the table choose safe portfolios with low average 
returns, so for these investors a higher ip corresponds to a higher 
average consumption-wealth ratio. 

Our discussion so far has concentrated on the average level of 
consumption in relation to wealth. We now give some intuition 
about the sensitivity of the optimal ratio to the state variable xt. 
Although we have noted that the slope of the optimal consumption 
policy is always small in absolute value relative to the intercept, 
Figure II shows that around the mean of the state space it is 
negative when ip > 1, and positive when ip < 1. Moreover, it 
increases in absolute value as y decreases. The intertemporal 
substitution effect and the portfolio composition effect explain this 
pattern. As xt increases in the neighborhood of its positive mean, 
so does the expected return on wealth, causing income and 
substitution effects on consumption. When ii > 1, the substitution 
effect dominates, and the investor will cut consumption to exploit 
favorable investment opportunities. When 4i < 1, the income effect 
dominates, and the investor will increase consumption because a 
given quantity of wealth can sustain a greater flow of consump- 
tion. The effect of risk aversion appears because the state variable 
xt increases only the expected return on the risky asset, not the 
expected return on the riskless asset. An investor with a low risk 
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TABLE V 
VOLATILITY OF CONSUMPTION GROWTH AND VOLATILITY OF THE LOG 

CONSUMPTION-WEALTH RATIO 

R.R.A. E.I.S. 

(A) Volatility of consumption growth: 
u(Act+l - EJ[A Ct+1]) X 100 

11.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40 
0.75 37.12 31.17 27.41 26.12 24.71 24.13 23.97 23.90 
1.00 33.44 27.47 23.49 22.08 20.55 19.91 19.74 19.66 
1.50 27.43 22.32 18.63 17.28 15.83 15.26 15.11 15.05 
2.00 23.07 18.84 15.62 14.41 13.12 12.65 12.54 12.49 
4.00 13.93 11.63 9.69 8.93 8.16 7.95 7.92 7.92 

10.0 6.31 5.42 4.61 4.29 3.99 3.97 4.00 4.02 
20.0 3.29 2.87 2.47 2.31 2.17 2.19 2.21 2.22 
40.0 1.68 1.48 1.28 1.20 1.14 1.15 1.17 1.18 

(B) Volatility of the consumption-wealth ratio: 
(T(Ct+l - Wt+l - Et[ct+l - w t+1]) X 100 

1/.75 1.00 1/1.5 1/2- 1/4 1/10 1/20 1/40 
0.75 8.97 0.00 6.72 9.49 13.12 15.02 15.61 15.90 
1.00 7.77 0.00 6.07 8.65 12.03 13.86 14.43 14.71 
1.50 6.11 0.00 5.13 7.38 10.47 12.15 12.69 12.95 
2.00 5.04 0.00 4.45 6.48 9.30 10.90 11.41 11.67 
4.00 2.94 0.00 2.92 4.38 6.55 7.85 8.28 8.49 

10.0 1.30 0.00 1.44 2.22 3.46 4.27 4.55 4.69 
20.0 0.67 0.00 0.78 1.22 1.94 2.41 2.58 2.66 
40.0 0.34 0.00 0.41 0.64 1.03 1.28 1.38 1.42 

Panel A reports the percentage unconditional standard deviation of quarterly log consumption innova- 
tions for different levels of relative risk aversion and elasticities of intertemporal substitution, while Panel B 
reports the percentage unconditional standard deviation of innovations in the quarterly log consumption- 
wealth ratio. These numbers are all based on the parameter estimates for the return process reported in Table 
II (sample period 1947:1-1995:4). The values on the main diagonal correspond to the power utility case. 

aversion coefficient is more heavily invested in the risky asset, 
and thus her expected portfolio return is more sensitive to 
changes in xt. 

Finally, we consider the implications of the consumption rule 
for the volatility of consumption relative to past expectations and 
relative to wealth. Panel A in Table V reports the unconditional 
standard deviation of consumption innovations for each set of 
preferences we have considered, and Panel B reports the uncondi- 
tional standard deviation of innovations in the log consumption- 
wealth ratio. 

Panel A in Table V shows that investors with low risk 
aversion have extremely volatile consumption growth, for their 
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consumption inherits the volatility of their portfolios. Investors 
with unit elasticity of substitution in consumption have constant 
consumption-wealth ratios, and so their consumption volatility 
equals their portfolio volatility. Investors with low elasticity of 
intertemporal substitution have somewhat less volatile consump- 
tion, because they react to mean-reversion in stock returns by 
cutting their consumption-wealth ratios when the stock market 
rises. A 1 percent innovation in wealth causes these investors to 
increase consumption by less than 1 percent; they know that a 1 
percent increase in consumption could not be sustained, even with 
1 percent greater wealth, because the increase in wealth is 
accompanied by a decrease in expected portfolio returns. Inves- 
tors with high elasticity of intertemporal substitution respond to 
the decrease in expected returns by cutting saving, so their 
consumption is more volatile than their portfolio returns. Similar 
results are reported by Campbell [1996] for a model with an 
exogenous portfolio return process. 

Panel B in Table V shows that investors with elasticities of 
intertemporal substitution different from one have volatile con- 
sumption-wealth ratios, because they do not consume a fixed 
fraction of their wealth each period, but a varying fraction that 
changes with the expected excess return on the risky asset. The 
volatility of the consumption-wealth ratio is increasing in the 
distance of the elasticity of intertemporal substitution from one, 
and is decreasing in risk aversion since less risk-averse investors 
have riskier portfolios whose expected returns are more sensitive 
to changes in investment opportunities. 

1V5. Portfolio Allocation and Consumption over Time 

Our results can also be summarized by plotting the optimal 
equity allocations and consumption-wealth ratios over time. 
Figure III does this for preference parameters 1+ = V4,w = 41, 
corresponding to power utility with moderate risk aversion, and 
i+ = 4,-y = 201, corresponding to a higher level of risk aversion. 
The upper plot of each figure shows the optimal equity allocations, 
while the lower plot shows the optimal consumption-wealth 
ratios. The horizontal lines in the equity-allocation plots repre- 
sent 0 percent and 100 percent holdings. 

The figures show that stock holdings are highly volatile while 
the optimal ratio of consumption to wealth is more stable, but 
spikes up in periods where expected returns and optimal stock 
holdings are unusually high. The investor with lower risk aver- 
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sion holds on average a much larger proportion of her wealth in 
stocks, and her consumption-wealth ratio is also larger on average 
and more volatile. But both investors are keen stock-market 
participants. In our model investors do not face restrictions on 
short sales, so we allow the optimal allocation to stocks to be 
either larger than 100 percent or negative. Figure III shows that 
in the U. S. postwar period both investors are long in stocks 
almost always, and the less risk-averse investor usually wants to 
short the riskless asset and invest more than 100 percent of her 
wealth in the market, except in periods of unusually low dividend 
yields such as the early 1970s and the mid-1990s. 

Barberis [1999] has obtained similar results for a Bayesian 
investor who maximizes power utility defined over terminal 
wealth and uses the log dividend-price ratio as a state variable; 
with a ten-year investment horizon and access to historical data 
over the period 1927-1993, Barberis' investor, who is not allowed 
to short assets, is mostly 100 percent invested in stocks. Brennan, 
Schwartz, and Lagnado [1997] have studied a similar problem 
with power utility of terminal wealth, three state variables, three 
assets, and frequent portfolio rebalancing. They also do not allow 
short sales, and their optimal strategy for the period 1972-1992 
often switches between 100 percent cash and 100 percent stocks. 
Their optimal strategy is more volatile than Barberis' or ours 
because they allow for a larger number of state variables. 
Brennan, Schwartz, and Lagnado also include long-term bonds in 
their analysis, but bonds do not play a major role in the optimal 
portfolio. 

IV6. The Accuracy of the Solution 

The analytical solutions we present in this paper are exact 
only in the limit where time is continuous, and for parameter 
values that imply a constant consumption-wealth ratio (+ = 1 or 
constant expected returns). For other parameter values our 
solutions are only approximate. One way to assess their accuracy 
is to compare them with solutions obtained using standard 
numerical methods. 

In Campbell, Cocco, Gomes, Maenhout, and Viceira [1998], 
we have solved numerically for optimal policy functions in the 
calibrated model of this paper. The numerical solution discretizes 
the state space and approximates the distribution for the innova- 
tions in the random variables using Gaussian quadrature with 
nine quadrature points. The numerical method assumes that the 
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portfolio allocation rule is a pth-order polynomial in the state 
variable-in practice a third-order polynomial is adequate-and 
uses a variant of the Newton-Raphson algorithm to optimize over 
the coefficients of this polynomial. 

The numerical solutions we obtain are very similar to the 
approximate analytical solutions, except at the upper extreme of 
the state space where both the numerical consumption and 
portfolio allocation rules flatten out. Figure IV illustrates this in 
the four cases we obtain when we combine + = 11/75,1,41 and -y = 
{4,201. The approximate analytical solution and the numerical 
solution are particularly close between the vertical lines in the 
plot that delimit the interval (,u - 2ux,,u + 2u,), but they do tend 
to diverge at the right side of the plot where the state variable xt is 
more than two standard deviations above its mean. The diver- 
gence is more serious when -y = 4 than when By = 20, because the 
investor with By = 4 holds a riskier portfolio with a more volatile 
expected return; the effect of this- outweighs the greater utility 
curvature for the investor with By = 20. For the same reason, the 
divergence of the approximate from the numerical solution would 
be smaller in a model with a more stable expected return on the 
risky asset. Full details are provided in Campbell, Cocco, Gomes, 
Maenhout, and Viceira [1998]. 

V. THE UTILITY COSTS OF SUBOPTIMAL PORTFOLIO CHOICE 

We have shown that a long-term investor who optimally 
responds to the estimated predictability of stock returns will both 
time the stock market and use stocks to hedge against deteriora- 
tions in the investment opportunity set. However, we have not yet 
shown that optimal timing and hedging produce large utility 
gains. If the utility gains are small, they might easily be out- 
weighed by small costs of formulating and executing the optimal 
policy. 

To address this issue, we use our approximate analytical 
method to solve the intertemporal optimization problem of an 
investor who follows an arbitrary portfolio rule but adjusts her 
consumption optimally. We then compute the investor's value 
function per unit of wealth under the suboptimal portfolio rule 
and compare the unconditional expectation of this value function 
with the unconditional expectation of the value function in the 
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unrestricted problem.19 Throughout we assume that the investor 
knows the stochastic process driving the return on the risky asset; 
that is, we ignore the parameter uncertainty addressed by Kandel 
and Stambaugh [1996] and Barberis [1999]. 

We consider three restricted portfolio rules. The first rule 
ignores the timing implied by the optimal portfolio policy and sets 
the equity allocation each period to the average allocation under 
the optimal rule. This is a fixed portfolio rule that allows for 
partial hedging in the spirit of the investment strategy advocated 
by Siegel [1994]. Siegel argues that long-run investors should not 
try to time the stock market, but should buy and hold large equity 
positions because these positions involve little risk at long hori- 
zons. Siegel's estimates of long-run stock market risk are low 
because of the mean-reversion in stock returns that we have 
captured with our VAR system. Thus, one can interpret Siegel's 
strategy as a hedging strategy without market timing. The second 
portfolio rule is the myopic rule that times the market but ignores 
hedging considerations. This rule would be optimal if the covari- 
ance u-quwere zero. The third rule sets the equity allocation each 
period to the average allocation under the myopic rule, ignoring 
both timing and hedging considerations. 

Table VI describes the optimal consumption rules implied by 
the restricted portfolio rules. For comparison it also includes in its 
first row the optimal consumption rule (27) under the optimal 
portfolio rule (26). The parameters of these rules of course depend 
on the exogenous parameters of the model, but to save space, we 
do not give further details here. 

The top left panel of Table VII reports the unconditional mean 
of the value function per unit of wealth that is implied by the 
optimal, unrestricted consumption and portfolio rules in the 
calibrated example discussed in the previous section. The other 
three panels report the percentage change in the value function 
when portfolio choice is restricted to one of the suboptimal rules 
described above. 

The table shows that suboptimal portfolio choice can cause 
large losses in utility. Failing to hedge intertemporally is harm- 
less when risk aversion My = 1, since in this case the optimal 
portfolio is myopic, but it can be a serious error for investors with 
My > 1. The losses from failing to hedge increase at first as risk 

19. The implied value functions are exponentials of quadratic or linear 
functions of the state variable. The results in Constantinides [1992] allow us to 
obtain explicit formulas for their unconditional expectations. 
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TABLE VI 
OPTIMAL CONSUMPTION RULES IMPLIED BY RESTRICTED PORTFOLIO RULES 

Portfolio rule Optimal consumption rule 
given portfolio rule 

Hedging 

Timing at = ao + al(xt + u /2) ct - wt b* + b*(xt + ur/2) 
+ b2(xt + U2/2) 

No-timing at = a* + al(y + U2 /2) c t - wt b hnt + bhit (xt + U2/2) 

No-hedging 

Timing xt + (X2/2 ct - Wt = brit + b nh t(xt + U(2/2) 

at 
= 

2 
+ bilit (xt + (2 /2) 

No-Timing Y + (X2/2 ct - Wt = bihnt + b nhtnt(xt + (Y2/2) 
at = 2 

-y(t 

The second column in Table VI describes the consumption rule followed by an investor who adjusts 
consumption optimally given the portfolio rule described in the first column of the table. The first row 
describes the optimal consumption rule implied by the unconstrained optimal portfolio rule. This rule is 
state-dependent and includes a hedging component. Therefore, the first row of the table describes the solution 
to the intertemporal optimization problem we solve in Section III. The second row describes the optimal 
consumption rule followed by an investor who follows a suboptimal portfolio rule consisting in allocating to 
stocks each period a fixed fraction of her savings that equals the average allocation to stocks implied by the 
optimal portfolio rule. Therefore, this investor ignores timing in her portfolio decisions, though she allows for 
(imperfect) hedging. The third row of the table describes the optimal consumption rule followed by an investor 
who follows a myopic portfolio rule. This suboptimal portfolio rule ignores hedging, but it is time-dependent. 
Finally, the fourth row of the table describes the optimal portfolio rule followed by an investor who ignores 
both hedging and timing and invests in stocks each period a fixed fraction of her savings that equals the 
average myopic allocation to stocks. 

aversion increases above one, but eventually diminish as ex- 
tremely risk-averse investors have only very small equity posi- 
tions and thus have little to hedge. Failing to time the market 
causes large losses for all investors except those who are ex- 
tremely risk-averse but extremely willing to substitute consump- 
tion intertemporally. For all parameter values we consider, the 
failure to time the market causes larger utility losses than the 
failure to hedge intertemporally. These results confirm, for a 
variety of investors with different levels of risk aversion and 
elasticity of intertemporal substitution, the findings of Balduzzi 
and Lynch [1997b] for finite-horizon investors with isoelastic 
preferences defined over wealth and relative risk aversion coeffi- 
cients of 2, 6, and 10.20 The results are also compatible with the 

20. Balduzzi and Lynch find that utility losses increase with the horizon of the 
investor. Since we consider an infinite horizon, this helps to explain why we obtain 
somewhat larger utility costs than they do for similar levels of risk aversion. 
Balduzzi and Lynch also find that utility costs remain substantial in the presence 
of fixed and proportional transaction costs. 
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findings of Kandel and Stambaugh [1996] and Barberis [1999] 
that Bayesian investors experience large gains in certainty- 
equivalent return when they optimally respond to evidence of 
predictability in stock returns. 

VI. CONCLUSION 

One of the major objectives of modern financial economics has 
been to put investment advice on a scientific basis. This task has 
been accomplished for investors who have short horizons or 
constant investment opportunities. Unfortunately, most investors 
have long horizons, and there is considerable evidence that they 
face time-varying expected returns on risky assets. Until very 
recently financial economists have not even attempted to give 
such investors precise quantitative advice about their portfolio 
strategies. 

Recent work on long-horizon portfolio choice has generally 
ignored the consumption decision and has considered portfolio 
choice for investors who consume nothing until a fixed terminal 
date.21 Our objective has been to analyze a model in which 
investors optimize over both consumption and portfolio allocation. 
Because the intertemporal consumption and portfolio choice 
problem is highly intractable when expected returns are time 
varying, we have resorted to an analytical approximation. We 
have replaced the Euler equations and budget constraint of the 
exact problem with approximate equations that are much easier 
to solve, and we have explored in detail the analytical solution of 
the approximate problem. 

We have used Epstein-Zin-Weil recursive preferences to 
separate the influence of risk aversion and the elasticity of 
intertemporal substitution on portfolio choice and consumption. 
We have shown, for example, that portfolio choice depends on the 
elasticity of intertemporal substitution only indirectly through 
the effect of this elasticity on the average level of consumption 
relative to wealth. 

We have used our model to assess the quantitative impor- 
tance of intertemporal hedging demand for risky assets by 
long-lived investors. After calibrating the model to postwar quar- 
terly U. S. stock market data, we find that intertemporal hedging 

21. Very recent exceptions to this statement include Brandt [1999] and some 
cases analyzed in Balduzzi and Lynch [1997a,1997b]. 
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motives can easily double the average total demand for stocks by 
investors whose coefficients of relative risk aversion exceed one. 
We also find that suboptimal myopic portfolio rules imply large 
utility losses for such investors. These results support the conclu- 
sion of other recent papers such as Barberis [1999], Balduzzi and 
Lynch [1997a, 1997b], Brandt [1999], Brennan, Schwartz, and 
Lagnado [1997], and Kim and Omberg [1996] that static models of 
portfolio choice can be seriously misleading. Intertemporal portfo- 
lio choice should not remain an abstruse theoretical topic, but 
should be integrated into empirical research and investment practice. 

An important caveat is that our analysis is partial equilib- 
rium in nature. We solve the macroeconomic problem of a given 
investor facing exogenous asset returns, but we do not show how 
these asset returns could be consistent with general equilibrium. 
One possibility is that the representative investor has different 
preferences from those assumed here, perhaps the habit- 
formation preferences of Campbell and Cochrane [1999] that can 
generate shifts in risk aversion and hence changing risk premi- 
ums with a constant riskless interest rate. In this setting the 
model has only limited applicability, since it describes the behav- 
ior of atypical investors whose risk aversion is constant over time. 
Alternatively, if all investors have the preferences assumed here, 
their portfolio shifts could be supported in general equilibrium by 
shifting asset supplies. Supplies of stock would have to fall with 
the risk premium to accommodate investors' desire to reduce their 
stockholdings. But such shifts in supplies are unlikely to be 
consistent with macroeconomic data on aggregate portfolio shares. 

Another caveat has to do with approximation error. Our 
approximate solution is exact when the elasticity of intertemporal 
substitution is one and the time interval between consumption 
and portfolio decisions is infinitesimally small. In a companion 
paper [Campbell, Cocco, Gomes, Maenhout, and Viceira 1998] we 
have checked the accuracy of the analytical approximate solution 
in other cases by comparing it with a discrete-state numerical 
solution in our calibrated example. We have found that our 
solution is generally a good approximation to the true solution, 
but the approximation error does increase when the state variable 
is more than two standard deviations above its mean. We have 
also found that the numerical solution algorithm converges much 
more rapidly and reliably when we are able to provide starting 
values from the approximate solution. 
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and 

rpt+l - Etrp,t+l (aO + alxt)ut+i, 

where 

Go= aO(I - ao)(u 2z/2). Po It-(1 -- 

P1= ao + al(l - 2ao)(C2/2) 

P2 = a - a,( u/2). 

Proof of Lemma 4. From (16) and our guess (i) on the optimal 
portfolio rule, we have that 

Etrpt+l = ultEt[rj't+j - rf] + rf + (o2 /2)tt(l - at) 

= (aO + alxt)xt + rf + (u2/2)((ao + alit) - (aO + alxt)2), 

where the last line follows from (2). Reordering terms, we get a 
quadratic expression in xt whose coefficients are those given in the 
statement of the proposition. 

The expression for rpt+1 - Etrpt+l also follows from (16) 
and guess (i), as well as (Al)-constant rf -and (A2)-(2), 

(29) rpt+l - Etrp,t+l = xt((rj,t+j - rf) - Et[rl,t+l - rf]) 

= (aO + alxt)ut+i. 

EL 

LEMMA 5. Expected optimal consumption growth over the next 
period is quadratic in the current state variable, and unex- 
pected consumption growth is linear in the current state 
variable: 

EtAct+l = Etrpt+l + Et[ct+l - wt+]- - (ct - wt) + k 

= Co + clxt + C2Xt, 

Act+i - EtAct+l = (aO + aixt)ut+l + blqt+l 

+ b2(2u(1 - I) + 2+xt),qt+j + b2(,t2q1 - (T), 
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where 

2 
co = rf + ao(l - ao) 2 + k + bo 1 - -h + bl(y(l - ) 

+ b2(j2(1 - 4)2 + U2) 
2 I1\~~2 

cl ao + al(1 - 2aO) 2 + b - + b2(21z(1-l 2 pj 

a,1- a2 - + b2(+2 - -) 

Proof of Lemma 5. From (18) and (15) we can write 

(30) Act+, = rpt+l + (ct+l - wt+i) - (1/p)(ct - wt) + k. 

Therefore, 

EtAct+l = Etrp,t+l + Et(ct+l - wt+i) - - (ct - wt) + k 
p 

= Po + PlXt + p2Xt2 rf 

+ b(1 ) Etxt+ - -xt + b - + k 

= ao(l - ao) 2 + (ao + a - aoal(u)xt + a,(1 - a 2)Xt 

+ rf + b0(o 1 p + bi[u(1 - 4) + - 

+ b4[t2(1 - 4)2 + U2 + 2yu4(1 - 4)xt + (22 - + k, 

where the second equality follows from Lemma 4 and our guess (ii) 
on the optimal consumption policy, and the last equality follows 
from (3) and Lemmas 1 and 2. Reordering terms, we get the 
expression for Etlct+l in the lemma as well as Ico,c1,c22. 

The expression for unexpected consumption growth follows 
from (30), the expression for the unexpected portfolio return 
derived in Lemma 4, and from noting that our guess (ii) on the 
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Proof of Lemma 6. From (13), (15), and (18) we have 

1 
p t= - ( vart (A-ct+i - 4arpt+i) 

1 
- _ Et[(ct+l - EtAct+) - (rpt+l -Etrpt+l)]2 

1 0 
- _() Et[(1 - 4j)(rpt+l - Etrpt+i) 

+ (ct+l - wt+i) - Et(ct+l - Wt+,)]2. 

If we substitute in the bracketed expression above (29) and (31) 
for (rpt+l - Etrpt+i) and (ct+1 - wt+i) - Et(ct+l - wt+i) and com- 
pute Et under assumptions (A2) and (A3), we find that vp t is a 
quadratic function of xt, with the coefficients given in the state- 
ment of the lemma. EZ 

LEMMA 7. The parameters defining the optimal consumption rule 
(ii) satisfy the following three-equation system: 

2 

O= k - t log 8 + (1 - lj)rf + (1 - l)ao(1 - ao) 2 

1~~~~~~~~~ 

+ bo1 -- + bl(jt(l - 4)) + b2(j2(1 - 4)2 + U2) 

V1 =ao(1 - 4') + (1 - t')aj(l - 2ao) 2U + bl(4 - ) 

+ b2(2jt+(1 - 

v2=al(l -4')- (1 - q)a2l + b2(42 \) 
Proof of Lemma 7. This follows from the log-linearized Euler 

equation for the optimal portfolio given in (12), and Lemmas 4, 5, 
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LEMMA 9. The covariance between unexpected stock returns and 
changes in the expected value of the intercept in the Euler 
equation (13) is linear in the state variable: 

covt (rlt+l - Etrl,t+i,(Et+l - Et)I piv,,t+j = ((v1 + 2V2j) 1 

- 2v2 1- 

+ 2V21 _ p Uqu xt, 

where {vo,v1,v2} are given in Lemma 6. 

Proof ofLemma 9. Lemma 6 implies that 

(Et+, - Et) E pivp~t+j = v1E pi(E t+1 - Et)xt+j 
j=l j=l 

+ V2 I pi(E t+1 - Et t+j7 
j=1 

which is identical to the expression given in the proof of Lemma 8, 
except that we have v1 and v2 instead of p1 and P2. Therefore, we 
must have that 

(Et+, - Et) I pjvpt+ i = Vi1 + 2V2(Xt - j) 

+2V2Y 1 
t+l 

P 2 P 2 
+ V2 -p(2T nt+1-V2 p(V V 

from which the lemma follows, under the distributional assump- 
tions (A2) and (A3). E 
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+ [-B21A11 - B22 + (V22 - B25)AjjA2O + V24A20]b1 

+ [-B21A12 - B23 + (V22 - B25)(AlOA21 + A12A20) 

+ V23A10 + V25A20- B24A2-1b2 

+ [V21 + (V22 - B25)A12A21 + V23A12 + V25A21]b2 

+[(V22 - B25)AjjA21 + V23A11 + V24A21 + V26]blb2, 

0 = (V31 - B33)A20 - B31A 

+ [2(V31 -B33)A20A2 

- B31A21 - B32 + V33A20]b2 

+ [(V31 - B33)A21 + V32+ V33A21]b2. D 

APPENDIX 3: PROOFS OF PROPERTIES 

Proof of Property 1 

The approximate value function per unit of wealth obtains by 
direct substitution of guess (ii) into (11). We now use equation (23) 
to characterize b2. This equation is 

0 = A30 + A31b2+ A32b22 

Substituting Aij's for their values, we get 

(35) 0= 2 - [l 2 )4 + --b2 

[2(1 - y)4+2[U21)U - 
2 2 

This equation has two roots, that we denote 1b21,b22}. A sufficient 
(but not necessary) condition for these roots to be real is that 

A32A30 
' 

0; 

i.e., 

(1-)(2[ffy2 + *0-(U 2-(T u)] 

2U4 'y o- 

This is always true when -y 1, since (1 - y) ' 0; 

(36) 2U 
2 

2U = U 2 
u2(1 - corr (u )2) 2 

0; 
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Substituting y = 1 in Proposition 1, we obtain the same myopic 
portfolio rule as with log utility. It is straightforward to see that 
this rule maximizes the conditional expectation of the log portfolio 
return. However, the consumption-wealth ratio is no longer 
constant unless t = 1, as we can see from Lemma 7 in Appendix 1. 
Therefore, unit relative risk aversion implies a myopic optimal 
portfolio policy and a nonmyopic optimal consumption policy. 
Giovannini and Weil [1989] emphasize this result. D 

Part b. When 4i - 1, the equation system in Proposition 2 
delivers b1 = b2 =0 and 

bo = (p/(l - p))(k - log 6). 

After substituting for the value of k, this result simplifies to 

(40) bo = log (1 - p). 

Moreover, we know from standard arguments that p = 6. There- 
fore, it is optimal for the individual to consume each period a fixed 
fraction of her wealth. Following Giovannini and Weil [1989], we 
call this optimally constant propensity to consume out of wealth a 
myopic consumption policy. 

However, the agent's optimal portfolio policy is not myopic. 
This is because, from equation (41) in the proof of Property 3 
below, we have that b2/(1 - 4i) and b1/(l - 4i) are nonzero con- 
stants independent of 4i for given p. Therefore, when i = 1, the 
terms in 1b1,b2l in the system defining the optimal portfolio policy 
in Proposition 1 do not vanish, and a nonmyopic portfolio policy 
obtains. Giovannini and Weil [1989] also emphasize this result. 

Part c. The values for bo, bl, and b2 obtain from the proof for 
Part b. Substituting fory = 1 into Proposition 1, we obtain ao = 0 2 
and a, 1/u. D 

Part d. With constant expected returns, uqu = 0. From 
Proposition 1 we obtain the same portfolio policy as in the log 
utility case, except that -y # 1: a0 = 1/(2y), and a, = 1/yu2. Also, 
since xt is deterministic, (31) implies that ct - wt is constant. This 
is the well-known result for the optimal portfolio rule when 
returns are i.i.d. D 

Proof of Property 4 

A straightforward analysis of the solutions to equations 
(22) and (23) in Proposition 2 shows that we can write b1 and 
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b2as 

b 1 = (+- 1)f(-y,p), 

(41) b2 = 1)f2(-y,p), 

where f1(y,p) and f1(y,p) are functions that do not depend on 4. 
After substitution in the equation system in Proposition 1, we find 
that the parameters defining the optimal portfolio rule, Iao,al}, do 
not depend on 4i for given p. However, p itself is a function of 
4i-recall that p = 1 - exp IE[ct - wt]}-so the optimal portfolio 
rule depends on q indirectly through p. D 

Proof of Property 5 

To prove this result, note that equation (23) in Proposition 2, 
that determines b2, is found by equating the right-hand side of the 
third equation in Lemmas 6 and 7, and substituting out a, using 
the second equation in Proposition 1. None of these equations 
depend on jt. F 
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