ON SHARP BURKHOLDER–ROSENTHAL-TYPE INEQUALITIES FOR INFINITE-DEGREE U-STATISTICS

Victor H. DE LA PEÑA a,1, Rustam IBRAGIMOV b,2, Shaturgun SHARAKHMETOV c

a Department of Statistics, Columbia University, 2990 Broadway, New York, NY 10027, USA
b Department of Economics, Yale University, 28 Hillhouse Ave., New Haven, CT 06511, USA
c Department of Probability Theory, Tashkent State Economics University, Ul. Uzbekistanskaya, 49, Tashkent, 700063, Uzbekistan

Received 15 March 2001, revised 11 March 2002

ABSTRACT. – In this paper, we present a method that allows one to obtain a number of sharp inequalities for expectations of functions of infinite-degree U-statistics. Using the approach, we prove, in particular, the following result: Let D be the class of functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ such that the function $f(x + z) - f(x)$ is concave in $x \in \mathbb{R}_+$ for all $z \in \mathbb{R}_+$. Then the following estimate holds:

$$Ef\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l})\right) \leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} Ef\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n \setminus \{j_1, \ldots, j_q\}} E\left(Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l}) \mid X_{j_1}, \ldots, X_{j_q}\right)\right)$$

for all $f \in D$ and all U-statistics $\sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l})$ with nonnegative kernels $Y_{i_1, \ldots, i_l} : \mathbb{R}^l \to \mathbb{R}_+$, $1 \leq i_k \leq n$; $i_r \neq i_s$, $r \neq s$; $k, r, s = 1, \ldots, l$; $l = 0, \ldots, m$, in independent r.v.’s X_1, \ldots, X_n. Similar inequality holds for sums of decoupled U-statistics. The class D is quite wide and includes all nonnegative twice differentiable functions f such that the function $f''(x)$ is nonincreasing in $x > 0$, and, in particular, the power functions $f(x) = x^t$, $1 < t \leq 2$; the power functions multiplied by logarithm $f(x) = (x + x_0)^t \ln(x + x_0)$, $1 < t < 2$, $x_0 \geq \max\left(e^{(3t^2 - 6t + 2)/(t(t-1)(2-t)}), 1\right)$; and the entropy-type functions $f(x) = (x + x_0) \ln(x + x_0)$, $x_0 \geq 1$. As an application of the results, we determine the best constants in Burkholder–Rosenthal-type inequalities for sums of U-statistics and prove new decoupling inequalities for U-statistics.

E-mail addresses: vp@stat.columbia.edu (V.H. de la Peña), rustam.ibragimov@yale.edu (R. Ibragimov), tim001@tseu.silk.org (S. Sharakhmetov).

1 Supported in part by a NSF grant DMS/99/72237.

2 The author thanks Victor de la Peña and the Department of Statistics, Columbia University, for their hospitality during his visits in 1999–2000.
those objects. The results obtained in the paper are, to our knowledge, the first known results on the best constants in sharp moment estimates for U-statistics of a general type.

© 2002 Éditions scientifiques et médicales Elsevier SAS

MSC: primary 60E15; secondary 60F25

Keywords: Infinite degree U-statistics; Burkholder–Rosenthal-type inequalities; Decoupling inequalities

1. Introduction

particular, the following Burkholder–Rosenthal-type inequality:

In this paper, we present a method that allows one to obtain sharp inequalities for expectations of sums of multilinear forms in independent nonnegative and symmetric r.v.'s. de la Peña et al. [10] found the best constants in Burkholder–Rosenthal-type inequalities for bilinear forms in the case of the fixed number of random variables (r.v.’s). de la Peña et al. [2] determined the best constants in Burkholder–Rosenthal-type inequalities for sums of multilinear forms in independent nonnegative and symmetric r.v.’s.

In this paper, we present a method that allows one to obtain sharp inequalities for expectations of sums of multilinear forms in independent nonnegative and symmetric r.v.’s.

In particular, for the power functions $f(x)$ by logarithm

In the Burkholder–Rosenthal-type estimates for U-statistics the following inequalities

In particular, the following Burkholder–Rosenthal-type inequality:

$$Ef\left(\sum_{l=0}^{m} \sum_{1 \leq i_{1} \prec \cdots \prec i_{l} \leq n} Y_{i_{1}, \ldots, i_{l}}(X_{i_{1}}, \ldots, X_{i_{l}})\right)$$

$$\leq \sum_{q=0}^{m} \sum_{1 \leq j_{1} \prec \cdots \prec j_{q} \leq n} Ef\left(\sum_{l=q}^{m} \sum_{i_{1} \prec \cdots \prec i_{l-q} \in [1, \ldots, n] \setminus \{j_{1}, \ldots, j_{q}\}} E\left(Y_{j_{1}, \ldots, j_{q}, i_{1}, \ldots, i_{l-q}}(X_{j_{1}}, \ldots, X_{j_{q}}, X_{i_{1}}, \ldots, X_{i_{l-q}}) \mid X_{j_{1}}, \ldots, X_{j_{q}}\right)\right)$$

for all U-statistics $\sum_{1 \leq i_{1} \prec \cdots \prec i_{l} \leq n} Y_{i_{1}, \ldots, i_{l}}(X_{i_{1}}, \ldots, X_{i_{l}})$ with nonnegative kernels $Y_{i_{1}, \ldots, i_{l}} : \mathbb{R}^{l} \to \mathbb{R}_{+}$, $1 \leq i_{k} \leq n$; $i_{t} \not= i_{s}$, $r \not= s$; k, r, $s = 1, \ldots, l$; $l = 0, \ldots, m$ $(Y_{1, \ldots, 1} \equiv \text{const} \geq 0$ for $l = 0)$ in independent r.v.'s X_{1}, \ldots, X_{n} and all functions $f : \mathbb{R}_{+} \to \mathbb{R}_{+}$ such that the function $f(x + z) - f(x)$ is concave in $x \in \mathbb{R}_{+}$ for all $z \in \mathbb{R}_{+}$. A similar inequality holds for sums of decoupled U-statistics. The above condition is satisfied for all twice differentiable functions f such that the function $f''(x)$ is nonincreasing in $x > 0$, and, in particular, for the power functions $f(x) = x^{t}$, $1 < t \leq 2$; the power functions multiplied by logarithm $f(x) = (x + x_{0})^{t} \ln(x + x_{0})$, $1 < t < 2$, $x_{0} \geq \max(e^{(2t^{-1}d^{-1} - 1/2) / (2-1)} - 1)$; and the entropy-type functions $f(x) = (x + x_{0})\ln(x + x_{0})$, $x_{0} \geq 1$. As an application of the results, we determine the best constants in Burkholder–Rosenthal-type inequalities for sums of regular and decoupled U-statistics with nonnegative kernels and prove new decoupling inequalities for sums of U-statistics. We show, for instance, that the constant in the following Burkholder–Rosenthal-type inequality is sharp:

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_{1} \prec \cdots \prec i_{l} \leq n} Y_{i_{1}, \ldots, i_{l}}(X_{i_{1}}, \ldots, X_{i_{l}})\right)^{t}$$

$$\leq \sum_{q=0}^{m} \sum_{1 \leq j_{1} \prec \cdots \prec j_{q} \leq n} E\left(\sum_{l=q}^{m} \sum_{i_{1} \prec \cdots \prec i_{l-q} \in [1, \ldots, n] \setminus \{j_{1}, \ldots, j_{q}\}} E\left(Y_{j_{1}, \ldots, j_{q}, i_{1}, \ldots, i_{l-q}}(X_{j_{1}}, \ldots, X_{j_{q}}, X_{i_{1}}, \ldots, X_{i_{l-q}}) \mid X_{j_{1}}, \ldots, X_{j_{q}}\right)\right)^{t}$$

for all U-statistics $\sum_{1 \leq i_{1} \prec \cdots \prec i_{l} \leq n} Y_{i_{1}, \ldots, i_{l}}(X_{i_{1}}, \ldots, X_{i_{l}})$ with nonnegative kernels $Y_{i_{1}, \ldots, i_{l}} : \mathbb{R}^{l} \to \mathbb{R}_{+}$, $1 \leq i_{k} \leq n$; $i_{t} \not= i_{s}$, $r \not= s$; k, r, $s = 1, \ldots, l$; $l = 0, \ldots, m$, in
independent r.v.'s \(X_1, \ldots, X_n\). A similar result holds for sums of decoupled \(U\)-statistics. To our knowledge, the results obtained in the paper are the first known results on the best constants in sharp two-sided moment estimates for \(U\)-statistics of a general type.

2. Sharp estimates for expectations of functions of sums of \(U\)-statistics

Let \(R_+ = [0, \infty)\), \(1 \leq m \leq n\), \(X_1, \ldots, X_n, X_{p1}, \ldots, X_{pn}\), \(p = 1, \ldots, m\), be independent r.v.'s and let \(Y_{i_1, \ldots, i_l} : R^l \to R_+\), \(1 \leq i_k \leq n\); \(i_r \neq i_s\); \(k, r, s = 1, \ldots, l\); \(l = 0, \ldots, m\), be functions having the property that \(Y_{i_1, \ldots, i_l}(x_1, \ldots, x_l) = Y_{s(i_1), \ldots, s(i_l)}(x_{\pi(1)}, \ldots, x_{\pi(l)})\), \(x_k \in R\), \(k = 1, \ldots, l\), \(1 \leq i_1 \leq \cdots \leq i_l \leq n\), for all permutations \(\pi : \{1, \ldots, l\} \to \{1, \ldots, l\}\), \(l = 2, \ldots, m\) (we assume that \(Y_{i_1, \ldots, i_l} \equiv \text{const} \geq 0\) for \(l = 0\)). Consider the sums of regular \(U\)-statistics (symmetric statistics)

\[
\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l})
\]

and decoupled \(U\)-statistics (symmetric statistics)

\[
\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l}).
\]

In what follows, write

\[
Y^{\text{reg}}(i_1, \ldots, i_l) = Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l}),
\]

\[
Y^{\text{dec}}(i_1, \ldots, i_l) = Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l}).
\]

Denote by \(D\) the class of functions \(f : R_+ \to R_+\) such that the function \(f(x + z) - f(x)\) is concave in \(x \in R_+\) for all \(z \in R_+\). The class \(D\) is quite wide and includes all nonnegative twice differentiable functions \(f\) such that the function \(f''(x)\) is nonincreasing in \(x > 0\) and, in particular, the power functions \(f_1(x) = x^t\), \(1 < t \leq 2\); the power functions multiplied by logarithm \(f_2(x) = (x + x_0)^t \ln(x + x_0)\), \(1 < t < 2\), \(x_0 \geq \max(e^{(t^2 - 6t + 2)/(t(t-1)(2-t))}, 1)\), and the entropy-type functions \(f_3(x) = (x + x_0) \ln(x + x_0)\), \(x_0 \geq 1\). Indeed, if the function \(f''(x)\) is nonincreasing in \(x > 0\), then we have \(f''(x + z) \leq f''(x)\) for all \(x > 0\), \(z \geq 0\), and, therefore, \(f(x + z) - f(x)\) is concave in \(x \in R_+\) for all \(z \in R_+\). It is obvious that \(f''_1(x)\) is nonincreasing in \(x > 0\) and, therefore, \(f_1 \in D\). In addition to that, \(f_{2}''(x) = (x + x_0)^{t-3}((t(t-1)(t-2)) \ln(x + x_0) + 3t^2 - 6t + 2) \leq 0\), \(x > 0\), and, therefore, \(f_2(x)\) is nonincreasing in \(x > 0\), and \(f_2 \in D\). Since \(f_3''(x) = 1/(x + x_0)\) is nonincreasing in \(x > 0\), we have \(f_3 \in D\).

In the inequalities throughout the paper, the extremal cases of the estimates such as \(+\infty \leq +\infty\) are considered to be valid inequalities; we, therefore, do not include assumptions on finiteness of moments of the summand r.v.'s that ensure finiteness of moments of sums of \(U\)-statistics into formulations of the results.

The following theorems give sharp Burkholder–Rosenthal-type inequalities for sums of \(U\)-statistics. In what follows, \(E(\cdot \mid X_{j_1}, \ldots, X_{j_q}) = E(\cdot \mid X_{j_1}, i_{j_1}, \ldots, X_{j_q}, i_{j_q}) = E(\cdot)\), the unconditional expectation operator, for \(q = 0\).
THEOREM 1. — For \(f \in D \),
\[
Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{reg}}(i_1, \ldots, i_l) \right)
\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} Ef \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n, i_l \notin \{j_1, \ldots, j_q\}} E\left(Y^{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right).
\] (1)

THEOREM 2. — For \(f \in D \),
\[
Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{dec}}(i_1, \ldots, i_l) \right)
\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} Ef \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n, i_l \notin \{j_1, \ldots, j_q\}} E\left(Y^{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1}, \ldots, X_{j_q}, X_{i_1}, \ldots, X_{i_{l-q}} \right) \right).
\] (2)

COROLLARY 1. — For a twice differentiable function \(f : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) such that the function \(f''(x) \) is nonincreasing on \(x > 0 \), inequalities (1) and (2) hold.

THEOREM 3. — The constants in the following inequalities are sharp:
\[
E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{reg}}(i_1, \ldots, i_l) \right)^t
\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n, i_l \notin \{j_1, \ldots, j_q\}} E\left(Y^{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t,
\] (3)

\[
E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{dec}}(i_1, \ldots, i_l) \right)^t
\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n, i_l \notin \{j_1, \ldots, j_q\}} E\left(Y^{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1}, \ldots, X_{j_q}, X_{i_1}, \ldots, X_{i_{l-q}} \right) \right)^t,
\] (4)

Remark 1. — It is not difficult to see that moment inequalities (2) and (4) for sums of decoupled \(U \)-statistics follow from their counter-parts (1) and (3) for sums of
regular U-statistics, using the fact that any decoupled U-statistic can be represented as an undecoupled U-statistic with many zero kernels (it suffices to consider new r.v.’s $\tilde{X}_{(p-1)n+i} = X_{p+1}$ for $1 \leq i \leq n$, and new kernels $\tilde{Y}_{i_1,n+i_2,...,(l-1)n+i_l} = Y_{i_1,i_2,...,i_l}$, $1 \leq i_1 < i_2 < \cdots < i_l \leq n$, $l = 0, ..., m$; $\tilde{Y}_{j_1,j_2,...,j_l} = 0$, $1 \leq j_1 < j_2 < \cdots < j_l \leq mn$, $(j_1, j_2, ..., j_l) \neq (i_1, n + i_2, ..., (l-1)n + i_l)$ for $1 \leq i_1 < i_2 < \cdots < i_l \leq n$, $l = 1, ..., m$). In the case of, let us say, sums of multilinear forms the terms in the bounds depend only on the moments of individual terms is significant, as it was shown in [6], see also [5]). In the case of, let us say, sums in terms of expressions that do not contain moments of r.v.’s as an undecoupled U-statistic contain only directly computable expressions. For example, in the case of regular U-statistics of order m in identically distributed r.v.’s the bounds consist of terms equivalent to $n^{(m-k)r+k}E(Y_{ij}(X_1, ..., X_n) | X_1, ..., X_k)^t$, $k = 0, 1, ..., m$ (and each of the terms is significant, as it was shown in [6], see also [5]). In the case of, let us say, sums of multilinear forms the terms in the bounds depend only on the moments of individual variables (see also [2]).

Remark 2. The essence of the Burkholder–Rosenthal-type bounds for sums of U-statistics given by Theorems 1–3 is that they give (sharp) estimates for moments of the sums in terms of expressions that do not contain moments of *sums* of r.v.’s. The bounds contain only directly computable expressions. For example, in the case of regular U-statistics of order m in identically distributed r.v.’s the bounds consist of terms equivalent to $n^{(m-k)r+k}E(Y_{ij}(X_1, ..., X_n) | X_1, ..., X_k)^t$, $k = 0, 1, ..., m$ (and each of the terms is significant, as it was shown in [6], see also [5]). In the case of, let us say, sums of multilinear forms the terms in the bounds depend only on the moments of individual variables (see also [2]).

Remark 3. From the results obtained in [5–9,11] (see also [3]) it follows that the following non-sharp (in the sense of constants) Burkholder–Rosenthal-type inequality holds for regular U-statistics of second order with nonnegative kernels (below, $C_i(t)$, $C_i^{\text{dec}}(t)$ and $C_i^{\text{reg}}(t)$ are constants depending on t only):

$$E \left(\sum_{1 \leq i < j \leq n} Y_{ij}^{\text{reg}}(X_i, X_j) \right)^t \leq C_1(t) \sum_{1 \leq i < j \leq n} E \left(Y_{ij}^{\text{reg}}(X_i, X_j) \right)^t$$

$$+ C_2(t) \sum_{i=1}^{n-1} E \left(\sum_{j=i+1}^{n} E \left(Y_{ij}^{\text{reg}}(X_i, X_j) | X_i \right) \right)^t$$

$$+ C_3(t) \sum_{j=2}^{n} E \left(\sum_{i=1}^{j-1} E \left(Y_{ij}^{\text{reg}}(X_i, X_j) | X_j \right) \right)^t$$

$$+ C_4(t) \left(\sum_{1 \leq i < j \leq n} EY_{ij}^{\text{reg}}(X_i, X_j) \right)^t, \quad t > 1.$$
Moreover, the best constants in the inequality are given by $C_i^{\text{reg}}(t) = 1$, $i = 1, 2, 3$, for $1 < t \leq 2$. Similarly, from (4) it follows that a “natural” form of Burkholder–Rosenthal-type inequality for decoupled U-statistics of second order with nonnegative kernels contains four terms similar to those in [8], namely,

$$E\left(\sum_{1 \leq i < j \leq n} Y_{ij}^{\text{dec}}(X_{1i}, X_{2j}) \right)^t \leq C_1^{\text{dec}}(t) \sum_{1 \leq i < j \leq n} E\left(Y_{ij}^{\text{dec}}(X_{1i}, X_{2j}) \right)^t,$$

$$+ C_2^{\text{dec}}(t) \sum_{i=1}^{n-1} E \left(\sum_{j=i+1}^{n} E\left(Y_{ij}^{\text{dec}}(X_{1i}, X_{2j}) \mid X_{1i} \right) \right)^t,$$

$$+ C_3^{\text{dec}}(t) \sum_{j=2}^{n} E \left(\sum_{i=1}^{j-1} E\left(Y_{ij}^{\text{dec}}(X_{1i}, X_{2j}) \mid X_{2j} \right) \right)^t,$$

$$+ C_4^{\text{dec}}(t) \left(\sum_{1 \leq i < j \leq n} E Y_{ij}^{\text{reg}}(X_{1i}, X_{2j}) \right)^t,$$

and, moreover, the best constants in the above inequality are given by $C_i^{\text{dec}}(t) = 1$, $i = 1, 2, 3, 4$, for $1 < t \leq 2$.

Remark 4. Similarly to Remark 3, from moment inequalities for sums of multilinear forms obtained by Peña et al. [2] and Theorems 1–3 it follows that a “natural” form of Burkholder–Rosenthal-type inequalities for expectations of functions of sums of regular U-statistics of order not greater than m with nonnegative kernels contains $m + 1$ terms and a “natural” form of Burkholder–Rosenthal-type inequalities for expectations of functions of sums of decoupled U-statistics of order not greater than m with nonnegative kernels contains 2^m terms. Moreover, those theorems imply the following inequalities:

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{reg}}(i_1, \ldots, i_l) \right)^t \leq (m + 1) \max_{q=0, \ldots, m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_{l-q} \leq [1, \ldots, n] \setminus \{j_1, \ldots, j_q\}} E\left(Y^{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t,$$

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{dec}}(i_1, \ldots, i_l) \right)^t \leq 2^m \max_{q=0, \ldots, m} \max_{1 \leq j_1 < \cdots < j_q \leq m} \sum_{1 \leq i_1 < \cdots < i_{l-q} \leq n} \sum_{l=q}^{m} \sum_{p, p_1 < p_2, p_1 < j_1, p_2 < j_2} E \left(Y^{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1, i_1}, \ldots, X_{j_q, i_{l-q}} \right)^t,$$

for $1 < t \leq 2$.

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{reg}}(i_1, \ldots, i_l) \right)^t \leq (m + 1) \max_{q=0, \ldots, m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_{l-q} \leq [1, \ldots, n] \setminus \{j_1, \ldots, j_q\}} E\left(Y^{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t,$$

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{dec}}(i_1, \ldots, i_l) \right)^t \leq 2^m \max_{q=0, \ldots, m} \max_{1 \leq j_1 < \cdots < j_q \leq m} \sum_{1 \leq i_1 < \cdots < i_{l-q} \leq n} \sum_{l=q}^{m} \sum_{p, p_1 < p_2, p_1 < j_1, p_2 < j_2} E \left(Y^{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1, i_1}, \ldots, X_{j_q, i_{l-q}} \right)^t,$$

for $1 < t \leq 2$.

$$E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y^{\text{reg}}(i_1, \ldots, i_l) \right)^t \leq (m + 1) \max_{q=0, \ldots, m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_{l-q} \leq [1, \ldots, n] \setminus \{j_1, \ldots, j_q\}} E\left(Y^{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t,$$
From the estimate
\[\sum_{k=1}^{N} z_k^t \leq \left(\sum_{k=1}^{N} z_k \right)^t, \quad z_1, \ldots, z_N \geq 0, \quad t > 1, \quad (5) \]
and Jensen’s inequality it follows that
\[E \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{reg}}(i_1, \ldots, i_l) \right)^t \]
\[\geq \max_{q=0, \ldots, m} \sum_{1 \leq j_1 < \cdots < j_q \leq m} E \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} E \left(Y_{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t, \quad (6) \]
\[E \left(\sum_{l=0}^{m} \sum_{1 \leq i_j \leq n} Y_{\text{dec}}(i_1, \ldots, i_l) \right)^t \]
\[\geq \max_{q=0, \ldots, m} \sum_{1 \leq j_1 < \cdots < j_q \leq m} E \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} E \left(Y_{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1}, \ldots, X_{j_q} \right) \right)^t, \quad (7) \]
1 < t \leq 2. Assume that \(X_{p1}', \ldots, X_{pn}', \ p = 1, \ldots, m, \) are independent copies of the r.v.’s \(X_1, \ldots, X_n \) (the primes are used to remind us about the independence between the sequences). From estimate (5), the inequality \((\sum_{k=1}^{N} z_k)^t \leq N^{-1} \sum_{k=1}^{N} z_k, \quad z_1, \ldots, z_N \geq 0, \quad t > 1, \) and estimates (3), (4), (6) and (7) it follows that the following theorem holds
\((C_m^k) \leq 2^m. \) As far as we know, the constants in the estimates in Theorem 4 are the best available so far, and it is likely that they are the sharp ones.

Theorem 4. – The following decoupling inequalities hold:
\[
(m+1)^{-1} E \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l} (X_{i_1,j_1}', \ldots, X_{i_l,j_l}') \right)^t \]
\[
\leq E \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l} (X_{i_1}, \ldots, X_{i_l}) \right)^t \]
\[
\leq \left(\sum_{k=0}^{m} (C_m^k) \right) E \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l} (X_{i_1,j_1}', \ldots, X_{i_l,j_l}') \right)^t, \quad 1 < t \leq 2. \]
Similarly, the estimate
\[\sum_{k=1}^{N} f(z_k) \leq f \left(\sum_{k=1}^{N} z_k \right), \quad z_1, \ldots, z_N \geq 0 \]
(8)
for all convex functions \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) with \(f(0) = 0 \) and Jensen’s inequality imply that
\[
E_f \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{reg}}(i_1, \ldots, i_l) \right) \\
\geq \max_{q=0, \ldots, m} \max_{1 \leq j_1 < \cdots < j_q \leq n} E_f \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{reg}}(j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \mid X_{j_1}, \ldots, X_{j_q} \right),
\]
(9)
\[
E_f \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{dec}}(i_1, \ldots, i_l) \right) \\
\geq \max_{q=0, \ldots, m} \max_{1 \leq j_1 < \cdots < j_q \leq m} \max_{p, p_1, p_2=1, \ldots, l, p \neq j_1, \ldots, j_q} E_f \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{dec}}(i_1, \ldots, i_l) \mid X_{j_1}, \ldots, X_{j_q}, X_{i_1}, \ldots, X_{i_l} \right),
\]
(10)
for all convex functions \(f : \mathbb{R}_+ \to \mathbb{R}_+ \) with \(f(0) = 0 \). From (8), the inequality
\[f(\sum_{k=1}^{N} z_k) \leq \frac{1}{N-1} \sum_{k=1}^{N} f(Nz_k), \quad z_1, \ldots, z_N \geq 0, \]
for all convex functions \(f \in D \) with \(f(0) = 0 \).

Theorem 5. – The following decoupling inequalities hold:
\[
(m+1)^{-1} E_f \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1,\ldots,i_l}(X'_{1,i_1}, \ldots, X'_{1,i_l}) \right) \\
\leq E_f \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1,\ldots,i_l}(X_{i_1}, \ldots, X_{i_l}) \right) \\
\leq \sum_{k=0}^{m} E_f \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1,\ldots,i_l}(X'_{1,i_1}, \ldots, X'_{1,i_l}) \right)
\]
for all convex functions \(f \in D \) with \(f(0) = 0 \).

Remark 5. – It is easy to see, using the derivations at the beginning of the section, that the class of convex functions \(f \in D \) with \(f(0) = 0 \) includes the functions \(f(x) = x^t, 1 < t \leq 2; f(x) = (x + x_0)^t \ln(x + x_0) - x_0^t \ln x_0, 1 < t < 2, x_0 \geq \max(e^{3r^2-6r+2}/(t(t-1)(2-t)), 1); \) and \(f(x) = (x + x_0) \ln(x + x_0) - x_0 \ln x_0, x_0 \geq 1 \).
Remark 6. From Khintchine–Marcinkiewicz–Zygmund inequalities for U-statistics (e.g., [1,5–9]) it follows that analogues of inequalities (3) and (4) with appropriately adjusted constants hold for sums of U-statistics with degenerate kernels. Moreover, by Hoeffding’s expansion, this implies corresponding inequalities for sums of U-statistics with not necessarily degenerate kernels.

3. Proof of the theorems

Let us prove Theorem 1. Let us use induction on the number of r.v.’s X_1, \ldots, X_n. Let us first demonstrate the argument in the case $m = 2$. Suppose that $f \in D$, $c_0 \geq 0$, and $Y_i : \mathbb{R} \to \mathbb{R}_+$, $Y_{ij} : \mathbb{R}^2 \to \mathbb{R}_+$, $1 \leq i, j \leq n$, $i \neq j$, are functions such that $Y_{ij}(x_i, x_j) = Y_{ji}(x_j, x_i)$, $x_i, x_j \in \mathbb{R}$, $1 \leq i < j \leq n$. Let $Y_{\text{reg}}^i(x_i) = Y_i(X_i)$, $Y_{\text{reg}}^{i,j}(x_i, x_j) = Y_{ij}(X_i, X_j)$, $E_j(\cdot) = E(\cdot | X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_n)$, $1 \leq i, j \leq n$, $i \neq j$, and let $E(\cdot)$ be the unconditional expectation operator. Let us show that

$$Ef\left(c_0 + \sum_{i=1}^{n} Y_{\text{reg}}^i + \sum_{1 \leq i < j \leq n} Y_{\text{reg}}^{i,j}\right) \leq \sum_{1 \leq i < j \leq n} Ef\left(Y_{\text{reg}}^{i,j}\right) + \sum_{i=1}^{n} Ef(\sum_{j=1, j \neq i}^{n} E_j Y_{\text{reg}}^{i,j}) + f\left(c_0 + \sum_{i=1}^{n} EY_{\text{reg}}^i + \sum_{1 \leq i < j \leq n} EY_{\text{reg}}^{i,j}\right). \quad (11)$$

Suppose that it is already known that estimate (11) holds in the case of $n - 1$ r.v.’s X_1, \ldots, X_{n-1}. Let us prove that this implies that the inequality is valid in the case of n r.v.’s X_1, \ldots, X_n. From the inequality

$$Ef(X + z) - Ef(X) \leq f(EX + z) - f(EX) \quad (12)$$

for $f \in D$ and for an arbitrary nonnegative r.v. X and all $z \in \mathbb{R}_+$ (implied by Jensen’s inequality) we have, letting $X = Y_{\text{reg}}^n + \sum_{i=1}^{n-1} Y_{\text{reg}}^i$ and $z = c_0 + \sum_{i=1}^{n-1} Y_{\text{reg}}^i + \sum_{1 \leq i < j \leq n-1} Y_{\text{reg}}^{i,j}$,

$$Ef\left(c_0 + \sum_{i=1}^{n} Y_{\text{reg}}^i + \sum_{1 \leq i < j \leq n} Y_{\text{reg}}^{i,j}\right) = Ef\left(Y_{\text{reg}}^n + \sum_{i=1}^{n-1} Y_{\text{reg}}^i + \left(c_0 + \sum_{i=1}^{n-1} Y_{\text{reg}}^i + \sum_{1 \leq i < j \leq n-1} Y_{\text{reg}}^{i,j}\right)\right) \leq Ef\left(Y_{\text{reg}}^n + \sum_{i=1}^{n-1} Y_{\text{reg}}^i\right) + Ef\left(EY_{\text{reg}}^n + c_0 + \sum_{i=1}^{n-1} \left(Y_{\text{reg}}^i + E_n Y_{\text{reg}}^i\right) + \sum_{1 \leq i < j \leq n-1} Y_{\text{reg}}^{i,j}\right).$$
Conditioning on X_n and using the induction hypothesis, we obtain
\[
Ef\left(Y_{\text{reg}}(n) + \sum_{i=1}^{n-1} Y_{\text{reg}}(i, n)\right) \\
\leq \sum_{i=1}^{n-1} Ef\left(Y_{\text{reg}}(i, n)\right) + Ef\left(Y_{\text{reg}}(n) + \sum_{i=1}^{n-1} E_i Y_{\text{reg}}(i, n)\right).
\]

In addition to that (also by the induction hypothesis),
\[
Ef\left(EY_{\text{reg}}(n) + c_0 + \sum_{i=1}^{n-1} (Y_{\text{reg}}(i) + E_n Y_{\text{reg}}(i, n)) + \sum_{1 \leq i < j \leq n-1} Y_{\text{reg}}(i, j)\right) \\
\leq \sum_{1 \leq i < j \leq n-1} Ef\left(Y_{\text{reg}}(i, j)\right) + \sum_{i=1}^{n-1} Ef\left(Y_{\text{reg}}(i) + \sum_{j=1, j \neq i}^{n} E_j Y_{\text{reg}}(i, j)\right) \\
+ f\left(EY_{\text{reg}}(n) + c_0 + \sum_{i=1}^{n-1} (EY_{\text{reg}}(i) + EY_{\text{reg}}(i, n)) + \sum_{1 \leq i < j \leq n-1} EY_{\text{reg}}(i, j)\right).
\]

From the latter relations it follows that
\[
Ef\left(c_0 + \sum_{i=1}^{n} Y_{\text{reg}}(i) + \sum_{1 \leq i < j \leq n} Y_{\text{reg}}(i, j)\right) \\
\leq \sum_{i=1}^{n} Ef\left(Y_{\text{reg}}(i, n)\right) + Ef\left(Y_{\text{reg}}(n) + \sum_{i=1}^{n-1} E_i Y_{\text{reg}}(i, n)\right) \\
+ \sum_{1 \leq i < j \leq n-1} Ef\left(Y_{\text{reg}}(i, j)\right) + \sum_{i=1}^{n-1} Ef\left(Y_{\text{reg}}(i) + \sum_{j=1, j \neq i}^{n} E_j Y_{\text{reg}}(i, j)\right) \\
+ f\left(EY_{\text{reg}}(n) + c_0 + \sum_{i=1}^{n-1} (EY_{\text{reg}}(i) + EY_{\text{reg}}(i, n)) + \sum_{1 \leq i < j \leq n-1} EY_{\text{reg}}(i, j)\right) \\
= \sum_{1 \leq i < j \leq n} Ef\left(Y_{\text{reg}}(i, j)\right) + \sum_{i=1}^{n} Ef\left(Y_{\text{reg}}(i) + \sum_{j=1, j \neq i}^{n} E_j Y_{\text{reg}}(i, j)\right) \\
+ f\left(c_0 + \sum_{i=1}^{n} EY_{\text{reg}}(i) + \sum_{1 \leq i < j \leq n} EY_{\text{reg}}(i, j)\right).
\]

The fact that by (12)
\[
Ef\left(c_0 + Y_1(X_1)\right) \leq Ef\left(Y_1(X_1)\right) + f\left(c_0 + EY_1(X_1)\right)
\]
for all $f \in D$ and $c_0 \geq 0$, that is, (11) is valid in the case $n = 1$, completes the proof. Let us follow the same approach in the case of arbitrary m. Suppose that $f \in D$, and $Y_{i_1, \ldots, i_l} : \mathbf{R} \to \mathbf{R}_+$, $1 \leq i_k \leq n; i, i_i \neq i_j; k, r, s = 1, \ldots, l; l = 0, \ldots, m$, are functions such that $Y_{i_1, \ldots, i_l}(x_1, \ldots, x_l) = Y_{i_k(1), \ldots, i_k(l)}(x_{\pi(1)}, \ldots, x_{\pi(l)})$, $x_k \in \mathbf{R}$, $k = 1, \ldots, l$, $1 \leq i_1 < \cdots < i_l \leq n$, for all permutations $\pi : \{1, \ldots, l\} \to \{1, \ldots, l\}$, $l = 2, \ldots, m$.
Let $Y_{\text{reg}}(i_1, \ldots, i_l) = Y_{i_1, \ldots, i_l}(X_{i_1}, \ldots, X_{i_l})$, $E_{i_1, \ldots, i_l}() = E(\cdot | X_k, k = 1, \ldots, n; k \neq i_1, \ldots, i_l)$, $1 \leq i_k \leq n$; $i_r \neq i_l$, $r \neq s$; $k, r, s = 1, \ldots, l$; $l = 0, \ldots, m$, and let $E(\cdot)$ be the unconditional expectation operator. Suppose that we already have the bound

$$Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} Y_{\text{reg}}^* (i_1, \ldots, i_l) \right)$$

$$\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} \sum_{l=q}^{m} i_{l} Y_{\text{reg}}^* (j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \right)$$

for all $f \in D$. From inequality (12) we obtain, letting $X = \sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} Y_{\text{reg}}(i_1, \ldots, i_l, n)$ and $\tilde{z} = \sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} Y_{\text{reg}}(i_1, \ldots, i_l)$,

$$Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{\text{reg}}(i_1, \ldots, i_l) \right)$$

$$\leq Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} E_n Y_{\text{reg}}(i_1, \ldots, i_l) \right)$$

$$+ Ef \left(\sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} Y_{\text{reg}}(i_1, \ldots, i_l, n) \right). \quad (14)$$

From the induction hypothesis we get (we assume $Y_{\text{reg}}(i_1, \ldots, i_m, n) = 0$ for all $1 \leq i_k \leq n-1$; $i_r \neq i_l$, $r \neq s$; $k, r, s = 1, \ldots, m$)

$$Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} E_n Y_{\text{reg}}(i_1, \ldots, i_l) \right)$$

$$= Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} \left(Y_{\text{reg}}(i_1, \ldots, i_l) + E_n Y_{\text{reg}}(i_1, \ldots, i_l, n) \right) \right)$$

$$\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} \sum_{l=q}^{m} i_{l} Y_{\text{reg}}^* (j_1, \ldots, j_q, i_1, \ldots, i_{l-q}) \right)$$

$$+ Ef_{i_1, \ldots, i_{l-q}} Y_{\text{reg}}^* (j_1, \ldots, j_q, i_1, \ldots, i_{l-q}, n)$$

$$= \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} \sum_{l=q}^{m} i_{l} Y_{\text{reg}}^* (i_1, \ldots, i_l, n) \right). \quad (15)$$
Conditioning on the variable X_n we also get by the induction assumptions
\[
Ef\left(\sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} Y_{reg}^{i_1, \ldots, i_l, n}\right)
\leq \sum_{q=0}^{m-1} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef\left(\sum_{l=q}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq \{1, \ldots, n\}\backslash \{j_1, \ldots, j_q\}} Y_{reg}^{i_1, \ldots, i_l, n}\right)
E_{i_1, \ldots, i_{l-q}} Y_{reg}^{j_1, \ldots, j_q, i_1, \ldots, i_{l-q}, n}.
\]
From (14)–(16) it follows that
\[
Ef\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{reg}^{i_1, \ldots, i_l}\right)
\leq \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq \{1, \ldots, n\}\backslash \{j_1, \ldots, j_q\}} Y_{reg}^{i_1, \ldots, i_l, n}\right)
E_{i_1, \ldots, i_{l-q}} Y_{reg}^{j_1, \ldots, j_q, i_1, \ldots, i_{l-q}, n}
+ \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} Ef\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq \{1, \ldots, n\}\backslash \{j_1, \ldots, j_q\}} Y_{reg}^{i_1, \ldots, i_l, n}\right)
E_{i_1, \ldots, i_{l-q}} Y_{reg}^{j_1, \ldots, j_q, i_1, \ldots, i_{l-q}, n}
= \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} Ef\left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq \{1, \ldots, n\}\backslash \{j_1, \ldots, j_q\}} Y_{reg}^{i_1, \ldots, i_l, n}\right)
E_{i_1, \ldots, i_{l-q}} Y_{reg}^{j_1, \ldots, j_q, i_1, \ldots, i_{l-q}, n}.
\]
The fact that by (13) inequality (1) holds in the case of one r.v. X_1 completes the proof of Theorem 1. Theorem 2 might be proven in a similar way (or deduced from Theorem 1, see Remark 1). Corollary 1 is an immediate consequence of Theorems 1 and 2. Applying Theorems 1 and 2 for $f(x) = x^t$, we obtain inequalities (3) and (4). Let $1 < t \leq 2$, $a_k, b_k > 0$, $a'_k < b_k$, and let $c_{i_1, \ldots, i_l} \geq 0$, $1 \leq i_k \leq n$; $i_r \neq i_s$, $r \neq s$; $k, r, s = 1, \ldots, l$; $l = 0, \ldots, m$; $c_{i_1, \ldots, i_l} = c_{i_1(1), \ldots, i_l(0)}$, $1 \leq i_1 < \cdots < i_l \leq n$, for all permutations $\pi : \{1, \ldots, l\} \to \{1, \ldots, l\}$, $l = 2, \ldots, m$ (we assume that $c_{i_1, \ldots, i_l} = c_0 \geq 0$ for $l = 0$). Let us set $Y_{i_1, \ldots, i_l}(x_1, \ldots, x_l) = c_{i_1, \ldots, i_l} x_1 \ldots x_l$, $1 \leq i_k \leq n$; $i_r \neq i_s$, $r \neq s$; $k, r, s = 1, \ldots, l$; $l = 0, \ldots, m$ ($Y_{i_1, \ldots, i_l}(x_1, \ldots, x_l) = c_0$ for $l = 0$). Consider, similarly to [12], independent nonnegative r.v.’s $X_{1}^{(n_1)}, \ldots, X_{n}^{(n_n)}$, $s_k = 1, 2, \ldots, k = 1, 2, \ldots, n$, with the following distributions: $P(X_{k}^{(n_k)} = a_k) = 1 - 1/s_k$, $P(X_{k}^{(n_k)} = b_k^{(n_k)}) = a_k/(s_k b_k^{(n_k)})$, $P(X_{k}^{(n_k)} = 0) = 1/s_k - a_k/(s_k b_k^{(n_k)})$, where $b_k^{(n_k)} = (\frac{a_k}{s_k} - \frac{a_k}{s_k})^{1/(t-1)}$. It is not difficult
to see that \(b_k(s_k) \geq a_k \), \(0 \leq a_k/(s_k b_k(s_k)) \leq 1/s_k \), \(b_k(s_k) \rightarrow \infty \), \((b_k(s_k))^{t-1} a_k/s_k = b_k - a_k (1 - 1/s_k) \rightarrow b_k - a_k \) as \(s_k \rightarrow \infty \). We have that for all nonnegative r.v.'s \(Z_1 \) and \(Z_2 \) with finite \(r \)th moment independent of \(X_k(s_k) \),

\[
E(Z_1 X_k(s_k) + Z_2) = E(Z_1 a_k + Z_2)(1 - 1/s_k) + EZ_k(a_k/(s_k b_k(s_k))) + (E(Z_1 b_k + Z_2) - EZ_k(b_k) a_k/(s_k b_k(s_k))) + EZ_k(b_k(s_k))^{t-1} a_k/s_k.
\]

(17)

It is not difficult to see that \((1 + x)^t - 1 \leq t(x + x^t)\) for all \(t \in (1, 2] \) and all \(x \geq 0 \). Consequently,

\[
0 \leq E(Z_1 + Z_2/b_k(s_k))^t - EZ_1 \leq t(EZ_1^{-1} Z_2/b_k(s_k) + EZ_2/(b_k(s_k))^t).
\]

Therefore,

\[
(E(Z_1 b_k + Z_2)^t - EZ_k(b_k(s_k)^t) a_k/(s_k b_k(s_k))) = (E(Z_1 + Z_2/b_k(s_k))^t - EZ_k(b_k(s_k)^t) a_k/s_k \rightarrow 0
\]
as \(s_k \rightarrow \infty \), and from (17) we obtain

\[
E(Z_1 X_k(s_k) + Z_2)^t = E(Z_1 b_k - a_k)^t + E(Z_1 a_k + Z_2)^t
\]

(18)
as \(s_k \rightarrow \infty \), for all r.v.'s \(Z_1 \) and \(Z_2 \) defined above. Let us show that

\[
E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} Y_{i_1, \ldots, i_l} X_{i_1}^{(s_1)} \cdots X_{i_l}^{(s_l)}\right)^t
\]

\[
\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} c_{i_1, \ldots, i_l} X_{i_1}^{(s_1)} \cdots X_{i_l}^{(s_l)}
\]

\[
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} \prod_{r=1}^{q} (b_{j_r} - a_{j_r})
\]

\[
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} \prod_{r=1}^{q} (b_{j_r} - a_{j_r})
\]

as \(s_1 \rightarrow \infty, \ldots, s_n \rightarrow \infty \). Let us use induction on the number of the r.v.'s \(X_1^{(s_1)}, \ldots, X_n^{(s_n)} \).

Suppose we have already proven relation (19) for all sums of multilinear forms of order not greater than \(m \), \(1 \leq m \leq n - 1 \), in the case of \(n - 1 \) r.v.'s \(X_1^{(s_1)}, \ldots, X_{n-1}^{(s_{n-1})} \), that is suppose that the relation

\[
E\left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} c_{i_1, \ldots, i_l} X_{i_1}^{(s_1)} \cdots X_{i_l}^{(s_l)}\right)^t
\]

\[
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a_{j_r})
\]

\[
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a_{j_r})
\]
as $s_1 \to \infty$, \ldots, $s_{n-1} \to \infty$, is valid. Letting $k = n$,

\begin{align*}
&Z_1 = \sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l, n} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})}, \\
&Z_2 = \sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})},
\end{align*}

from (18) we get

\begin{align*}
&\mathbb{E} \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} c_{i_1, \ldots, i_l, n} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right)^{t} \\
&\quad \to (b_n - a_{n}^t) \mathbb{E} \left(\sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l, n} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right)^{t} \\
&\quad + \mathbb{E} \left(\mathbb{E} \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} c_{i_1, \ldots, i_l, n} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right| X_n^{(s_n)} = a_n \right)^{t}, \quad (20)
\end{align*}

as $s_n \to \infty$. From the induction hypothesis it follows that

\begin{align*}
&\mathbb{E} \left(\sum_{l=0}^{m-1} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right)^{t} \\
&\quad \to \sum_{q=0}^{m-1} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a_{j_r}^t) \\
&\quad \times \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l, n} a_{i_1} \cdots a_{i_l} \right)^{t}, \quad (21)
\end{align*}

as $s_1 \to \infty$, \ldots, $s_{n-1} \to \infty$. Moreover (we assume $c_{i_1, \ldots, i_m, n} = 0$ for all $1 \leq i_k \leq n - 1$; $i_r \neq i_s, r \neq s; k, r, s = 1, \ldots, m$)

\begin{align*}
&\mathbb{E} \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n} c_{i_1, \ldots, i_l} X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right)^{t} \\
&\quad = \mathbb{E} \left(\sum_{l=0}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} (c_{i_1, \ldots, i_l} + c_{i_1, \ldots, i_l, n} a_n) X_{i_1}^{(s_{i_1})} \cdots X_{i_l}^{(s_{i_l})} \right)^{t} \\
&\quad \to \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a_{j_r}^t) \left(\sum_{l=q}^{m} \sum_{1 \leq i_1 < \cdots < i_l \leq n-1} c_{i_1, \ldots, i_l, n} a_{i_1} \cdots a_{i_l} \right)^{t}
\end{align*}
\[
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a'_{j_r})
\times \left(\sum_{l=q}^{m} \sum_{i_1 < \cdots < i_l \in \{1, \ldots, n\}\setminus\{j_1, \ldots, j_q\}} c_{j_1, \ldots, j_q, i_1, \ldots, i_l} a_{i_1} \cdots a_{i_l} \right)^t
\] (22)

as \(s_1 \to \infty, \ldots, s_n \to \infty \). From (20)–(22) it follows that

\[
E \left(\sum_{l=0}^{m} \sum_{1 \leq j_1 < \cdots < j_l \leq n} c_{i_1, \ldots, i_l, 0} x_{i_1}^{(b_{j_1})} \cdots x_{i_l}^{(b_{j_l})} \right)^t
\to (b_n - a'_n) \sum_{q=0}^{m-1} \sum_{1 \leq j_1 < \cdots < j_q \leq n-1} \prod_{r=1}^{q} (b_{j_r} - a'_{j_r})
\times \left(\sum_{l=q}^{m} \sum_{i_1 < \cdots < i_l \in \{1, \ldots, n\}\setminus\{j_1, \ldots, j_q\}} c_{j_1, \ldots, j_q, i_1, \ldots, i_l} a_{i_1} \cdots a_{i_l} \right)^t
\]

\[
= \sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} \prod_{r=1}^{q} (b_{j_r} - a'_{j_r})
\times \left(\sum_{l=q}^{m} \sum_{i_1 < \cdots < i_l \in \{1, \ldots, n\}\setminus\{j_1, \ldots, j_q\}} c_{j_1, \ldots, j_q, i_1, \ldots, i_l} a_{i_1} \cdots a_{i_l} \right)^t.
\] (23)

Therefore, (19) is valid. The following constants satisfy the conditions stated before (17): \(b_k = a_k = 1/n, k = 1, \ldots, n; c_{i_1, \ldots, i_l} = 0, 1 \leq l \leq n; i_r \neq i_s, r \neq s; k, r, s = 1, \ldots, m; l = 0, \ldots, m - 1; c_{i_1, \ldots, i_l} = (\sum q=0^m 1/(m-q))^{-1/t}; 1 \leq i_k \leq n; i_r \neq i_s, r \neq s; k, r, s = 1, \ldots, m \). For these parameters, we get

\[
\sum_{q=0}^{m} \prod_{r=1}^{q} (b_{j_r} - a'_{j_r})
\times \left(\sum_{l=q}^{m} \sum_{i_1 < \cdots < i_l \in \{1, \ldots, n\}\setminus\{j_1, \ldots, j_q\}} c_{j_1, \ldots, j_q, i_1, \ldots, i_l} a_{i_1} \cdots a_{i_l} \right)^t
\]

\[
= \sum_{q=0}^{m} C_n^q \left(n^{-1} - n^{-t}\right)^q C_{n-q}^{m-q} n^{-(m-q)} c_{1, \ldots, m}^t
\]

\[
\to \sum_{q=0}^{m} \frac{1}{q!} \left(\frac{1}{(m-q)!}\right)^t c_{1, \ldots, m}^t = 1,
\] (24)
as $n \to \infty$. Moreover, since $E X_k^{(s_k)} = a_k$, $E (X_k^{(s_k)})' = b_k$, $s_k = 1, 2, \ldots, k = 1, \ldots, n$, we obtain

$$
\sum_{q=0}^{m} \sum_{1 \leq j_1 < \cdots < j_q \leq n} E \left(\sum_{l=q}^{m} \sum_{i_1 < \cdots < i_q \leq n} \prod_{(j) \leq i} E X_j^{(s_j)} \right) \to 1,
$$

as $n \to \infty$. Relations (19), (24) and (25) imply sharpness of the constants in inequality (3). Sharpness of the constants in inequality (4) might be proven in a similar way.

The decoupling inequalities in Theorems 4 and 5 follow from inequalities (1)–(10), as explained before the theorems. The proof is complete.

Acknowledgement

The authors are grateful to an anonymous referee for many useful suggestions.

REFERENCES

