[POLS 4150] Measures of Spread, Bivariate Descriptive Statistics

Professor Jason Anastasopoulos
ljanastas@uga.edu

University of Georgia

January 24, 2017
From last time...

- Mean
- Median
- Mode

All ways of describing the center of a distribution...
Mean

Sample mean: \(\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \)

- The sample mean is simply the sum of a number of observations divided by the number of observations.
Median

\[\text{Age} = \{22, 18, 19, 60\} \]
\[\text{Age} = \{18, 19, 22, 60\} \]

- Median is a simple measure of the center.
- Can be found by organizing the data from lowest to highest value and finding out which value splits the data in two.
Mode

Party affiliation = \{0, 0, 0, 1, 1, 1, 1, 1, 1\}

- The mode is simply the value that occurs most frequently.
Variability and standard deviation

- Often we’re interested in describing the variability or spread of some data.
- This can make a big difference in terms of how we interpret a variable.
Income distribution, then and now

The yearly income of all world citizens is measured in International Dollars. This is a currency that would buy a comparable amount of goods and services a U.S. dollar would buy in the United States in 1990. Therefore incomes are comparable across countries and across time.

1820 - A world in poverty.
1970 - A world clearly divided into rich developed and poor developing countries.
2000 - A much richer, more equal world.

Data source: https://ourworldindata.org/income-distribution
The interactive data visualisation is available at OurWorldInData.org. There you find the raw data and more visualisations on this topic.

Licensed under CC-BY-SA by the author Max Roser.
Income distribution, then and now

- **1820** – small spread, most people in poverty.
- **1970** – bimodal distribution – very high spread, many rich, many poor.
- **2000** – wealthier more equal income distribution.
Male and female IQ scores
Male and female IQ scores

- Higher spread in male IQ.
- Lower spread in female IQ.
Measuring spread

Two main means of measuring spread:

1. Range.
2. Standard deviation.
Range

\[
\text{Range} = \max(X) - \min(X)
\]

- Range is just the difference between the minimum and maximum observation in the data.
Range

\[X = \text{Primary Turnout}_{2016} = \{50\%, \cdots, 74.5\%\} \]

\[\text{Range} = 74.5 - 50 = 24.5\% \]

- Primary turnout in 2016 was close to the record breaking 2008 election.
- 57.6 million Americans turned out to vote.
- Hawaii had the \textit{lowest} turnout and Minnesota, the highest.
- Turnout range is 24.5
Standard deviation

Deviation = $x_i - \bar{x}$

- Another method of measuring spread is how far from the mean the observations are.
- We can think of the distance between one observation and the mean as a deviation.

Professor Jason Anastasopoulos ljjanastas@uga.edu

University of Georgia

[POLS 4150] Measures of Spread, Bivariate Descriptive Statistics
Standard deviation

\[\sum_{i=1}^{N} (x_i - \bar{x}) \]

- If we wanted to get total deviation can we just sum the deviations? Why or why not?
Standard deviation

\[X = \{100, -100\} \]
Total Deviations \(= (100 - 0) + (-100 - 0) = 0 \)

- No!
- \textit{Range} = 200
- The large + and − values cancel out and data with a very large spread, has zero deviations.
Standard deviation

\[X = \{100, -100\} \]

Deviations = \[\sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}} \]

Deviations = \[\sqrt{(100 - 0)^2 + (-100 - 0)^2} = 141.42 \]

- To correct with this, we square the deviations and;
- take the square root to put them back on the same scale as the original variable.

Professor Jason Anastasopoulos ljanastas@uga.edu

University of Georgia

[POLS 4150] Measures of Spread, Bivariate Descriptive Statistics
Standard deviation

\[s = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \bar{x})^2}{N - 1}} \]

- Rather than get the total number of deviations, a better measure would be the average of those deviations.
- Divide by \(N - 1 \).
- This is the standard deviation.
Agreement with statement “we should build a border wall with Mexico”

1 – 5 Scale

1 = Strongly Disagree, ··· , 5 = Strongly Agree

New York = \{1, 1, 1, 1, 2, 3\}, \bar{x} = 1.5, \ s = 0.08
Georgia = \{1, 5, 3, 2, 1, 4\}, \bar{x} = 2.7, \ s = 1.6
Properties of the standard deviation

1. $s \geq 0$
2. $s = 0$ iff $x_1 = x_2, \cdots, = x_n$
3. When data are rescaled s is also rescaled.
Empirical rule

- 68% of observations between, $(\bar{x} - s, \bar{x} + s)$.
- 95% of observations between, $(\bar{x} - 2s, \bar{x} + 2s)$.
- Most/all observations between, $(\bar{x} - 3s, \bar{x} + 3s)$.
Male and female IQ scores

Q: Do men or women have a higher mean IQ?
Male and female IQ scores

Q: Do men or women have a higher mean IQ?
A: They’re nearly identical: $\bar{x}_m = \bar{x}_f = 100$
Male and female IQ scores

Q: Which gender has a higher standard deviation?
Male and female IQ scores

Q: Which gender has a higher standard deviation?
A: Men.
Male and female IQ scores

Q: If $\bar{x}_m = 100$ and $s_m = 20$, the IQ scores of 95% of men range from...
Male and female IQ scores

Q: If $\bar{x}_m = 100$ and $s_m = 20$, the IQ scores of 95% of men range from...

A: 60 to 140
Q: If $\bar{x}_w = 100$ and $s_w = 15$, the IQ scores of 95% of women range from...
Male and female IQ scores

Q: If $\bar{x}_w = 100$ and $s_w = 15$, the IQ scores of 95% of women range from...

A: 70 to 130
Measures of position

- Another means of describing data are measures of position.
- These tell you what % of data fall above and below a certain point.
- Common measures of position are:
 1. Percentiles
 2. Quartiles
Percentiles

Point p at which $p\%$ of observations fall below or at that point and $(100 - p)\%$ fall above it
Income distribution

Distribution of annual household income in the United States
2010 estimate

Quartiles

- Chops data up into 3 portions.
- **Lower quartile** – 25th%ile.
- **Inter quartile** – Between 25th and 75th%ile.
- **Upper quartile** – 75th%ile.
Hillary Clinton vote share by county, 2016

> summary(vote.share.clinton)

```r
##   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
##  0.0000 0.2344 0.3500  0.3620 0.4724  1.0000
```
Outliers and the IQR

\[IQR = X_{75} - X_{25} \]

- Interquartile range is the range of the 25th and 75th percentile of the data.
- For the Hillary Clinton county data this would be:
 \[0.4724 - 0.2344 = 0.238 \]
Outliers and the IQR

\[\pm 1.5 \times IQR = \text{Outlier} \]

- Outliers are defined using the IQR.
- Clinton data: \(1.5 \times 0.238 = 0.357 \)
- Outlier counties are:
 1. Counties where HRC vote share \(\geq 0.8294 \).
 2. Counties where HRC vote share \(\leq 0 \).