An improved model for naturally curved and twisted composite beams with closed thin-walled sections

A.M. Yu, J.W. Yang, G.H. Nie⁎, X.G. Yang

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China

A R T I C L E I N F O

Article history:
Available online 13 April 2011

Keywords:
Naturally curved and twisted beam
Anisotropic
Eigenwarping
Generalized warping coordinate
Elastic coupling

A B S T R A C T

This paper presents an improved model for naturally curved and twisted anisotropic beams with closed thin-walled cross-sections. By introducing eigenwarping functions and expanding axial displacements in series of eigenwarpings, the differential equation involving the generalized warping coordinate and the expression for eigenvalues can be derived using the principle of minimum potential energy. In the model the effects of some factors such as the initial curvature, torsion of the beams as well as torsion-related warping, transverse shear deformations and elastic coupling are incorporated. As an application, the present model is adopted to do an analysis for closed thin-walled composite box beams. Comparison with the existing experimental observation and numerical results shows that the proposed model is valid for analyzing such naturally curved and twisted beams.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Static and dynamic analysis of naturally curved and twisted beams with closed thin-walled sections made of anisotropic materials has many important applications in mechanical, civil and aeronautical engineering due to their outstanding engineering properties, such as streamlined modeling and favorable loaded characteristics. Helicopter blades and flexible space structures are specific cases of the beams. Some beam theories have been developed for analysis of mechanical behaviors, such as generalized beam theory [1] and refined beam theory [2–5]. The structural behavior of the beams is no longer appropriately modeled with the beam theory for isotropic materials [6–8], and a more advanced theory must be developed. While much has been done in the theories of plates, shells, straight beams and curved beams made of laminated composite materials [9–25], much less has been done in the theory of naturally curved and twisted closed thin-walled beams made of anisotropic materials. There have been some related studies to the application of the finite element method for the beam problem [26–28]. A comprehensive treatment to the warping has been proposed for modeling box beams by using the variational principles, which leads to solution for warping of cross-sections in a corresponding eigenvalue problem [29]. This theory is only valid for the straight beams. For the curved beams, an improved model is needed for incorporating the effects of the initial curvature and torsion of the beams. Recently, using solutions for several characteristic beam elasticity problems from the exact beam theory, characteristic operators in formulation of the model have been treated, which can be used to evaluate effectively the structural behaviors including the warping effect [30].

This paper aims to propose an improved model for naturally curved and twisted composite beams with closed thin-walled sections. By introducing eigenwarping functions and expanding axial displacements in series of eigenwarpings, the differential equation involving the generalized warping coordinate and the expression for eigenvalues can be derived using the principle of minimum potential energy. In the model the effects of some factors such as the initial curvature, torsion of the beams as well as torsion-related warping, transverse shear deformations and elastic coupling are incorporated. Numerical examples are given, and comparison with the existing experimental observation and numerical results shows that the proposed model has enough exactness in computation, and is valid for analysis of naturally curved and twisted anisotropic beams with closed thin-walled cross-sections.

2. Geometry and constitutive relations of the beam

Let the locus of the cross-sectional centroid of the beam be a continuous curve in space denoted by \(l \), and the tangential, normal and bi-normal unit vectors of the curve are denoted by \(t, n \) and \(b \), respectively. The Frenet–Serret formula for a smooth curve is

\[
t' = k_1 n, \quad n' = -k_1 t + k_2 b, \quad b' = -k_2 n,
\]

where superscript prime represents the derivative with respect to \(s \). The symbols \(s, k_1 \) and \(k_2 \) are arc coordinate, curvature and torsion of the curve, respectively.

⁎ Corresponding author.
E-mail address: ghnie@tongji.edu.cn (G.H. Nie).

Available online 13 April 2011

© 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compstruct.2011.03.020
Let us introduce ζ- and η-directions in coincidence with the principal axes through the centroid O_1, as shown in Fig. 1. The angle between the ζ-axis and normal n is represented by ϑ, which is generally a function of s. If the unit vectors of $O_1\zeta$ and $O_1\eta$ are represented by i_ζ and i_η, then

$$
i_\zeta = n \cos \vartheta + b \sin \vartheta, \quad i_\eta = -n \sin \vartheta + b \cos \vartheta. \tag{2}\n$$

From Eq. (1) the following expressions are obtained

$$
t' = k_n i_\zeta - k_\zeta i_n, \quad \hat{t}' = -k_n t + k_\zeta t_n, \quad \hat{i}_n = k_n i - k_\zeta n, \tag{3}\n$$

in which $k_n = k_1 \sin \vartheta$, $k_\zeta = k_1 \cos \vartheta$, $k_\eta = k_2 + \vartheta$.

A geometry of cross-section of the beam is shown in Fig. 2. The ζ is the curvilinear coordinate describing the contour of the section, denoted by C. It is assumed that the contour remains unchanged, i.e., the cross-section does not deform in its own plane, but the plane allows a warping deformation along its axis. The deformation of the beam is thus governed by six rigid body modes, namely, three translations of the section, $u_i(s)$, $u_j(s)$, $u_k(s)$, and three rotations of the section, $\phi_i(s)$, $\phi_j(s)$ and $\phi_k(s)$. The membrane stresses in the beam are composed of an axial stress flow n and a shear stress flow q. These two stress flows are acting in the plane of contour and are uniform across the thickness of the beam. The constitutive relations for a thin-walled laminated beam are expressed by [29].

$$
\begin{bmatrix}
0
\end{bmatrix} = \begin{bmatrix}
A_{nn} & A_{nq} & 0
\end{bmatrix}
\begin{bmatrix}
e
\end{bmatrix},
\tag{4}
$$

in which the e and γ are the membrane axial strain and (engineering) shear strain, respectively, and $A_{nn} = A_{11} - A_{12}^2/A_{22}; A_{nq} = A_{66} - A_{26}^2/A_{22}; A_{n0} = A_{16} - A_{12}A_{66}/A_{22},$ and $A_{0} = \sum_{i=1}^{3} C_{i} h_{i} Q_{n} i_{i} dz$.

$$
\begin{bmatrix}
Q_{11}
Q_{22}
Q_{12}
Q_{16}
Q_{26}
\end{bmatrix} = \begin{bmatrix}
\hat{t}^2 m^4 + 2t^2 m^2 - 4t^2 m^2
m^2 t^2 + 2m^2 t^2 - 4t^2 m^2
-t^4 m^2 + 2t^2 m^2 - 4t^2 m^2
-2t^3 m^3 + t^3 m^3 + 2t^3 m^3 + t^3 m^3
l^3 m - t^3 m - 2t^3 m^3 + t^3 m^3
\end{bmatrix}
\begin{bmatrix}
Q_{11}
Q_{22}
Q_{12}
Q_{16}
Q_{26}
\end{bmatrix},
\tag{5}
$$

where l, m are direct cosine and

$$
Q_{11} = (1 - v_{11} v_{11})^{-1} E_t, \quad Q_{22} = (1 - v_{12} v_{12})^{-1} E_t, \quad Q_{16} = C_{66}, \quad Q_{26} = C_{66}, \quad Q_{12} = C_{66}, \tag{6}
$$

3. Equilibrium equations

Simplifying stress vectors to the centroid O_1 on the cross-section A, as shown in Fig. 3, the principal vector $Q(Q_{s},Q_{n})$ and principal moment $M(M_{s},M_{n},M_{t})$ are written by

$$
Q = Q_{s} t + Q_{n} i + Q_{n} i_{n}, \quad M = M_{s} t + M_{t} i + M_{n} i_{n},
$$

where Q_{s} is axial force, Q_{n} and Q_{n} are two shear forces while M_{s} is torque, M_{t} and M_{n} are bending moments. The external forces and moments per unit length along the beam axis are indicated by p and m as

$$
p = p_{s} t + p_{t} i + p_{n} i_{n}, \quad m = m_{s} t + m_{t} i + m_{n} i_{n}.
$$

The equilibrium equations are

$$
\begin{align*}
\frac{d}{ds} Q &= [Q] \cdot \{Q\} + \{p\} = \{0\}, \\
\frac{d}{ds} M &= [M] \cdot \{M\} - [H] \cdot \{Q\} + \{m\} = \{0\},
\end{align*}
\tag{7}
$$

where

$$
\begin{align*}
\{Q\} &= [Q_{s}, Q_{n}, Q_{n}]^T, \\
\{M\} &= [M_{s}, M_{t}, M_{n}]^T, \\
\{p\} &= [p_{s}, p_{t}, p_{n}]^T, \\
\{m\} &= [m_{s}, m_{t}, m_{n}]^T,
\end{align*}
\tag{8}
$$

and

$$
\begin{bmatrix}
k_{s}
-k_{n}
-k_{n}
k_{t}
-k_{t}
k_{t}
\end{bmatrix}, \quad [H] = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{bmatrix}.
$$

Fig. 1. Geometry of the cross-section.

Fig. 2. Closed cell thin-walled beam model.

Fig. 3. Stress resultants in a typical beam element.
The general solutions have the following forms [32]:

\[
\{Q\} = [A] \cdot \left((Q_0) - \int_0^1 [A]^T \cdot (p) \, ds \right),
\]

\[
\{M\} = [A] \cdot \left\{ (M_0) + \int_0^1 [A]^T \cdot ([H] \cdot [A] \cdot (\{Q_0\} + \{Q'\}) - \{m\} \right\} \, ds,
\]

(6)

where \(Q_0\) and \(M_0\) are column matrices for integration constants, and \(\{Q'\} = - \int_0^1 [A]^T \cdot (p) \, ds\) in which \([A]\) is the matrix of direction cosine with each element being dot product of two corresponding unit vectors for both coordinate system characterized by \(t\), \(i\), \(k\) and \(l\), \(i\), \(k\), \(l\), respectively expressed by

\[
[A] = \begin{bmatrix}
 t \cdot i & t \cdot k & t \cdot l \\
 i \cdot i & i \cdot k & i \cdot l \\
 k \cdot i & k \cdot k & k \cdot l \\
 l \cdot i & l \cdot k & l \cdot l
\end{bmatrix}.
\]

(7)

4. Mathematical formulation for the eigenwarping approach

In eigenwarping approach, the solution for the problem will be determined by adding eigenwarping in the form of a series expansion to a warping-free solution. The warping of cross-sections is determined by a solution for corresponding eigenvalue problem. The eigenvalue problem can be tackled using a discretized element determined by a solution for a corresponding eigenvalue problem.

Assuming that the deformation of the beam consists of stretching, bending and torsion, the displacement field neglecting the effect of warping can be written as follows

\[
u = Wt + Ud + Vi,\]

(8)

in which

\[
W = u_t(s) + \eta \phi_t(s) - \xi \phi_i(s), \quad U = u_i(s) - \eta \phi_i(s), \quad V = u_j(s) + \xi \phi_j(s).
\]

The strain–displacement relations are [6]

\[
\sqrt[2\pi]{e_{11} + e_{22}} = a_s + \eta \phi_t - \xi \phi_i, \quad 2 \sqrt[2\pi]{e_{12}} = e_i - \eta \phi_s, \quad 2 \sqrt[2\pi]{e_{13}} = e_j + \xi \phi_s,
\]

(10)

In these equations,

\[
\begin{align*}
 e_s &= u_t' - k_0 u_t + k_0 u_i, \quad e_i &= u_t' + k_0 u_j, \\
 e_j &= u_t' - k_0 u_i + k_0 u_j, \quad \phi_t &= \phi_t - k_0 \phi_i + k_0 \phi_j,
\end{align*}
\]

(11)

\[
\begin{align*}
 \phi_s &= \phi_s' + k_0 \phi_t - k_0 \phi_i, \quad \phi_i &= \phi_i' - k_0 \phi_s + k_0 \phi_j.
\end{align*}
\]

(12)

The above equation is usually referred to as geometry equations, and can be rewritten as

\[
\frac{d}{ds} \{\phi\} = [K] \{\phi\} - \{\omega\} = 0,
\]

(13)

so the general solutions to the geometry equations are [32]

\[
\{\phi\} = [A] \cdot \{\{\phi_0\} + \{\phi^*\} \}, \quad \{\omega\} = [A] \cdot \left\{ \{U_0\} + \int_0^1 [A]^T \cdot ([H] \cdot [A] \cdot (\{\phi_0\} + \{\phi^*\})) \, ds \right\},
\]

(14)

in which \(\{\phi_0\}\) and \(\{U_0\}\) are integration constants, \(\{\phi^*\} = \int_0^1 [A]^T \cdot (\omega) \, ds\). For simplicity, the initial curvature \(k_1\) is assumed to be small, because \(k_1 = k_1 \sin \theta, k_2 = k_2 \cos \theta, \) then \(g = (1 - \zeta \phi_i + \xi \phi_j)^2\) gives

\[
\sqrt[2\pi]{g} \approx 1.
\]

The above equation is realistic for most practical applications. The strains \(\epsilon, \gamma\) in Eq. (4) can be written using Eq. (10) as

\[
\epsilon = e_{11} = \epsilon_s + \eta \phi_t - \xi \phi_i, \quad \gamma = 2e_{12} = \frac{d \epsilon_i}{ds} = \frac{d \epsilon_j}{ds} = \frac{d \eta}{ds} + \frac{d \phi_i}{ds}.
\]

(15)

According to the relation between the internal forces and stress flows defined by

\[
Q_s = \int_C n_s d\zeta, \quad M_s = \int_C q_s \eta d\zeta, \quad Q_t = \int_C q_t d\zeta, \quad M_t = \int_C q_t \eta d\zeta, \quad Q_i = \int_C q_i \eta d\zeta, \quad M_i = \int_C q_i \eta d\zeta,
\]

(16)

using Eqs. (4) and (14), Eq. (15) changes to

\[
Q_s = \sigma_s, \quad Q_t = G A_s \epsilon_t + G A_t \epsilon_t - \int_C A_q r s d \zeta \phi_t, \quad Q_i = G A_s \epsilon_t + G A_t \epsilon_t - \int_C A_q r s d \zeta \phi_t, \quad M_s = I_p \phi_t + \int_C A_q r s d \zeta \phi_t, \quad M_t = I_p \phi_t + \int_C A_q r s d \zeta \phi_t, \quad M_i = I_p \phi_t.
\]

(17)

where \(G_i\) and \(G_t\) are the shear coefficients in \(\xi\) and \(\eta\)-directions for closed thin-walled composite beams [33]; \(S = \int_C A_m d \zeta\) is the axial stiffness, and \(I_s = \int_C A_m r_s d \zeta\) is the bending stiffness (similar definition for \(I_{t}\)). \(A_{ei} = \int_C A_q r_s d \zeta, d \zeta \) is the shear stiffness (similar definitions for \(A_{et}\) and \(A_{et}\)), and \(I_p = \int_C A_m r_s d \zeta\) is the torsional stiffness. In above derivation, the equations \(\int_C A_m d \zeta = \int_C A_m r_s d \zeta = \int_C A_m d \zeta = 0\) have been applied. The six strain measures \(\epsilon_s, \epsilon_t, \epsilon_i, \phi_s, \phi_t, \phi_i\) in Eq. (16) can be evaluated by the internal forces determined from Eq. (6). Using the resulting strain measures, the strains \(\epsilon, \gamma\) and stress flows \(n, q\) can be obtained from Eqs. (14) and (4), respectively. The displacements in Eq. (8) can be also determined using Eq. (13).
the strain–displacement relations incorporating the warping effect [6,34], yields
\[e_{11c0} = \varphi_i(z) + k_0 \left(\frac{\partial \varphi}{\partial z} \right) \eta - \left(\frac{\partial \varphi}{\partial z} \right) \zeta(x), \]
\[\gamma_{c0} = 2e_{12c0} \frac{d \varphi}{dz} + 2e_{13c0} \frac{d \varphi}{dz} + \varphi(x) + \left(\frac{d \varphi}{dz} \right) \eta + \left(\frac{d \varphi}{dz} \right) \zeta + \varphi(x) \zeta + \left(\frac{d \varphi}{dz} \right) \varphi \]
\[= \varphi(x) + \left(\frac{d \varphi}{dz} \right) \eta + \varphi(x) \zeta + \left(\frac{d \varphi}{dz} \right) \varphi \]
\[\approx \left(\frac{d \varphi}{dz} \right) \varphi \]
\[\approx \frac{d \varphi}{dz} \zeta \]
where \(r \) is the distance from the centroid \(O_i \) to the tangent to the cross-sectional curve, as shown in Fig. 2. For orthotropic beam whose two axes of orthotropy are parallel to the axis of the beam and the tangent, \(A_{16} = A_{26} = 0 \), resulting in \(A_{16} = 0 \), which indicates vanishing of the in-plane extension-shearing coupling of the laminate. The corresponding strain energy is
\[\Pi_{co} = \frac{1}{2} \int_0^R \int_C \left(A_{m} e_{11c0} + A_{q} \gamma_{c0} \right) d\zeta, \]
The expression for eigenvalues can be derived by minimizing the energy with respect to \(\varphi, \varphi, \varphi, \varphi \) and \(\zeta \). The associated eigenvalues \(\mu_i^2 \) can be obtained in the form of a Rayleigh quotient below
\[\mu_i^2 = \frac{\int_C A_{qq} \left(\left(\frac{d \varphi}{dz} \right) \varphi + k_0 \varphi \right)^2 \left(\frac{d \varphi}{dz} \right) \varphi + \frac{d \varphi}{dz} \right) d\zeta}{\int_C A_{mm} \varphi^2 d\zeta}, \]
where \(\varphi, \varphi, \varphi, \varphi \) are determined by
\[\int_C A_{qq} \left(\left(\frac{d \varphi}{dz} \right) \varphi + k_0 \varphi \right)^2 \left(\frac{d \varphi}{dz} \right) \varphi + \frac{d \varphi}{dz} \right) d\zeta = 0, \]
\[\int_C A_{qq} \left(\left(\frac{d \varphi}{dz} \right) \varphi + k_0 \varphi \right)^2 \left(\frac{d \varphi}{dz} \right) \varphi + \frac{d \varphi}{dz} \right) d\zeta = 0, \]
\[\int_C A_{qq} \left(\left(\frac{d \varphi}{dz} \right) \varphi + k_0 \varphi \right)^2 \left(\frac{d \varphi}{dz} \right) \varphi + \frac{d \varphi}{dz} \right) d\zeta = 0, \]
where
\[\varphi_i = \begin{cases} \frac{s_i - s_{i-1}}{s_{i+1} - s_{i-1}}, & s_{i-1} \leq s \leq s_i \\ \frac{s_{i+1} - s_i}{s_{i+1} - s_{i-1}}, & s_i \leq s \leq s_{i+1} \\ 0 & \text{other} \end{cases} \]
in which \(s_i \) corresponds to the discretized point along the contour of the section denoted by \(C \) (see also Fig. 2). In above derivation the following set of orthornormality relations
\[\int_C A_{mm} \varphi_i \varphi_j d\zeta = \delta_{ij}, \]
\[\int_C A_{qq} \Gamma_i d\zeta = \mu_i^2 \delta_{ij}, \]
where
\[\Gamma = \sqrt{\left(\frac{d \varphi}{dz} \right) - k_0 \varphi + k_0 \varphi d^2 \varphi \left(\frac{d \varphi}{dz} \right) + \varphi (d^2 \varphi + \zeta + \varphi)^2 + A_{mm} k_0^2 \left(\frac{d \varphi}{dz} \right) - \left(\frac{d \varphi}{dz} \right)^2 \}
\]

5. Improved beam model and equivalent constitutive equations

Using Eqs. (9), (11) and (17), the combined displacement in the axial direction and three strain measures can be expressed by
\[W_{ii} = W + W_{co} = W + \sum_i \varphi_i(x) \varphi_i(s), \]
\[e_{iim} = \epsilon_i + e_{iic} = \epsilon_i + \sum_i \varphi_i(x) \varphi_i(s), \]
\[\epsilon_{iim} = \epsilon_i + \epsilon_{iic} = \epsilon_i + \sum_i \varphi_i(x) \varphi_i(s), \]
\[\Omega_{iim} = \Omega_i + \Omega_{iic} = \Omega_i + \sum_i \varphi_i(x) \varphi_i(s). \]
Thus, the total strain components \(e \) and \(\gamma \) are
\[e = e_{110} + \sum_i \left(\varphi_i(x) \varphi_i(s) + k_0 \left(\frac{\partial \varphi}{\partial s} \right) \eta - \left(\frac{\partial \varphi}{\partial s} \right) \zeta \right), \]
\[\gamma = 2e_{12c0} \frac{d \varphi}{dz} + 2e_{13c0} \frac{d \varphi}{dz} + \sum_i \left(\frac{d \varphi}{dz} - k_0 \varphi \right) \frac{d \varphi}{dz} + k_0 \varphi \frac{d \varphi}{dz} \]
\[+ \frac{d \varphi}{dz} + \varphi \frac{d \varphi}{dz} + r \zeta \right) \varphi_i(s). \]
The total potential energy for the beam
\[\Pi = \frac{1}{2} \int_0^R \int_C \left(A_{mm} e^2 + A_{qq} \gamma^2 \right) d\zeta ds - \int_0^R \left(p_i \epsilon_i + p_\varphi \varphi \right) ds, \]

Using the orthonormality relations (17), Eq. (26) changes to
\[\Pi = \Pi_{mm} + \sum_i \int_0^R \left(\frac{1}{2} \left(\frac{d \varphi_i}{dz} - \mu_i^2 \varphi_i \right) - d_i \varphi_i \right) ds, \]

where
\[d_i = Q_i (\overline{U} - k_0 \varphi_i) + Q_i (\overline{V} - k_0 \varphi_i) + M_i \zeta. \]
The \(\Pi_{mm} \) is the energy for the warping-free beam. The second term in Eq. (27) indicates that \(\varphi, \varphi, \varphi, \varphi \) and \(\zeta \) are independent of the previous six rigid body modes corresponding to the warping-free beam. Minimizing \(\Pi_{mm} \) will result in the equilibrium Eq. (5), and minimizing the second terms with respect to \(\varphi_i \) yields
\[\varphi_i^2 - \mu_i^2 \varphi_i = -d_i. \]
The above equation is solved easily. Accordingly, the improved solution for the problem in terms of the series expansion of eigenvalues taking the form of

$$W_{im} = W + \sum_i \tilde{u}_i \phi_{li}, \quad \bar{e}_{im} = \bar{e}_i + \sum_i \bar{\zeta}_{li} \tilde{u}_i,$$

$$\bar{e}_{im} = \bar{e}_i + \sum_i \bar{\zeta}_{li} \tilde{u}_i,$$

$$n_{im} = n + \sum_i \tilde{u}_i \left\{ \phi_{li}(\xi) \zeta(s) + k_i \left(\frac{d\phi_{li}}{d\xi} \eta - \left(\frac{d\phi_{li}}{d\xi} \right) \zeta(s) \right) \right\},$$

$$q_{im} = q + \sum_i \tilde{u}_i \left\{ \frac{d\phi_{li}}{d\xi} - k_i \phi_{li} \frac{d\phi_{li}}{d\xi} + k_0 \frac{d\phi_{li}}{d\xi} + \bar{\zeta}(\frac{d\phi_{li}}{d\xi} + r) \right\} \zeta(s).$$

(30)

6. Example analysis

For the purpose of computation, a curved, thin-walled composite box beam fixed at one end (s = 0) and free at the other end (s = l), as shown in Fig. 4, is considered as a computational model. The axis of the beam is assumed to be a circular arc with radius a. In this case there is

$$\beta = \frac{l}{a}, \quad \eta_0 = k_1 = \frac{1}{a}, \quad \alpha = a \sin \beta, \quad \gamma = a(1 - \cos \beta),$$

and \(\theta = k_0 = k_0 = 0\) and \(k_0 = 1/R\). The external load is assumed to be uniformly distributed load \(p_0\) in the \(\eta\)-direction, i.e.,

$$\{p\} = \{0 \ 0 \ p_0\}, \quad \{m\} = \{0 \ 0 \ 0\}.$$

Using Eqs. (6) and (13), the expressions related to the internal forces and displacements are

$$M_i = M_{0i} \cos \beta + M_{0i} \sin \beta + Q_{0i} \alpha(1 - \cos \beta) + p_0 a^2 (\sin \beta - \beta),$$

$$M_i = -M_{0i} \sin \beta + M_{0i} \cos \beta + Q_{0i} \alpha \sin \beta - p_0 a^2 (1 - \cos \beta),$$

$$Q_{0i} = Q_{0i} - p_0 a^2.$$

$$\phi_x = \phi_{x0} \cos \beta + \phi_{x0} \sin \beta + a \beta \int_0 \left[\phi_x \cos \beta - \phi_x \sin \beta \right] df +$$

$$+ \sin \beta \int_0 \left[\phi_x \cos \beta + \phi_x \sin \beta \right] df,$$

$$\phi_x = -\phi_{x0} \sin \beta + \phi_{x0} \cos \beta - a . \sin \beta \int_0 \left[\phi_x \cos \beta + \phi_x \sin \beta \right] df +$$

$$+ \cos \beta \int_0 \left[\phi_x \cos \beta + \phi_x \sin \beta \right] df,$$

$$u_x = U_0 + \eta_0 \gamma - \phi_{x0} \alpha + a \int_0 \frac{d\phi_x}{d\xi} df +$$

$$+ a \int_0 \left[\sin \beta \int_0 \left[\phi_x \cos \beta - \phi_x \sin \beta \right] df - \cos \beta \int_0 \left[\phi_x \sin \beta + \phi_x \cos \beta \right] df \right] df.$$

(31)

where \(M_{0x}, M_{0y}, Q_{0y}, \phi_{0x}, \phi_{0y}, U_{0y}\) are the values of \(M_x, M_y, Q_y, \phi_x, \phi_y, U_y\) at the end \(s = 0\), respectively.

For the uniformly distributed load, \(p_0\), Eq. (29) is rewritten by

$$\alpha_i^2 - \mu_i^2 \alpha_i = -p_0 a^2 \frac{\pi}{2} \left(\frac{\pi}{2} - \beta \right) - p_0 a^2 \frac{\pi}{2} \alpha_i - \cos \beta \right).$$

(32)

The form of the solution of Eq. (32) is

$$\alpha_i = C_1 e^{x_{iI}} + C_2 e^{-x_{iI}} + \frac{1}{\mu_i^2} p_0 a^2 \frac{\pi}{2} \left(\frac{\pi}{2} - \beta \right) - \frac{1}{\mu_i^2} p_0 a^2 \frac{\pi}{2} \alpha_i - \cos \beta \right).$$

(33)

where \(C_1, C_2\) are unknown constants. Using the boundary conditions \(s = 0 (\beta = 0), U_{0x} = U_{0y} = U_{0y} = 0, \phi_{0x} = \phi_{0y} = \phi_{0y} = 0, \alpha_0 = 0, \alpha_i = 0\), \(s = l (\beta = \beta_i), M_i = M_i = 0, \alpha_i = 0, \alpha_i = 0\), from Eqs. (31) and (33), yields

$$M_{0x} = p_0 a^2 \left(\frac{\pi}{2} - 1 \right), \quad M_{0y} = -p_0 a^2, \quad Q_{0y} = \frac{\pi}{2} p_0 a.$$

$$C_1 = \left[\begin{array}{c} 1 \alpha \mu_i^2 \mu_i - 2 \alpha \mu_i \mu_i - 2 \alpha \mu_i \mu_i - 2 \alpha \mu_i \mu_i \end{array} \right] p_0 a.$$

$$C_2 = \left[\begin{array}{c} 1 \alpha \mu_i^2 \mu_i + 2 \alpha \mu_i \mu_i + 2 \alpha \mu_i \mu_i + 2 \alpha \mu_i \mu_i \end{array} \right] p_0 a.$$

(34)

The above equations will be used in numerical computation.

6.1. Convergence analysis of present model

To evaluate the structural behaviors, a more exact calculation of eigenvalues \(\mu_i^2\) in Eq. (19) is of importance to determination on warping coordinate \(\alpha_i\) by Eq. (29). Consider a Graphite/Epoxy box beam for the lay-up (0°/90°)/l with length \(l = 30.0\) in., and height and width of cross-section of the beam are \(h = 0.537\) in. and \(c = 0.953\) in., respectively. Some elastic properties are given as \(E_i = 20.59\) psi, \(E_{11} = 1.42\) psi, \(G_{12} = 0.87\) psi and \(G_{11} = 0.42\) [35]. The four edges of the cross-section are discretized to 1484, 2968, 3200 and 3500 elements, respectively. Different discretization will result in corresponding values of eigenvalues for \(\mu_i^2\). The first ten eigenvalues of \(\mu_i^2\) for different elements are listed in Table 1. The result indicates that when the number of discretized element is large enough, e.g., it is close to 3200, the eigenvalues have enough exactness in computation.

Table 1

<table>
<thead>
<tr>
<th>Elements</th>
<th>Eigenvalues ((\mu_i^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1484</td>
<td>1.93E-11</td>
</tr>
<tr>
<td>2968</td>
<td>9.38E-12</td>
</tr>
<tr>
<td>3200</td>
<td>3.25E-10</td>
</tr>
<tr>
<td>3500</td>
<td>1.16E-10</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1484</td>
<td>2.37E6</td>
</tr>
<tr>
<td>2968</td>
<td>2.37E6</td>
</tr>
<tr>
<td>3200</td>
<td>2.37E6</td>
</tr>
<tr>
<td>3500</td>
<td>2.37E6</td>
</tr>
</tbody>
</table>
6.2. Comparison of results for present model with available data

A comparison of the span-wise distributions of bending slope is listed in Table 2 for uncoupled cross-ply beams subjected to unit tip bending load when the ratio of the length of the beam to the height of the cross section is prescribed to be 29 [35]. It is observed that present result is more close to the analytical solution [35] and experimental data [36, 37]. A comparatively larger error is seen when compared with the finite element results [38]. Similar result for twist angle to unit tip torque for the same lay-up is shown from Table 3. In Table 4 the span-wise distribution of bending slope is illustrated for symmetric lay-up beams (i.e., top and bottom $(45^\circ)_{2s}$, sides $(45^\circ−45^\circ)_2$) subjected to a tip bending load where the ratio of the length of the beam to the height of the cross-section is prescribed to be 56 [35]. The result indicates that the present model shows good accuracy in computation compared with available results.

For a beam with curvature $c = 0.5$ and 0.5 in. × 0.5 in. square cross-section under a unit pure bending moment, a comparison that the present result is consistent with the analytical solution [25].

6.3. Effect of geometrical parameters of curved beam on structural behaviors

Consider a carbon/epoxy box beam with the height and width of the cross section $h = 0.05$ m and $c = 0.08$ m, respectively. The radius $a = 400$ mm. The elastic constants of ply material in computation are $E_1 = 109.65$ GPa, $E_T = 7.87$ GPa, $G_{1T} = 2.92$ GPa and $v_{1T} = 0.29$.

Two lay-up configurations are considered. The first lay-up is of form of [0_3, ±45]), for the vertical (web) and the horizontal (flange) panels where the 0° direction is parallel to the beam axis (referred to as the “balanced beam”). In this case, one axis of orthotropy of the laminate is along the beam axis, so no extensional–shearing coupling is present. In second lay-up formation (the “unbalanced beam”), the same laminate is applied but its axis of orthotropy is rotated 45° with respect to the beam axis, resulting in the [45_3, 90°, 0°]), lay-up. The thickness of each laminate is chosen as 0.00025 m. Using Eq. (4), the results for the stiffness coefficients of these laminates are derived as

\[
A_{mn} = 122.12 \times 10^6 \text{ N/m}, A_{qq} = 31.33 \times 10^6 \text{ N/m} \text{ and } A_{pq} = 0.0
\]

for the balanced beam, and

\[
A_{mn} = 82.98 \times 10^6 \text{ N/m}, A_{qq} = 24.26 \times 10^6 \text{ N/m} \text{ and } A_{pq} = 17.29 \times 10^6 \text{ N/m}
\]

for the unbalanced configuration. The ± sign in A_{pq} corresponds to the panels on the left-hand and right-hand sides, respectively, and also to the lower and upper skins, respectively.

For different central angles, $\beta = \frac{\pi}{2} − \pi$, two displacement components, U, V, in ζ- and η-directions at point A (see Fig. 5) at the free end of the balanced and unbalanced beams under uniformly distributed load p_0 are shown in Tables 6 and 7, respectively. The magnitude of the displacements increases with an increasing central angle. Specifically, when the central angle is between $\frac{\pi}{2} − \frac{\pi}{7}$, the displacements for the balanced beam boost rapidly during this range. When the central angle is in the scope of $\frac{\pi}{2} − \frac{\pi}{7}$, the displacements raise slowly. It is observed that in the interval for the value of the angle, i.e., $\beta = \frac{\pi}{2} − \pi$, the displacement U will

Table 2

<table>
<thead>
<tr>
<th>x (in.)</th>
<th>Bending slope (Rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Present theory</td>
</tr>
<tr>
<td>0.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>5.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>10.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>15.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>20.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>25.00000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>x (in.)</th>
<th>Twist angle (Rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Present theory</td>
</tr>
<tr>
<td>0.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>5.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>10.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>15.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>20.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>25.00000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>x (in.)</th>
<th>Bending slope (Rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Present theory</td>
</tr>
<tr>
<td>0.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>5.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>10.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>15.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>20.00000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>25.00000</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>

Fig. 5. Cross-section of the beam.
Changes of displacements at point A with cross-section size at the free end of the unbalanced beam under uniformly distributed load p_0

<table>
<thead>
<tr>
<th>p (Rad)</th>
<th>U (m)</th>
<th>V (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>2.45929×10^{-7}</td>
<td>3.74493×10^{-5}</td>
</tr>
<tr>
<td>$\frac{\pi}{6}$</td>
<td>1.66203×10^{-5}</td>
<td>2.96367×10^{-4}</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>4.0291×10^{-3}</td>
<td>1.44212×10^{-1}</td>
</tr>
<tr>
<td>$\frac{3\pi}{4}$</td>
<td>5.03119×10^{-5}</td>
<td>4.43411×10^{-3}</td>
</tr>
<tr>
<td>π</td>
<td>-1.38272×10^{-4}</td>
<td>1.92293×10^{-2}</td>
</tr>
</tbody>
</table>

Changes of displacements at point A with laminate thickness at the free end of the unbalanced beam under uniformly distributed load p_0

<table>
<thead>
<tr>
<th>p (Rad)</th>
<th>U (m)</th>
<th>V (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>2.8056×10^{-6}</td>
<td>3.74493×10^{-5}</td>
</tr>
<tr>
<td>$\frac{\pi}{6}$</td>
<td>7.5087×10^{-6}</td>
<td>4.81409×10^{-4}</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>-2.937×10^{-3}</td>
<td>2.31487×10^{-1}</td>
</tr>
<tr>
<td>$\frac{3\pi}{4}$</td>
<td>-1.978×10^{-4}</td>
<td>6.99784×10^{-3}</td>
</tr>
<tr>
<td>π</td>
<td>-1.34198×10^{-3}</td>
<td>2.9487×10^{-2}</td>
</tr>
</tbody>
</table>

Changes of displacements at point A with central angle at the free end of the unbalanced beam under uniformly distributed load p_0

<table>
<thead>
<tr>
<th>β (Rad)</th>
<th>U (m)</th>
<th>V (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>-4.909</td>
<td>-2.937</td>
</tr>
<tr>
<td>$\frac{\pi}{6}$</td>
<td>-2.094</td>
<td>-1.627</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>1.700</td>
<td>1.300</td>
</tr>
<tr>
<td>$\frac{3\pi}{4}$</td>
<td>2.300</td>
<td>2.029</td>
</tr>
</tbody>
</table>

7. Conclusions

An improved model for analysis of naturally curved and twisted thin-walled beams made of anisotropic materials is proposed. The effects of initial curvature, torsion of the beams as well as torsion-related warping, transverse shear deformations and elastic coupling are included in the proposed model. The model is verified using the analytical solution and experimental data and the finite element results available. The calculation shows that the effect of extensional–shearing coupling from lay-up configuration produces large maximum values for the two displacements in the cross-section for the unbalanced beam in comparison with the results for the balanced beam without extensional–shearing coupling. Change in the central angle of the curved beam may induce a change in the direction of displacement. An increase in the laminate thickness or size of cross-section (e.g., the height, etc.) corresponds to a smaller displacement. Due to the different lay-up forms, the direction of one transverse displacement may be opposite for the balanced and unbalanced beams although the global geometry for both the beams is identical. The proposed theory can be used as an alternative model for evaluation of structural behaviors of naturally curved and twisted beams.

Acknowledgements

The authors thank the reviewers for their valuable comments and suggestions to improve the quality of the paper. The work is supported by the National Natural Science Foundation of PR China through Grant Nos. 10572105, 10972157 and Shanghai Leading Academic Discipline Project (Project No. B302).

References

Machado SP, Cortínez VH. Free vibration of thin-walled composite beams with static initial stresses and deformations. Eng Struct 2007;29(3):372–82.

