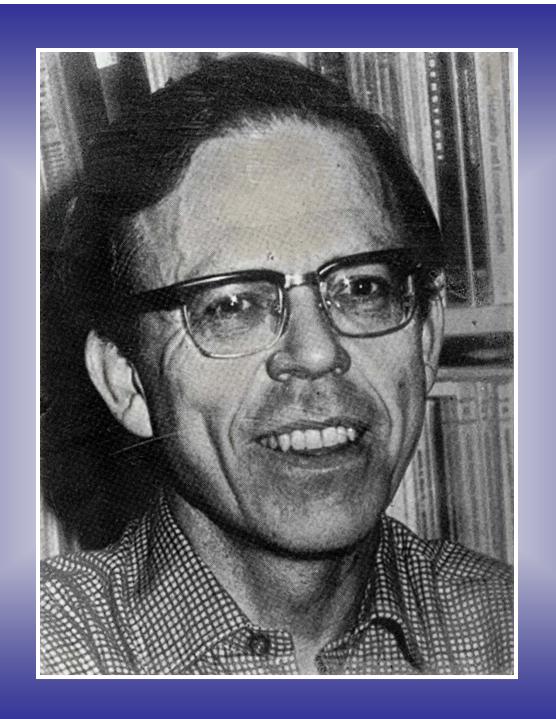
AN ECONOMETRIC APPROACH TO GENERAL EQUILIBRIUM MODELING

by
Dale W. Jorgenson
Harvard University

Presented to the Leif Johansen Symposium University of Oslo

Oslo, Norway – May 20-21, 2010



AN ECONOMETRIC APPROACH TO GENERAL EQUILIBRIUM MODELING

Johansen's Multi-Sectoral Study of Economic Growth

Elements of the Econometric Approach:

Econometric Modeling of Producer Behavior: Jin and Jorgenson, 2010.

Econometric Modeling of Consumer Behavior:

Jorgenson, Lau, and Stoker, 1997; Jorgenson and Slesnick, 2008.

Intertemporal General Equilibrium Model

Version One: Jorgenson and Wilcoxen, 1990.

Version Sixteen: Jorgenson, Wilcoxen, Slesnick, Ho, and Goettle, 2010.

Application to Climate Policy: U.S. Environmental Protection Agency, 2009.

ECONOMETRIC MODELING OF TECHNICAL CHANGE

- Substitution vs. Technical Change Jorgenson (2000)
- Index Number Approach Jorgenson, Ho, and Stiroh (2005)
- Parametric Approach Jorgenson and Fraumeni (2000)
- State-Space Approach Jorgenson and Jin (2010)

Productivity Information Technology and the American Growth Resurgence

Dale W. Jorgenson, Mun S. Ho,

and Kevin J. Stiroh

STATE-SPACE MODELING OF TECHNICAL CHANGE

Production Function

$$Q_j = f(K_j, L_j, E_j, M_j, t)$$

Accounting Identity

$$P_{Qjt}Q_{jt} = P_{Kjt}K_{jt} + P_{Ljt}L_{jt} + P_{Ejt}E_{jt} + P_{Mjt}M_{jt}$$

Price Function

$$P_{Qj} = p(P_{Kj}, P_{Lj}, P_{Ej}, P_{Mj}, t)$$

Translog Price Function

$$\ln P_{Qt} = \alpha_0 + \sum_{i=1}^{n} \alpha_i \ln P_{it} + \frac{1}{2} \sum_{i,k} \beta_{ik} \ln P_{it} \ln P_{kt} + \sum_{i=1}^{n} \ln P_{it} f_{it} + f_{pt}$$

$$i,k = \{K, L, E, M\}$$

Input Demand Equation

$$v_{Kt} = \frac{P_K K}{P_Q Q} = \alpha_K + \sum_k \beta_{Kk} \ln P_{kt} + f_{Kt}$$

SUMMARY: STATE-SPACE MODELING

Stochastic Specification

$$\ln P_{Qt} = \alpha_0 + \alpha' \ln \mathbf{p}_t + \frac{1}{2} \ln \mathbf{p}_t' \mathbf{B} \ln \mathbf{p}_t + \ln \mathbf{p}_t' \mathbf{f}_t + f_{pt} + \varepsilon_t^p$$

$$\mathbf{v}_t = \alpha + \mathbf{B} \ln \mathbf{p}_t + \mathbf{f}_t + \varepsilon_t^v$$

Observable Variables

$$\begin{split} &\ln \mathbf{p}_t = (\ln P_{Kt}, \ln P_{Lt}, \ln P_{Et}, \ln P_{Mt})' \\ &\mathbf{v}_t = (v_{Kt}, v_{Lt}, v_{Et}, v_{Mt})' \\ &\ln P_{Qt} \end{split}$$

Latent Variables

$$\begin{aligned} f_t &= (f_{\mathit{Kt}}, f_{\mathit{Lt}}, f_{\mathit{Et}}, f_{\mathit{Mt}})' \\ f_{\mathit{pt}} \end{aligned}$$

Random Variables

$$\varepsilon_t^{\nu} = (\varepsilon_{Kt}, \varepsilon_{Lt}, \varepsilon_{Et}, \varepsilon_{Mt})'$$

$$\varepsilon_t^{p}$$

Parameters

$$\mathbf{\Omega} = (\alpha_{K}, \alpha_{L}, \alpha_{E}, \alpha_{M})'$$

$$\mathbf{B} = [\beta_{jk}]$$

RESTRICTIONS FROM PRODUCTION THEORY

Homogeneity

$$\alpha_K + \alpha_L + \alpha_E + \alpha_M = 1$$

 $\sum \beta_{ik} = 0 \text{ for } k = K, L, E, M$

Symmetry

$$\beta_{ik} = \beta_{ki}$$

Concavity

 $\mathbf{B} + \mathbf{v}_t \mathbf{v}_t' - \mathbf{V}_t$ positive semi-definite

Econometrics Econometric Modeling of Producer Behavior Dale W. Jorgenson

<u>DEFINITION OF TECHNICAL CHANGE</u>

Rate of Technical Change:

Rate of change in the price of output, holding input prices constant

$$\Delta T_t = -\sum_{i=1}^n \ln P_{it} (f_{it} - f_{i,t-1}) - (f_{pt} - f_{p,t-1})$$

Biases of Technical change

Change in the value shares of inputs, holding input prices constant

$$\Delta v_t = f_t - f_{t-1}$$

Transition Equation

$$\mathcal{F}_{t} = \mathbf{\Phi} \mathcal{F}_{t} + u_{t}$$

where:

$$\mathbf{F}_{t} = (1, f_{kt}, f_{lt}, f_{et}, \Delta f_{pt})'$$

is stationary. The transition equation is a vector auto-regressive scheme (VAR).

TWO-STEP KALMAN FILTER

Kalman Filter, Hamilton (1994)

State Equation

$$\xi_t = F_{(r \times r)} \xi_{t-1} + v_t$$

$$(r \times 1) (r \times 1) (r \times 1)$$

where:

$$E(v_t v_{\tau}') = \begin{cases} Q & t = \tau \\ \frac{(r \times r)}{0} & otherwise \end{cases}$$

Observation Equation

$$y_t = A'_{(n \times k)} x_t + H'_{(n \times r)} \xi_t + w_t$$

where:

$$E(w_t w_{\tau}') = \begin{cases} R & t = \tau \\ \binom{n \times n}{0} & otherwise \end{cases}$$

FILTERING AND SMOOTHING

Filtering

$$\max_{\theta} l(\theta \mid Y_T) = \max_{\theta} \sum_{t=1}^{T} \log N(y_t \mid \hat{y}_{t|t-1}, V_{t|t-1})$$

where:

$$Y_{t} = (y_{t}', y_{t-1}', ..., y_{1}', x_{t}', x_{t-1}', ..., x_{1}')'$$

consists of observations up to time t and:

$$\hat{y}_{t|t-1} = E(y_t \mid Y_{t-1}); V_{t|t-1} = E[(y_t - \hat{y}_{t|t-1})(y_t - \hat{y}_{t|t-1})']$$

ECONOMETRIC MODEL

$$y_{t} = \begin{bmatrix} v_{R} \\ v_{Lt} \\ v_{E} \\ \ln \frac{P_{Qt}}{P_{Mt}} \end{bmatrix} x_{t} = \begin{bmatrix} 1 \\ \frac{P_{Rt}}{P_{Mt}} \\ \frac{1}{2} (\ln \frac{P_{Et}}{P_{Mt}})^{2} \\ \ln \frac{P_{Rt}}{P_{Mt}} \ln \frac{P_{Lt}}{P_{Mt}} \\ \ln \frac{P_{Et}}{P_{Mt}} \ln \frac{P_{Et}}{P_{Mt}} \\ \ln \frac{P_{Et}}{P_{Mt}} \ln \frac{P_{Et}}{P_{Mt}} \\ \ln \frac{P_{Et}}{P_{Mt}} \ln \frac{P_{Et}}{P_{Mt}} \end{bmatrix}$$

Where:

where:

There:
$$H' = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & \ln \frac{P_{Kt}}{P_{Mt}} & \ln \frac{P_{Lt}}{P_{Mt}} & \ln \frac{P_{Et}}{P_{Mt}} & 1 & 0 \end{bmatrix}, w_t = \begin{bmatrix} \varepsilon_{Kt} \\ \varepsilon_{Lt} \\ \varepsilon_{Et} \\ \varepsilon_{pt} \end{bmatrix}, v_t = \begin{bmatrix} 0 \\ u_{Kt} \\ u_{Lt} \\ u_{Et} \\ u_{dpt} \\ 0 \end{bmatrix}, v_t = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ u_{Kt} \\ u_{Lt} \\ u_{Et} \\ u_{dpt} \\ 0 \end{bmatrix}, v_t = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \chi_K & \delta_{KK} & \delta_{KL} & \delta_{KE} & \delta_{Kp} & -\delta_{Kp} \\ \chi_L & \delta_{LK} & \delta_{LL} & \delta_{LE} & \delta_{Lp} & -\delta_{Lp} \\ \chi_E & \delta_{EK} & \delta_{EL} & \delta_{EE} & \delta_{Ep} & -\delta_{Ep} \\ \chi_p & \delta_{pK} & \delta_{pL} & \delta_{pE} & \delta_{pp} + 1 & -\delta_{pp} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

TWO-STEP KALMAN FILTER

Instrumental Variables

$$x_{t} = \prod_{(k \times m)} z_{t} + \eta_{t}$$

$$(k \times 1) = (k \times m) (m \times 1) (k \times 1)$$

New Observation Equation

$$\begin{bmatrix} y_t \\ x_t \end{bmatrix} = \begin{bmatrix} A'\Pi \\ \Pi \end{bmatrix} z_t + \begin{bmatrix} \dot{H}' \\ O \end{bmatrix} \xi_t + \begin{bmatrix} A'\eta_t + w_t \\ \eta_t \end{bmatrix}$$

or:
$$\widetilde{y}_t = \widetilde{A}' \widetilde{x}_t + \widetilde{H}' \xi_t + \widetilde{w}_t$$

$$[(n+k)\times n] (m\times 1) [(n+k)\times r] (r\times 1) [(n+k)\times 1]$$

- **Step One**: Estimate $\hat{\Pi} = XZ'(ZZ')^{-1}$ using OLS, which is a consistent estimator of Π , where X and Z represent the matrices of observations on \mathcal{X}_t and \mathcal{Z}_t , t=1,2,...T.
- ❖ Step Two: Replace \hat{X} in the standard Kalman filter with $\hat{X} = \hat{\Pi}Z$, that is, replace \mathcal{X}_t with $\hat{\mathcal{X}}_t$ at time t, and then use the standard filtering procedure to obtain the two-step MLE of the unknown parameters in the matrices A, H, F, R, Q.
- Wooldridge (2002, Chapter 12) shows that the estimator is consistent and asymptotically normal.

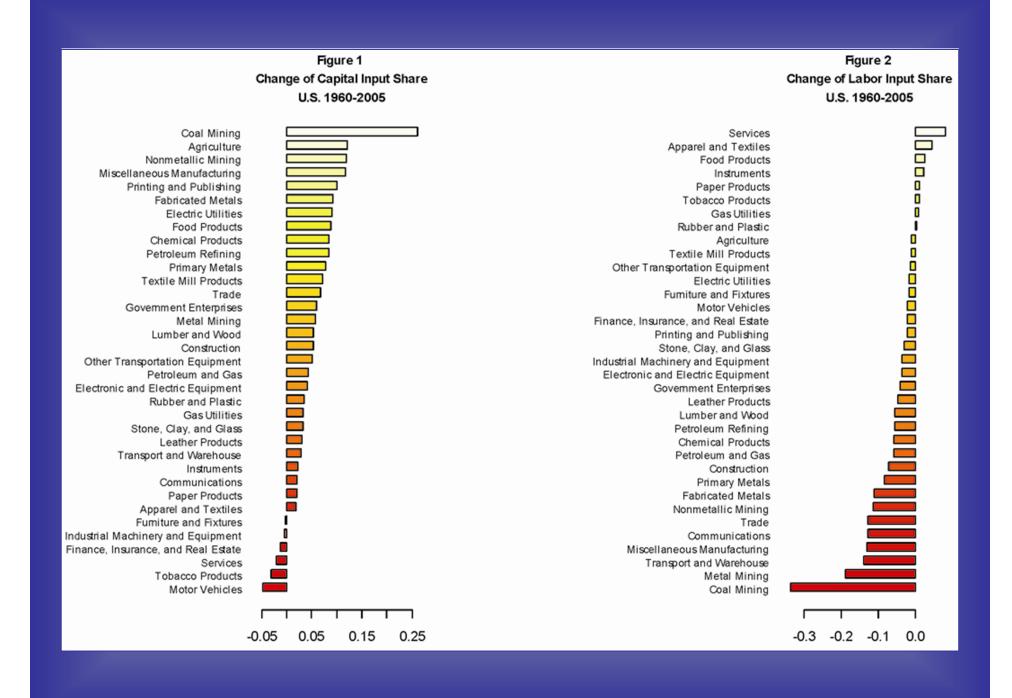
LIST OF SECTORS

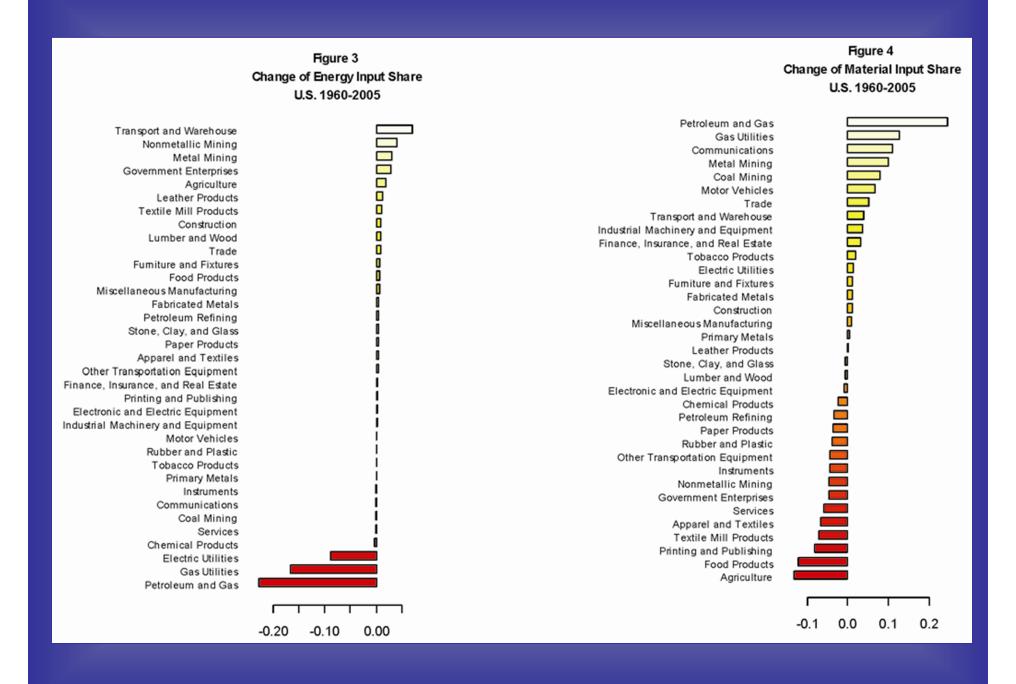
Sector number	Sector Name		
1	Agriculture		
2	Metal Mining		
3	Coal Mining		
4	Petroleum and Gas		
5	Nonmetallic Mining		
6	Construction		
7	Food Products		
8	Tobacco Products		
9	Textile Mill Products		
10	Apparel and Textiles		
11	Lumber and Wood		
12	Furniture and Fixtures		
13	Paper Products		
14	Printing and Publishing		
15	Chemical Products		
16	Petroleum Refining		
17	Rubber and Plastic		
18	Leather Products		
19	Stone, Clay, and Glass		
20	Primary Metals		
21	Fabricated Metals		
22	Industrial Machinery and Equipment		
23	Electronic and Electric Equipment		
24	Motor Vehicles		
25	Other Transportation Equipment		
26	Instruments		
27	Miscellaneous Manufacturing		
28	Transport and Warehouse		
29	Communications		
30	Electric Utilities		
31	Gas Utilities		
32	Trade		
33	Finance, Insurance, and Real Estate		
34	Services		
35	Government Enterprises		

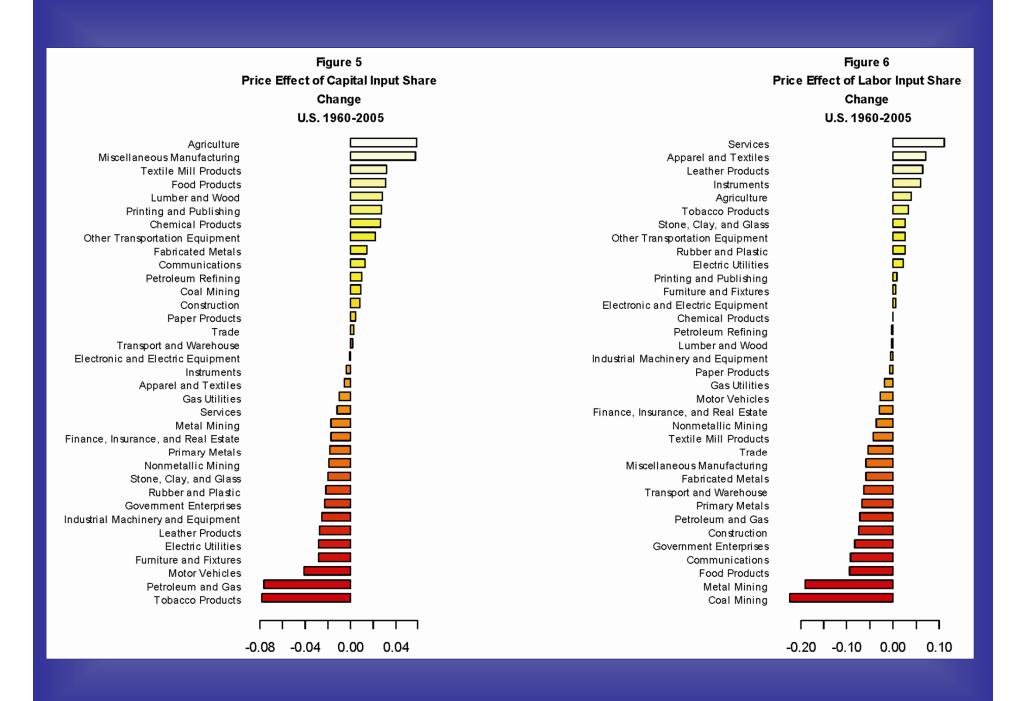
TESTS FOR OVER-IDENTIFICATION

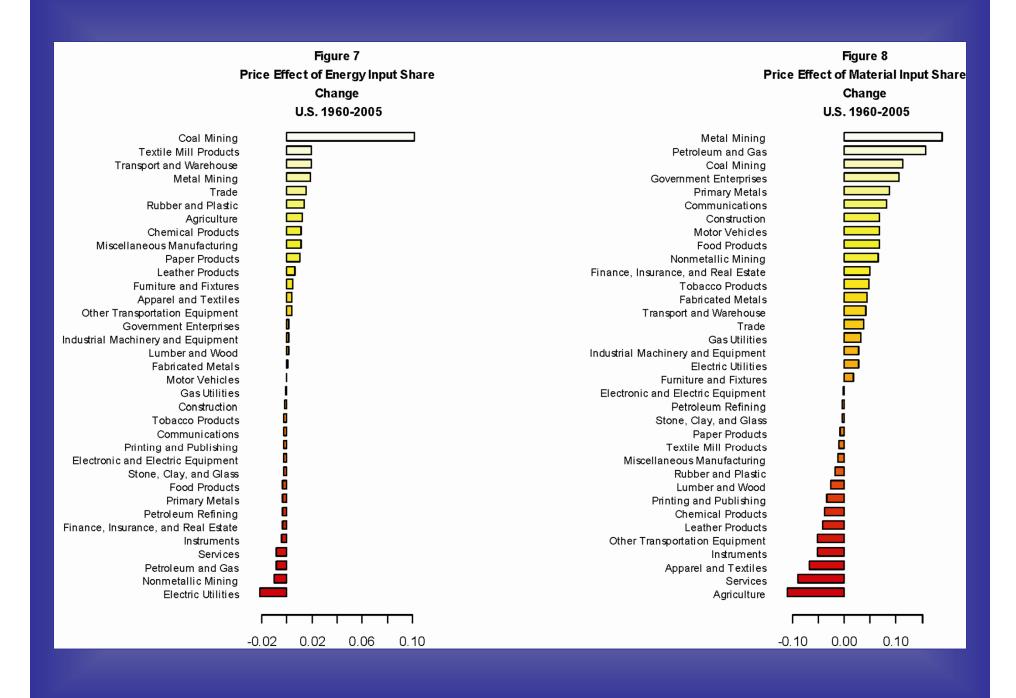
sector	l_g	1	$2(l_g-l)$	p-value	p-value*35
1	545.23	533.74	22.98	0.003	0.12
2	397.19	389.25	15.88	0.044	1.55
3	472.23	465.80	12.85	0.117	4.10
4	471.55	470.86	1.38	0.995	34.81
5	523.07	519.08	7.98	0.435	15.24
6	670.18	666.67	7.02	0.535	18.71
7	696.27	694.53	3.50	0.900	31.48
8	565.98	563.63	4.71	0.788	27.57
9	646.94	645.71	2.47	0.963	33.71
10	650.35	646.54	7.62	0.472	16.50
11	591.04	585.43	11.23	0.189	6.61
12	662.38	660.57	3.62	0.890	31.14
13	635.90	631.93	7.95	0.438	15.34
14	683.52	678.03	10.97	0.203	7.11
15	585.34	576.20	18.28	0.019	0.67
16	475.49	475.32	0.35	1.000	35.00
17	634.98	633.03	3.90	0.866	30.32
18	601.50	594.70	13.59	0.093	3.25
19	635.55	627.89	15.31	0.053	1.87
20	559.01	552.91	12.20	0.143	4.99
21	655.88	651.01	9.74	0.284	9.94
22	651.09	648.44	5.28	0.727	25.45
23	606.36	598.98	14.76	0.064	2.24
24	615.70	610.40	10.61	0.225	7.87
25	650.03	646.27	7.51	0.482	16.88
26	631.77	624.36	14.82	0.063	2.20
27	629.95	625.20	9.51	0.301	10.55
28	554.27	550.80	6.93	0.544	19.03
29	679.91	668.13	23.57	0.003	0.09
30	582.87	580.88	3.97	0.860	30.09
31	572.67	569.65	6.04	0.643	22.49
32	682.83	676.87	11.91	0.155	5.43
33	719.33	713.18	12.30	0.138	4.84
34	681.84	679.19	5.30	0.725	25.38
35	511.34	510.08	2.53	0.960	33.61

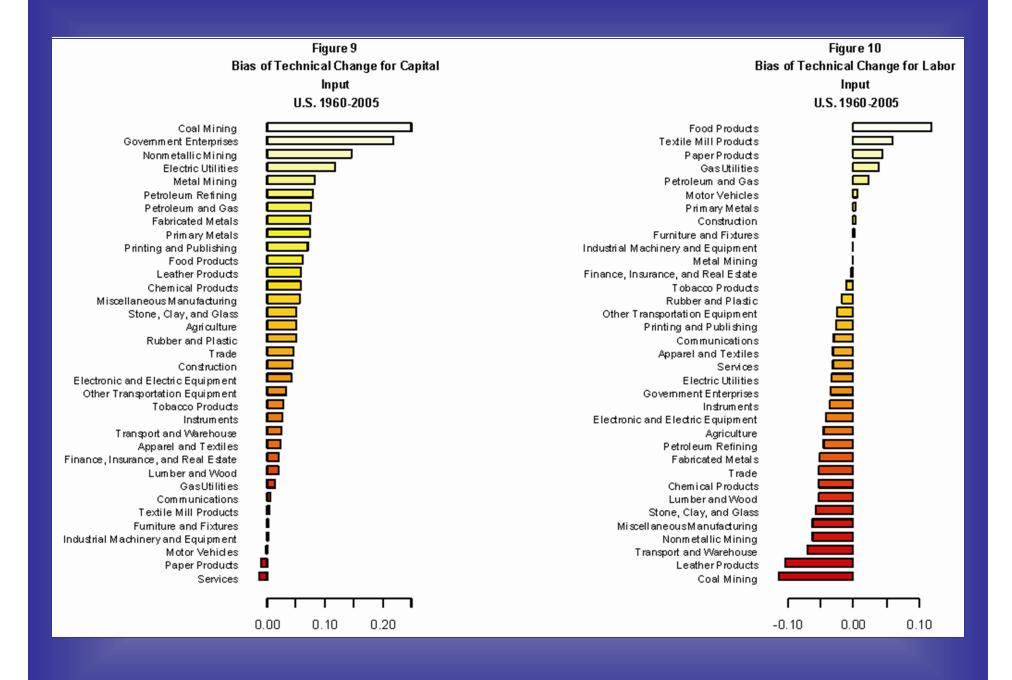
Note:


- (1) The number of degrees of freedom for the LR test for each sector is 8.
- (2) The null hypothesis is that the instrumental variables are exogenous.
- (3) High p-values indicate that we cannot reject the null hypothesis of exogeneity.
- (4) The last column presents p-values adjusted for simultaneous inference.


TESTS OF VALIDITY OF THE INSTRUMENTAL VARIABLES


sector	LR	p-value	
1	599.64	20.001	
2	414.64	<0.001	
3	648.09	<0.001	
4	608.54	<0.001	
_		<0.001	
5	500.78	<0.001	
6	502.97	7505,575	
7	678.64	<0.001	
8	579.19	<0.001	
9	688.82	<0.001	
10	639.39	<0.001	
11	527.51	<0.001	
12	633.63	<0.001	
13	653.57	<0.001	
14	638.36	<0.001	
15	562.00	<0.001	
16	503.73	<0.001	
17	648.98	<0.001	
18	477.98	<0.001	
19	620.84	<0.001	
20	432.61	<0.001	
21	602.56	<0.001	
22	633.47	<0.001	
23	608.05	<0.001	
24	537.26	<0.001	
25	598.78	<0.001	
26	631.35	<0.001	
27	506.32	<0.001	
28	442.42	<0.001	
29	701.20	<0.001	
30	676.44	<0.001	
31	731.05	<0.001	
32	724.93	<0.001	
33	531.66	<0.001	
34	715.32	<0.001	
35	612.49	<0.001	
30			


Note:


- (1) Number of degrees of freedom for the LR test for each sector is 99.
- (2) The null hypothesis is that instrumental variables are uncorrelated with the endogenous independent variables.
- (3) Low p-values indicate that we can reject the null hypothesis of no correlation.

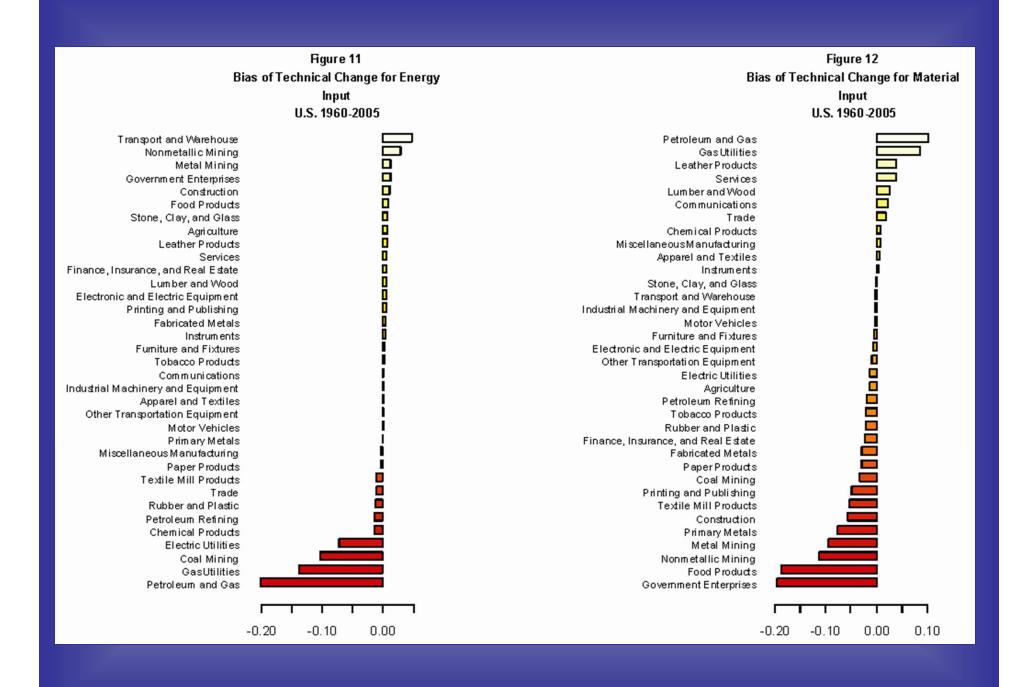
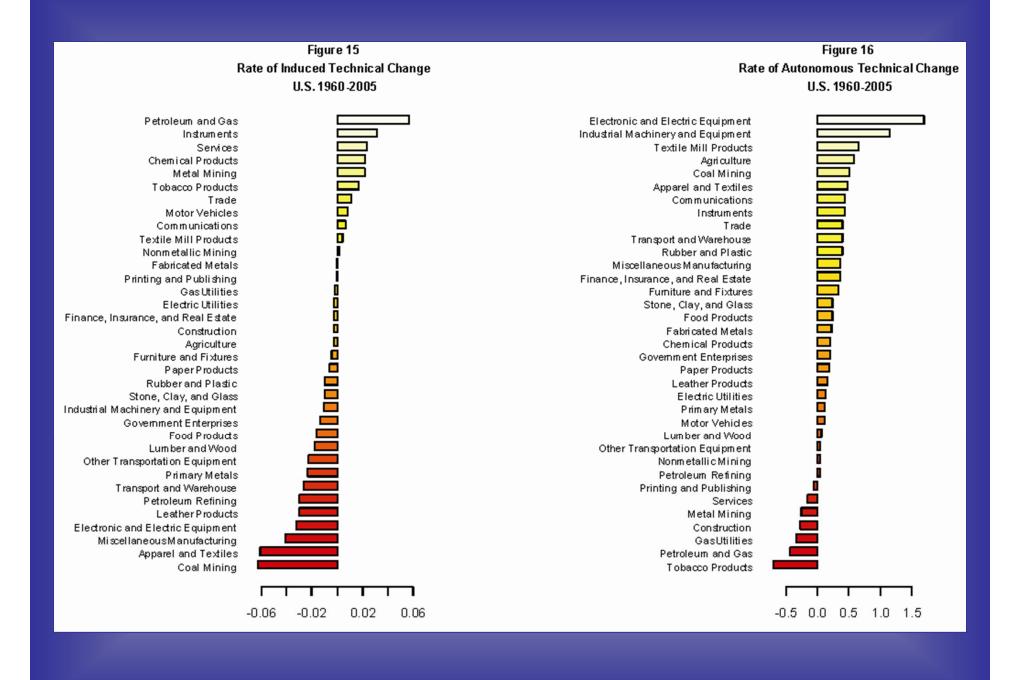



Figure 13 Price Effect of Log Relative Output Reduction of Log Relative Ouput Price **Price Change** U.S. 1960-2005 U.S. 1960-2005 Electronic and Electric Equipment Tobacco Products Industrial Machinery and Equipment Motor Vehicles Textile Mill Products Trade Communications Communications Printing and Publishing Trade 100000 Rubber and Plastic Rubber and Plastic Apparel and Textiles Leather Products Miscellaneous Manufacturing Paper Products Transport and Warehouse Food Products Furniture and Fixtures Textile Mill Products Agriculture Primary Metals Paper Products Apparel and Textiles Food Products Furniture and Fixtures Chemical Products Lumber and Wood Motor Vehides Fabricated Metals Finance, Insurance, and Real Estate Chemical Products Fabricated Metals Construction Stone, Clay, and Glass Stone, Clay, and Glass Instruments Services Leather Products Metal Mining Primary Metals Transport and Warehouse Miscellaneous Manufacturing Lumber and Wood Coal Mining GasUtilities Printing and Publishing Finance, Insurance, and Real Estate Other Transportation Equipment Industrial Machinery and Equipment Electric Utilities Electric Utilities Nonmetallic Mining Other Transportation Equipment Government Enterprises Government Enterprises Services Electronic and Electric Equipment Petroleum and Gas Metal Mining Construction Nonmetallic Mining Tobacco Products Agri culture GasUtilities Instruments Petroleum and Gas Coal Mining Petroleum Refining Petroleum Refining -0.8 -0.6 -0.4 -0.2 0.0 -0.5 0.0 0.5 1.0

Figure 14

ECONOMETRIC MODELING OF PRODUCER BEHAVIOR: SUMMARY.

Production Theory, Price Effects, and Share Elasticities.

Latent Variables, Rate, and Biases of Technical Change and the Kalman Filter.

Substitution and Technical Change Equally Important in Explaining Changes in Budget Shares.

Autonomous and Induced Technical Change. Generally Opposite in Sign; Autonomous Change Generally Positive; Induced Change Generally Negative and Much Less Important.

ECONOMETRIC MODELING OF CONSUMER BEHAVIOR

Allocation of Full Consumption among Leisure and Different

Goods: Rank Two Versus Rank Three; Role of Human Capital; Cross-Section and Time-Series Variations in Prices; 154,180 Individual Observations on Expenditures, Including Leisure.

Exact Aggregation over Households; Role of Prices, Expenditures, and Demographics.

Compensated and Uncompensated Elasticities.

Allocation of Full Wealth among Time Periods; Synthetic Cohorts.

ECONOMETRIC MODELING OF CONSUMER BEHAVIOR

Rank three translog indirect utility function (Lewbel, 2001):

$$(\ln V_k)^{-1} = \left[\alpha_0 + \ln(\frac{\rho_k}{F_k})'\alpha^p + \frac{1}{2}\ln(\frac{\rho_k}{F_k})'B_{pp}\ln(\frac{\rho_k}{F_k})'B_{pA}A_k\right]^{-1} - \ln(\frac{\rho_k}{F_k})'\gamma_p \quad (1)$$

where:
$$B_{pp} = B'_{pp}$$
, $t'B_{pA} = 0$, $t'B_{pp}i = 0$, $t'\alpha_p = -1$ and $t'\gamma_p = 0$.

Define $\ln G_k$ as:

$$\ln G_k = \alpha_0 + \ln(\frac{\rho_k}{F_k})'\alpha^P + \frac{1}{2}\ln(\frac{\rho_k}{F_k})'B_{pp}\ln(\frac{\rho_k}{F_k}) + \ln(\frac{\rho_k}{F_k})'B_{pA}A_k \qquad (2)$$

AGGREGATE DEMAND

Roy's Identity yields budget shares:

$$w_{k} = \frac{1}{D(\rho_{k})} (\alpha_{p} + B_{pp} \ln \frac{\rho_{k}}{F_{k}} + B_{pA} A_{k} + \gamma_{p} [\ln G_{k}]^{2})$$
 (3)

where: $D(\rho_k) = -1 + \iota' B_{pp} \ln \rho_k$.

Exact aggregation (Jorgenson, Lau, and Stoker, 1997)

$$w = \frac{\sum_{k} F_{k} w_{k}}{\sum_{k} F_{k}} = \frac{1}{D(\rho)} \left[\alpha_{p} + B_{pp} \ln \rho - t' B_{pp} \frac{\sum_{k} F_{k} \ln F_{k}}{\sum_{k} F_{k}} + B_{pA} \frac{\sum_{k} F_{k} A_{k}}{F_{k}} + \gamma_{p} \frac{\sum_{k} F_{k} (\ln G_{k})^{2}}{\sum_{k} F_{k}}\right].$$

Welfare Aggregate Consumer Behavior Dale W. Jorgenson

INTER-TEMPORAL ALLOCATION OF CONSUMPTION

Full expenditure F_{kt} allocated across time periods to maximize expected lifetime utility U_k :

$$\max_{F_{kt}} U_k = E_t \left\{ \sum_{t=1}^{T} (1+\delta)^{-(t-1)} \left[\frac{V_{kt}^{(1-\sigma)}}{(1-\sigma)} \right] \right\}$$
(4)

subject to full wealth constraint W_k :

$$\sum_{t=1}^{T} (1+r_1)^{-(t-1)} F_{kt} \le W_k$$

where: r_t nominal interest rate, σ intertemporal curvature parameter, δ rate of time preference.

EULER EQUATIONS

First-order conditions for optimization:

$$(V_{kt})^{-\sigma} \left[\frac{\partial V_{kt}}{\partial F_{kt}} \right] = E_t \left[(V_{k,t+1})^{-\sigma} \left[\frac{\partial V_{k,t+1}}{\partial F_{k,t+1}} \right] \frac{(1+r_{t+1})}{(1+\delta)} \right]$$
(5)

The estimating equation is:

$$(V_{kt})^{-\sigma} \left[\frac{\partial V_{kt}}{\partial F_{kt}} \right] = \left[(V_{k,t+1})^{-\sigma} \left[\frac{\partial V_{k,t+1}}{\partial F_{k,t+1}} \right] \frac{(1+r_{t+1})}{(1+\delta)} \right] \eta_{k,t+1}$$
(6)

where: η_{kt} expectational errors for household k at time t.

SIMPLIFYING THE ESTIMATING EQUATION

For rank 3 specification of V_k :

$$\frac{\partial V_{kt}}{\partial F_{kt}} = \frac{V_{kt}}{F_{kt}} (-D(\rho_{kt})) [1 - (\gamma_{P} \ln \rho_{kt}) * G_{kt}]^{-2}$$

Last term approximately equal to one in the data;

taking logs:

$$\Delta \ln F_{k,t+1} = (1 - \sigma) \Delta \ln V_{k,t+1} + \Delta \ln(-D(\rho_{k,t+1})) + \ln(1 + r_{t+1}) - \ln(1 + \delta) + \ln \eta_{kt}$$
 (7)

DATA ISSUES

The Consumer Expenditure Survey (CEX), U.S. Bureau of Labor Statistics:

Data on expenditures on goods and services and labor supply.

CEX data for 1980-2006, 4000-8000 observations per year, 154,180 observations.

Consumer Price Index (CPI), U.S. Bureau of Labor Statistics:

Price data for four Census regions in all years.

WAGE EQUATION

Wage equation for worker *i*:

$$\ln P_{Li} = \sum_{j} \beta_{j}^{z} z_{ji} + \sum_{j} \beta_{j}^{z} (S_{i}^{*} z_{ji}) + \sum_{j} \beta_{j}^{nw} (NW_{i}^{*} z_{ji}) + \sum_{l} \beta_{l}^{g} g_{li} + \varepsilon_{it}$$
(8)

where:

 P_{Li} -- wage of worker i.

 $\mathbf{z_i}$ -- vector including age, age squared, education, education squared.

 S_i -- dummy variable female.

 NW_i -- dummy variable nonwhite.

g_i -- vector of region-year interaction dummy variables.

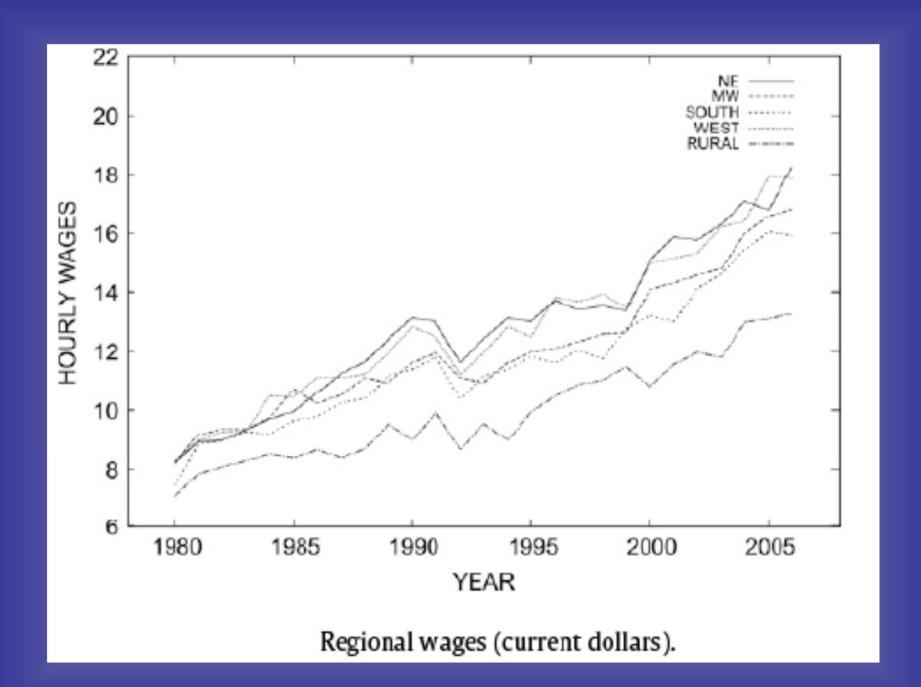
Quality-adjusted wage for a worker in region s:

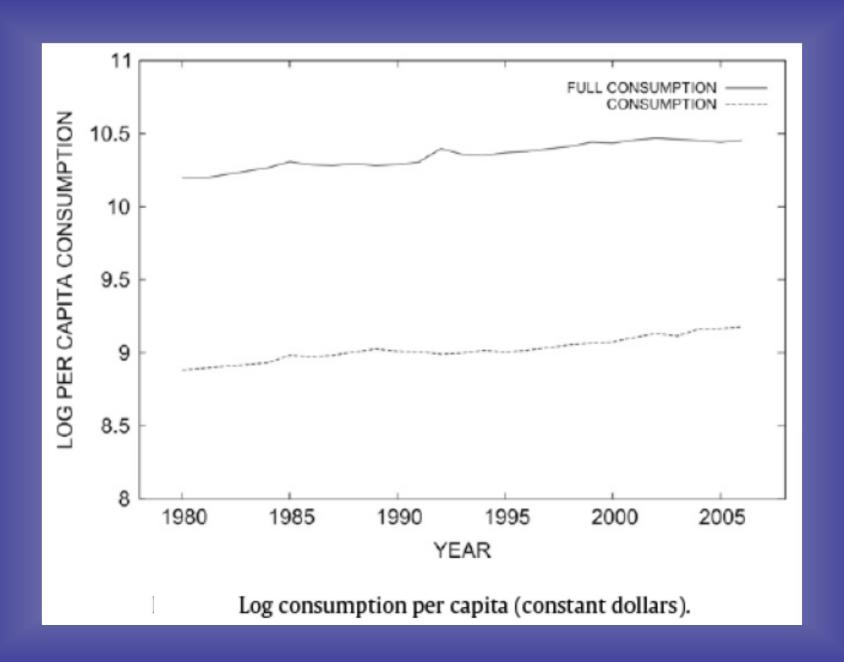
$$p_L^s = \exp(\beta_s)$$

QUALITY-ADJUSTED LEISURE

Quality index for worker *m*:

$$q_{kt}^m = \frac{\mathbf{E}_{kt}^m}{p_{Lt}H_{kt}^m}$$


Time endowment in efficiency units $T_{kt}^m = q_{kt}^m * (14)$; leisure consumption:


$$R_{kt}^m = q_{kt}^m (14 - H_{kt}^m)$$
.

Full expenditure for household *k*:

$$F_{kt} = p_{Lt}R_{kt} + \sum_{i} p_{ik}x_{ik}$$

where $R_{kt} = \sum_{m} R_{kt}^{m}$ leisure summed over adult members.

Price and income elasticities (Reference household: Two adults, Two children, NE Urban, Male, White, Full expenditure = 100 K).

Good	Uncompensated price elasticity		Compensated pr	Compensated price elasticity		Full expenditure elasticity	
	Rank 2	Rank 3	Rank 2	Rank 3	Rank 2	Rank 3	
Nondurables	-0.918	-0.903	-0.822	-0.809	0.722	0.724	
Capital services	-1.428	-1.432	-1.314	-1.319	0.926	0.930	
Consumer services	-0.613	-0.614	-0.548	-0.548	1.088	1.096	
Leisure	0.012	0.014	-0.323	-0.314	1.059	1.056	
Labor supply	-0.026	-0.030	0.698	0.698	-2.289	-2.342	

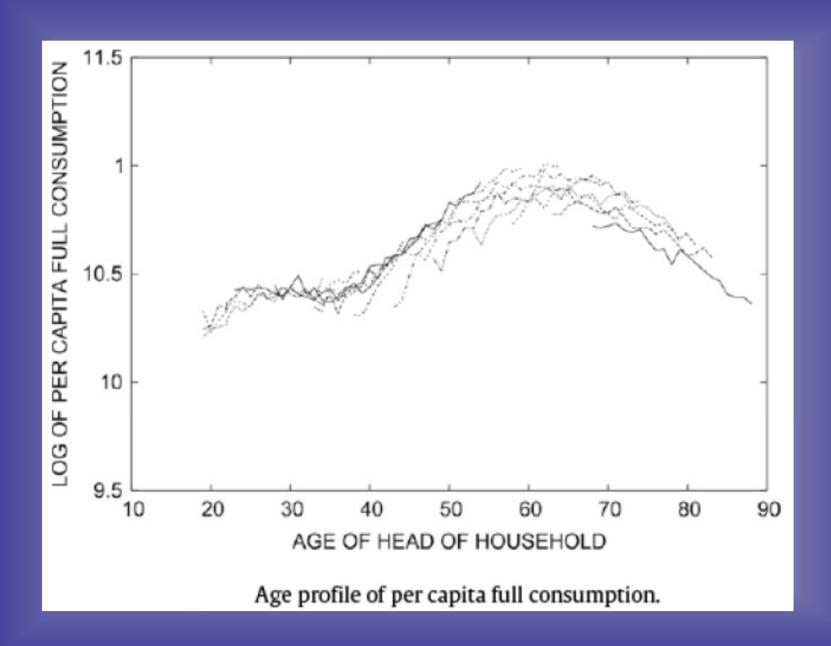
Full expenditure and household budget shares (Reference household: Two adults, Two children, NE Urban, Male, White).

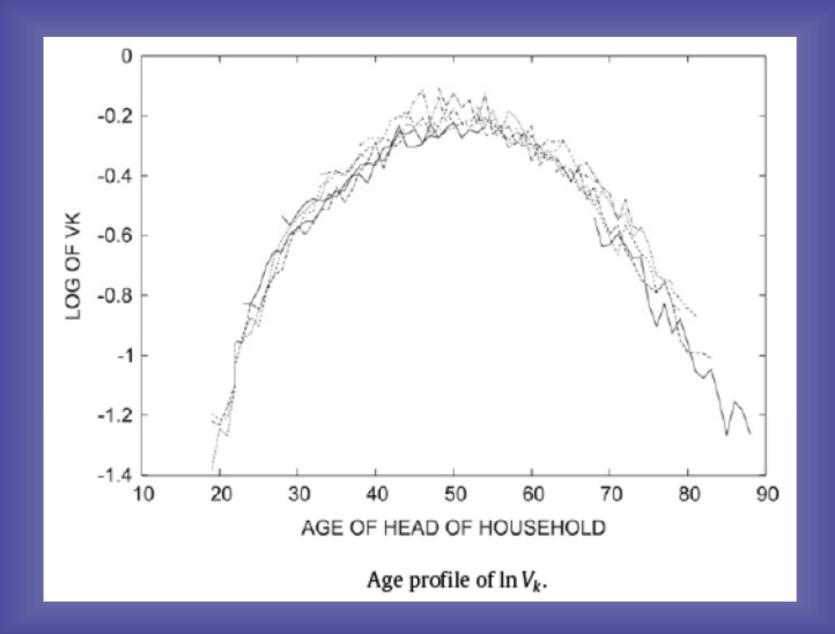
Expenditure level	Rank 2	Rank 3	Rank 2	Rank 3	
	Nondurables share		Capital services share		
7 500	0.227	0.268	0.147	0.183	
25 000	0.183	0.192	0.136	0.145	
75 000	0.143	0.140	0.126	0.125	
150 000	0.117	0.116	0.120	0.119	
275 000	0.095	0.100	0.114	0.119	
350 000	0.086	0.095	0.112	0.120	
	Consumer services share		Leisure share		
7 500	0.047	0.073	0.579	0.476	
25 000	0.053	0.060	0.627	0.603	
75 000	0.059	0.058	0.672	0.677	
150 000	0.063	0.062	0.700	0.702	
275 000	0.066	0.070	0.725	0.711	
350 000	0.067	0.073	0.734	0.711	

RANK THREE VERSUS RANK TWO

Disturbances of the demand equations are additive:

$$\mathbf{w}_{\mathbf{k}} = \frac{1}{D(\rho_{k})} (a_{\mathbf{p}} + B_{pp} \ln \frac{p_{\mathbf{k}}}{F_{k}} + B_{pA} \mathbf{A}_{\mathbf{k}} + \gamma_{\mathbf{p}} [\ln G_{k}]^{2}) + \varepsilon_{\mathbf{k}}$$


Rank 2 translog demand system (Jorgenson, Lau and Stoker, 1997):


$$\mathbf{w_k} = \frac{1}{D(\rho_k)} (a_p + B_{pp} \ln \frac{p_k}{F_k} + B_{pA} \mathbf{A_k}) + \mu_k$$

Aggregation factor:

$$P_{t} = \frac{\sum_{k} F_{kt} D(\rho_{kt})^{-1} (a_{p} + B_{pp} \ln \rho_{kt})}{\sum_{k} F_{kt}}$$

Aggregate budget shares.							
Year	Sample shares	Fitted shares	R-squared	Aggregation fac	Aggregation factors		
				Price	Expenditure	Demographics	
Nondurables							
1980-1981	0.1145	0.1074	0.1273	0.3985	-0.3009	0.0098	
1985-1986	0.0993	0.1003	0.1609	0.4009	-0.3090	0.0084	
1990-1991	0.0967	0.0990	0.1793	0.4051	-0.3141	0.0080	
1995-1996	0.0898	0.0892	0.2198	0.3996	-0.3181	0.0077	
2000-2001	0.0846	0.0852	0.1910	0.4011	-0.3235	0.0076	
2005–2006	0.0864	0.0845	0.1806	0.4055	-0.3279	0.0068	
Capital services							
1980-1981	0.0956	0.1162	0.0296	0.2100	-0.0141	-0.0797	
1985-1986	0.1134	0.1178	0.1003	0.2103	-0.0143	-0.0782	
1990-1991	0.1186	0.1213	0.1292	0.2132	-0.0145	-0.0774	
1995-1996	0.1222	0.1240	0.1161	0.2161	-0.0150	-0.0771	
2000-2001	0.1306	0.1272	0.1226	0.2193	-0.0154	-0.0766	
2005-2006	0.1403	0.1344	0.1134	0.2255	-0.0155	-0.0756	
Consumer services							
1980-1981	0.0566	0.0561	0.0018	-0.0439	0.1202	-0.0202	
1985-1986	0.0626	0.0668	0.0111	-0.0370	0.1236	-0.0199	
1990-1991	0.0706	0.0678	0.0317	-0.0379	0.1258	-0.0201	
1995-1996	0.0734	0.0750	0.0318	-0.0326	0.1270	-0.0193	
2000-2001	0.0724	0.0747	0.0420	-0.0350	0.1289	-0.0192	
2005-2006	0.0748	0.0678	0.0245	-0.0434	0.1308	-0.0195	
Leisure							
1980-1981	0.7333	0.7203	0.1506	0.4354	0.1948	0.0902	
1985-1986	0.7247	0.7151	0.1532	0.4257	0.1997	0.0897	
1990-1991	0.7141	0.7119	0.1804	0.4197	0.2028	0.0895	
1995-1996	0.7146	0.7117	0.1791	0.4170	0.2060	0.0887	
2000-2001	0.7124	0.7129	0.1758	0.4147	0.2100	0.0882	
2005-2006	0.6985	0.7133	0.1458	0.4124	0.2126	0.0883	

Parameter estimates — int	tertemporal model.							
Least squares estimates								
	OLS		Weighted OLS		Random effects			
Variable	Estimate	SE	Estimate	SE	Estimate	SE		
$\delta \ \sigma$	0.01471 0.08226	0.0011 0.0194	0.01185 0.11280	0.0011 0.0218	0.01460 0.10183	0.0016 0.0202		
Instrumental variables est	Instrumental variables estimators							
	IV1		IV2		IV3			
Variable	Estimate	SE	Estimate	SE	Estimate	SE		
δ σ	0.01253 0.03414	0.0012 0.0357	0.01251 0.05521	0.0012 0.0350	0.01249 0.08150	0.0011 0.0337		

ECONOMETRIC MODELING OF CONSUMER BEHAVIOR

Allocation of Full Consumption and Full Wealth; Elasticities.

Individual Observations on Expenditures, Including Leisure; Role of Human Capital.

Exact Aggregation.

Applications to Welfare Economics.

IGEM:

An Intertemporal Model of the U.S. Economy for Modeling Energy and Environmental Policy

Household Model Incorporates Demography

Demand for Leisure and the Supply of Labor

Production Model Incorporates Technology

Endogenous Technical Change

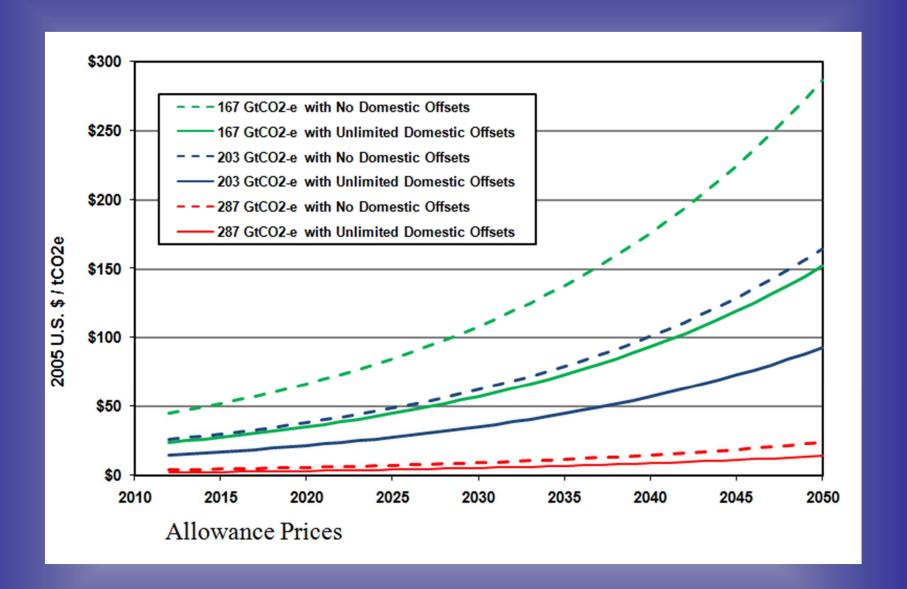
Resources and Energy Supply

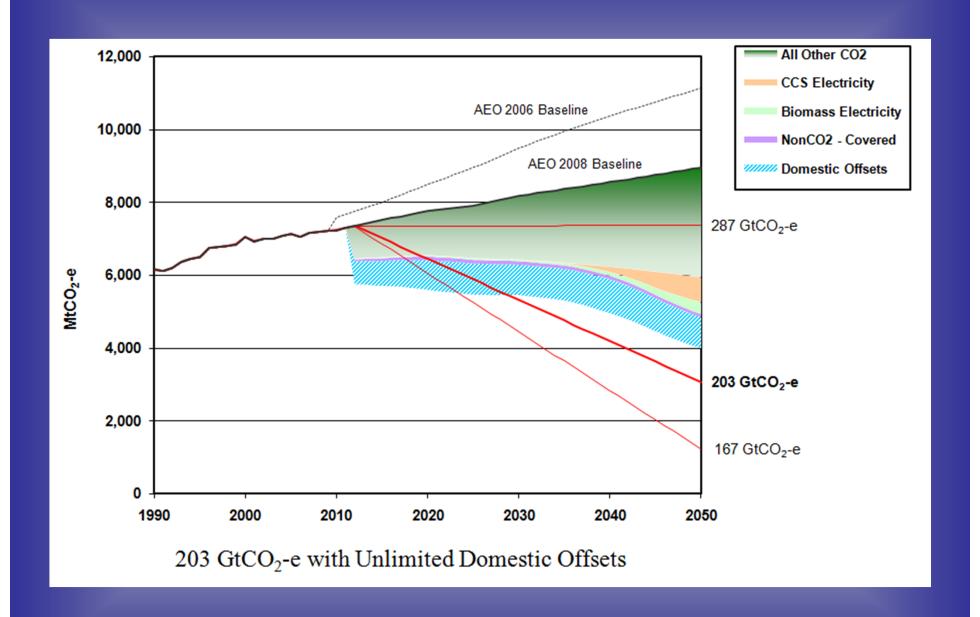
Growth

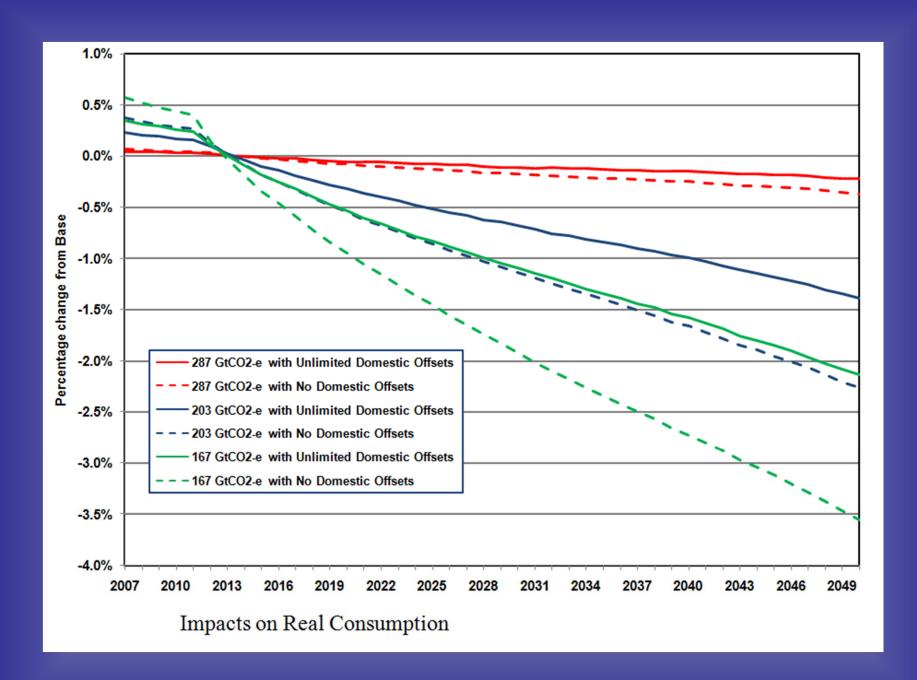
V O L U M E

Energy, the Environment, and Economic Growth

Dale W. Jorgenson


AGGREGATE IMPACTS OF CAP-AND-TRADE POLICIES


Establishing a Permit Price


Emissions with and without Domestic Offsets

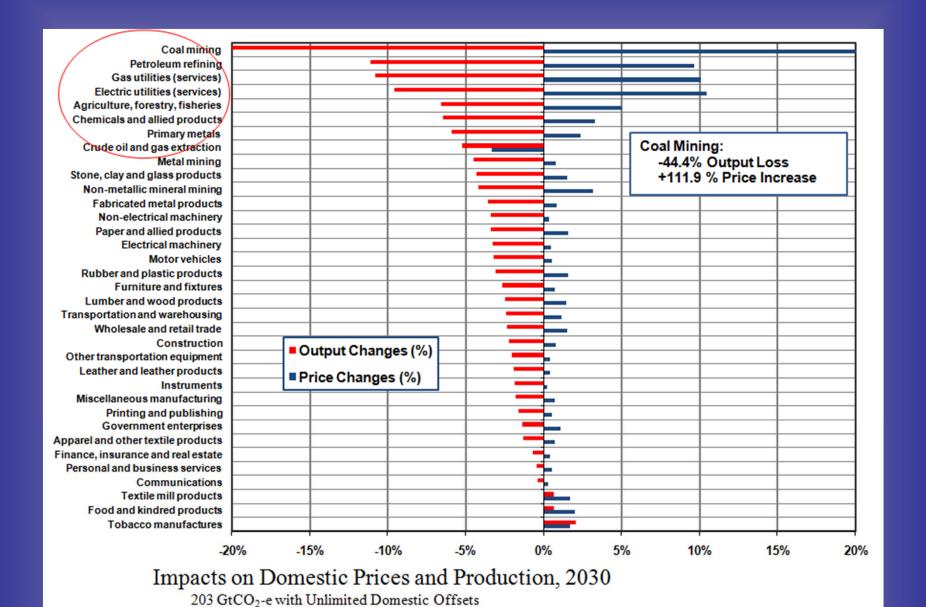
Impacts on GDP

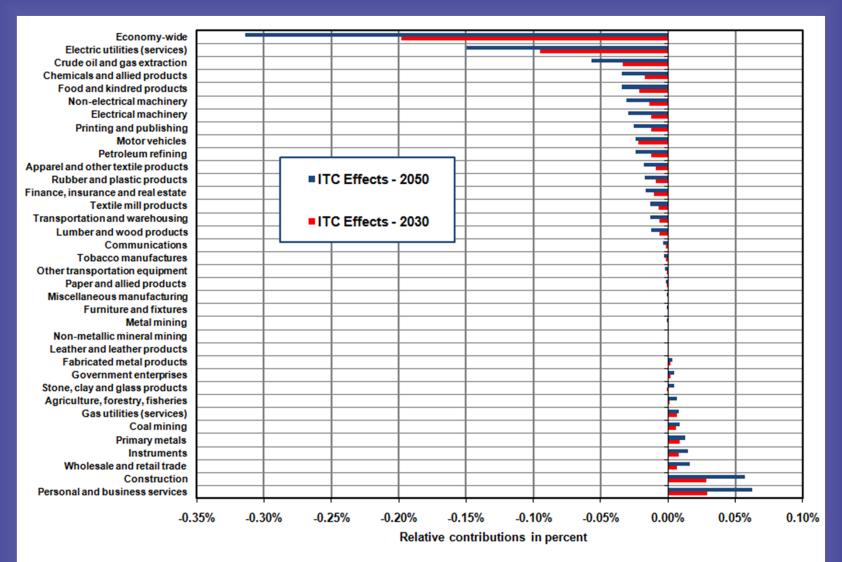
Impacts on Consumption

INDUSTRY IMPACTS OF CAP-AND-TRADE POLICIES

Changes in the Composition of GDP

Domestic Prices and Production


Composition of Output and Losses

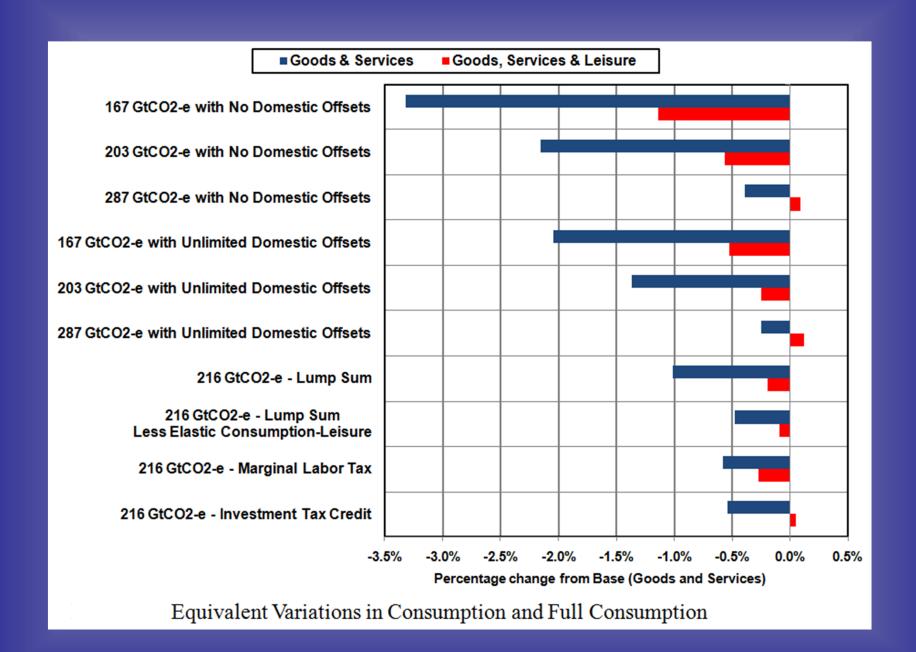

Revenues and Incomes

Input Demands and Labor Intensity

Composition of GDP and Losses, 2030 203 GtCO₂-e with Unlimited Domestic Offsets

Endogenous Technical Change, 2030 and 2050

203 GtCO2-e with Unlimited Domestic Offsets


WELFARE IMPACTS OF CAP-AND-TRADE POLICIES

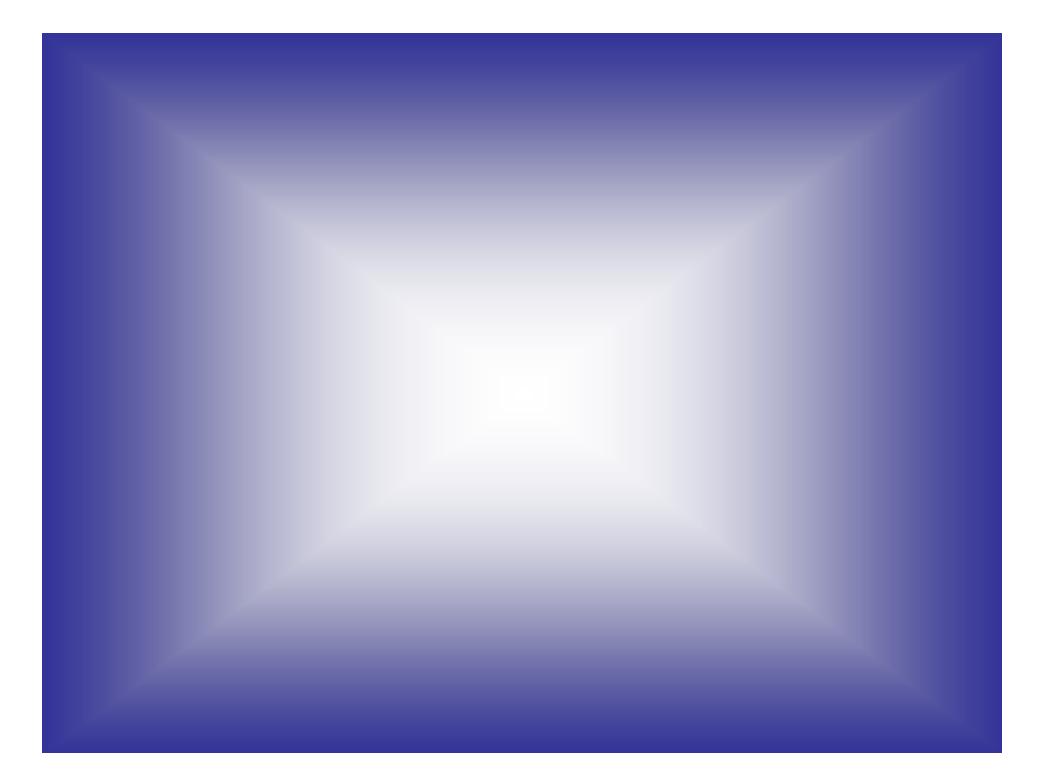
Equivalent Variations in Consumption

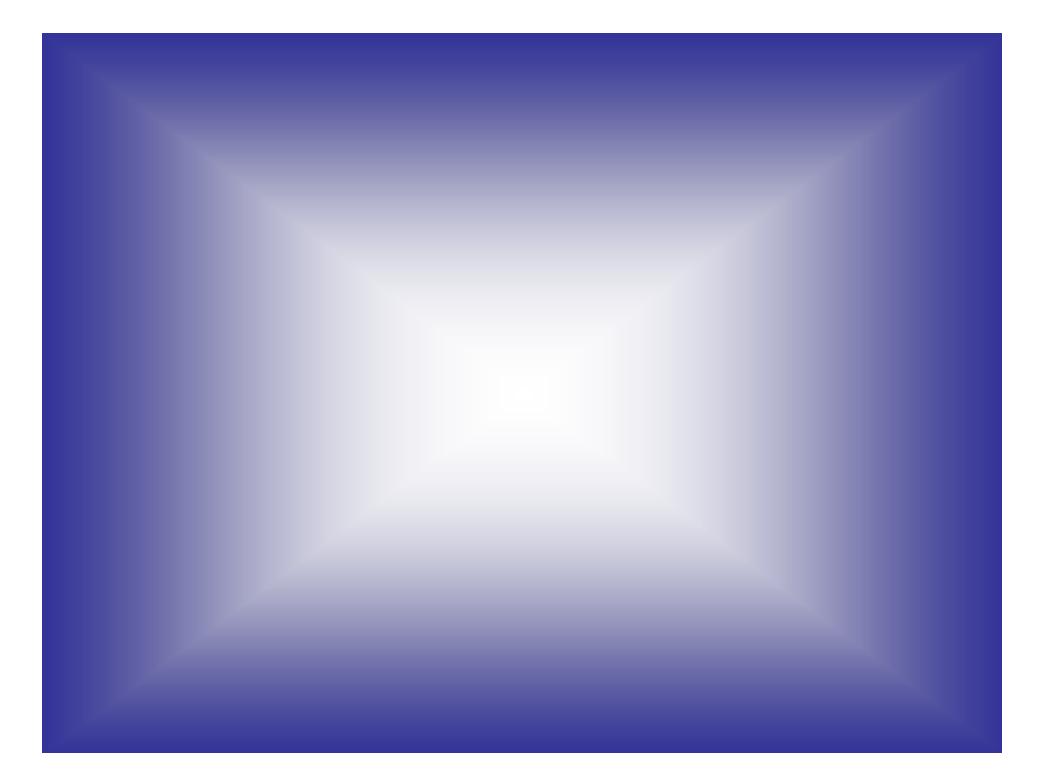
Equivalent Variations in Full Consumption

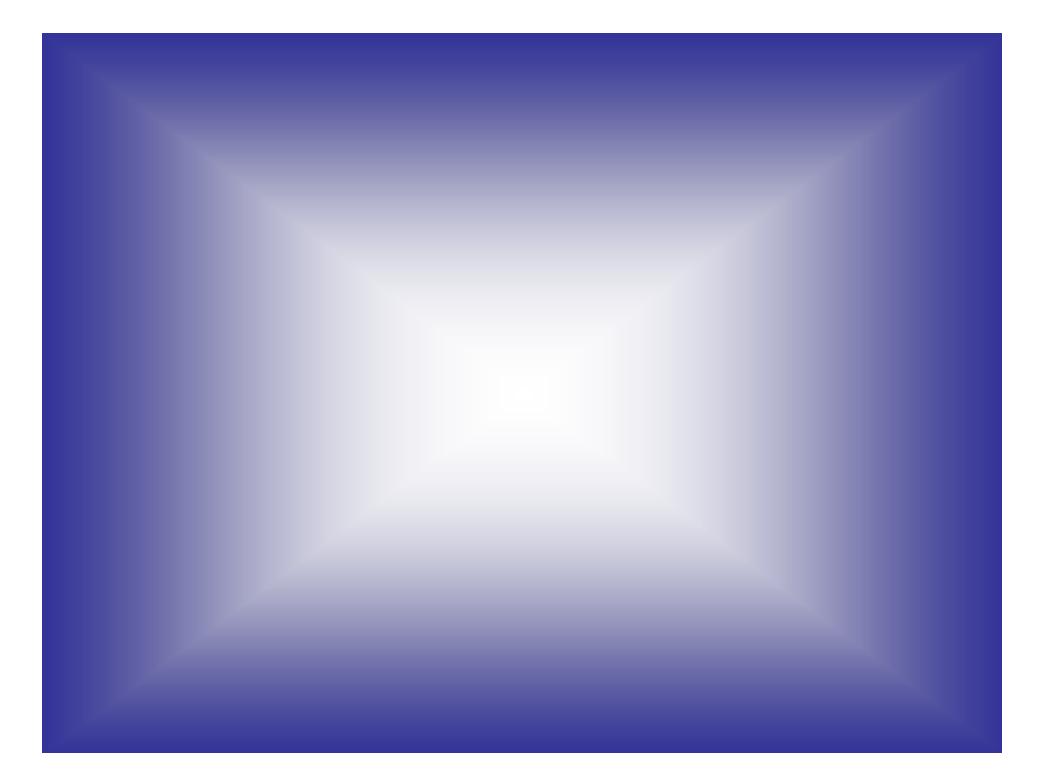
Revenue Recycling

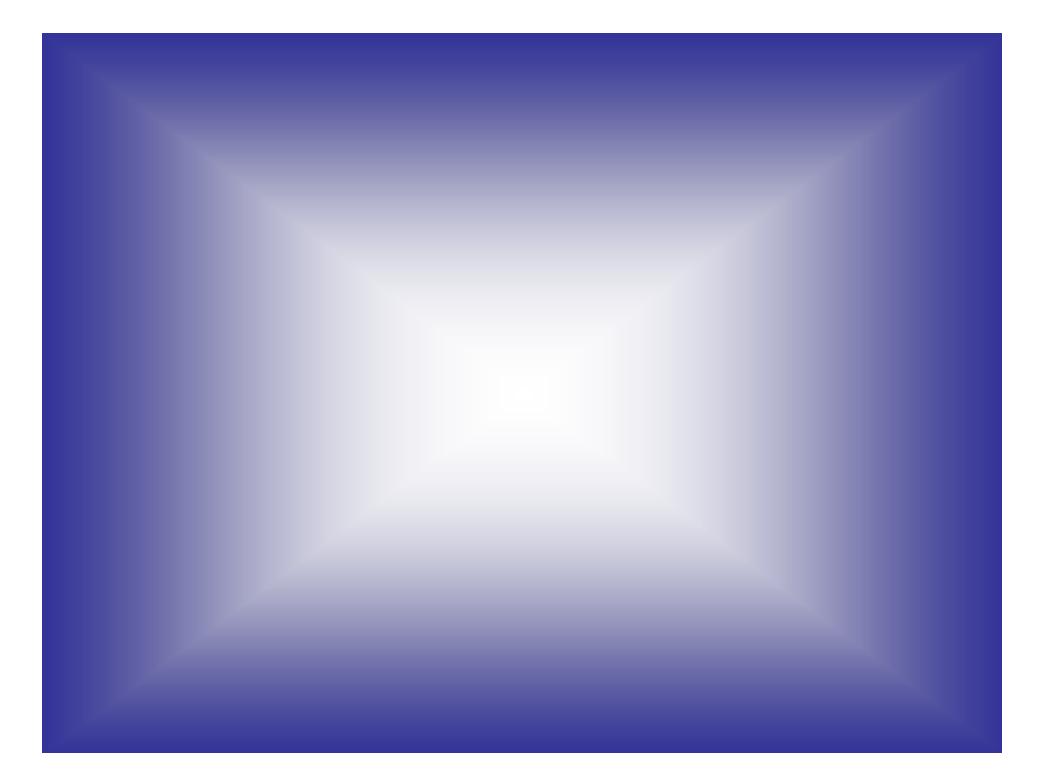
The Role of Endogenous Technical Change

AN ECONOMETRIC APPROACH TO GENERAL EQUILIBRIUM MODELING:


SUMMARY


Econometric Modeling of Producer Behavior: Substitution and Technical Change


Rate and Bias; Autonomous and Induced Technical Change


Econometric Modeling of Consumer Behavior: Demand for Goods and Leisure Intertemporal Allocation of Full Consumption

IGEM, Version 16: Controlling Emissions of Greenhouse Gases

