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The discovery of genetic variants associated with behav-
ioral traits could eventually be transformative for the 
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Abstract
A recent genome-wide-association study of educational attainment identified three single-nucleotide polymorphisms 
(SNPs) whose associations, despite their small effect sizes (each R2 ≈ 0.02%), reached genome-wide significance (p < 
5 × 10−8) in a large discovery sample and were replicated in an independent sample (p < .05). The study also reported 
associations between educational attainment and indices of SNPs called “polygenic scores.” In three studies, we evaluated 
the robustness of these findings. Study 1 showed that the associations with all three SNPs were replicated in another 
large (N = 34,428) independent sample. We also found that the scores remained predictive (R2 ≈ 2%) in regressions with 
stringent controls for stratification (Study 2) and in new within-family analyses (Study 3). Our results show that large and 
therefore well-powered genome-wide-association studies can identify replicable genetic associations with behavioral 
traits. The small effect sizes of individual SNPs are likely to be a major contributing factor explaining the striking contrast 
between our results and the disappointing replication record of most candidate-gene studies.
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social sciences, but the first step is identifying the specific 
genes associated with traits. In psychology, the standard 
approach for identifying such associations is the 
candidate-gene study. In a candidate-gene study, a small 
set of genetic variants (polymorphisms) are selected on 
the basis of their hypothesized or known biological func-
tion, and these polymorphisms are tested for association 
with a given trait. Most candidate-gene studies have been 
based on samples of several hundred participants and 
have applied a significance threshold of .05 (for a review, 
see Ebstein, Israel, Chew, Zhong, & Knafo, 2010).

Despite the fact that such studies continue to be pub-
lished in prominent journals, the successful replication of 
published genetic associations with behavioral traits is 
the exception, not the rule (Benjamin et al., 2012; Hewitt, 
2012). In fact, the situation is so alarming that the editor 
of the leading field journal Behavior Genetics recently 
issued an editorial policy on candidate-gene studies of 
behavioral traits that began, “The literature on candidate 
gene associations is full of reports that have not stood up 
to rigorous replication,” and went on to say, “it now 
seems likely that many of the published findings of the 
last decade are wrong or misleading and have not con-
tributed to real advances in knowledge” (Hewitt, 2012, 
pp. 1–2). Psychological Science has adopted the same 
strict standards for evaluating candidate-gene studies.

Why the replication of findings from candidate-gene 
studies of complex behaviors has been inconsistent 
remains an open question, but it is commonly believed 
that low statistical power is a major contributing factor, 
and that the problem of low power is further compounded 
if the reported p values correct for only a subset of the 
multiple hypotheses that were tested (Hewitt, 2012; 
Ioannidis, 2005). Candidate-gene studies also cannot 
always adequately control for the well-known problem of 
population stratification, in which genotypes covary with 
unobserved environmental factors (Hamer & Sirota, 2000). 
For example, individuals with shared genetic ancestry 
(e.g., individuals from the same ethnic group or from the 
same ancestral region) may share values, cultural prac-
tices, or exposure to other unobserved environmental 
confounds. Population stratification can give rise to asso-
ciations driven by the shared environmental factors but 
spuriously attributed to the shared genotype (Cardon & 
Palmer, 2003). A finding may be confounded by popula-
tion stratification even though it is successfully replicated 
if the population structure that caused a spurious genetic 
discovery is also present in the replication samples.

Around 2005, as a result of the methodological limita-
tions of candidate-gene studies and the dramatic decline 
in the cost of genotyping, medical research experienced 
a paradigm shift, moving away from candidate-gene stud-
ies to what are called genome-wide-association (GWA) 
studies (McCarthy et al., 2008; Pearson & Manolio, 2008; 

Visscher, Brown, McCarthy, & Yang, 2012). These are 
hypothesis-free studies in which researchers test the phe-
notype of interest for association with all of the (typically 
millions of) measured single-nucleotide polymorphisms 
(SNPs). Because of the large number of hypotheses 
tested, a SNP association is considered established only if 
it (a) reaches the “genome-wide significance” threshold 
of p < 5 × 10−8 and (b) is subsequently successfully repli-
cated in an independent sample at a nominal significance 
level of .05 (McCarthy et al., 2008).

Advocates of GWA studies argue that they overcome 
or mitigate many of the limitations of candidate-gene 
studies. First, the large number of SNPs that are tested for 
association makes transparent the need to correct for 
multiple-hypothesis testing, which is achieved by impos-
ing the genome-wide significance threshold of p < 5 × 
10−8 (McCarthy et al., 2008). Moreover, GWA studies, as a 
practical matter, tend to be based on larger samples (as 
indeed they must to have any chance of identifying a SNP 
that reaches genome-wide significance).

Second, Bayes’s rule implies that, conditional on observ-
ing an association at the genome-wide significance level, 
the association is likely to be true even if the study had 
only modest statistical power to detect the association in 
the first place (see Benjamin et al., 2012, for calculations).

Third, GWA data can be used to mitigate the potential 
confound of population stratification. In particular, it has 
become a common practice in GWA studies to (a) esti-
mate the first four principal components of all the geno-
types measured by the gene chip (the number 4 having 
emerged as a convention), (b) drop individuals who are 
genetic outliers as measured by these principal compo-
nents, and then (c) include the principal components as 
control variables in the genetic-association analysis. 
Intuitively, the principal components capture axes of cor-
relation across the genome that result from common 
ancestry. The principal components often have a geo-
graphic interpretation (Abdellaoui et al., 2013; Price et al., 
2009; Price et al., 2006). Controlling for principal compo-
nents has become standard in GWA studies since Price 
et al. (2006) showed, through simulation and empirical 
examples, that doing so can eliminate spurious associa-
tions due to population structure. In Section 5 of the 
Supplemental Material, available online, we illustrate the 
effectiveness of this method using a simple placebo test. 
Specifically, we show that controlling for principal com-
ponents eliminates a spurious association between edu-
cational attainment and a SNP for lactose intolerance that 
is known to vary in frequency across individuals with 
different ancestries (Bersaglieri et  al., 2004; Campbell 
et  al., 2005). (In contrast, the most common way of 
addressing population stratification in candidate-gene 
studies—namely, including controls for self-identified 
race—does not eliminate the spurious association.)
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There are thus many reasons to expect findings from 
GWA studies to be replicated more consistently than find-
ings from candidate-gene studies. Indeed, in the literature 
on complex anthropometric and medical traits, GWA find-
ings do in fact have a vastly superior replication record 
(Visscher et al., 2012). But do positive GWA findings from 
studies of complex behavioral traits similarly identify cred-
ible genetic associations that can be replicated consis-
tently? And if the findings can be replicated consistently, is 
this because what is being observed is a real genetic signal 
or because population stratification has generated a spuri-
ous association in both the discovery sample and the rep-
lication sample? If GWA studies do identify credible and 
replicable genetic associations, then they are a promising 
response to the nonreplicability problem in gene-discovery 
research in the social sciences.

Until recently, virtually all GWA studies with positive 
findings have been studies of anthropometric or medical 
traits. For this reason, it may be inappropriate to infer 
from the superior replication record of GWA studies of 
medical traits that positive findings from GWA studies of 
behavioral traits will be replicated consistently. If true 
genetic associations with behavioral traits have smaller 
effect sizes than true associations with anthropometric 
and medical traits, then GWA studies on behavioral traits 
should tend to generate less reliable results because they 
have lower power to detect true associations. Furthermore, 
although the convention of controlling for four principal 
components may be sufficient to minimize population-
stratification concerns for anthropometric and medical 
traits, it might not be sufficient to minimize these con-
cerns for behavioral traits, which may be characterized 
by more subtle population stratification.

Earlier GWA studies of behavioral traits (Benyamin 
et al., 2014; De Moor et al., 2012) largely came up empty-
handed (probably as a result of a lack of power), but a 
recent GWA study on educational attainment with a com-
bined sample of more than 100,000 individuals (Rietveld 
et al., 2013) identified three SNP associations that met the 
standard criteria for establishing a GWA-study association 
(i.e., they reached the genome-wide significance thresh-
old of p < 5 × 10−8 and were replicated in an independent 
sample at the significance level of .05). The effect sizes of 
the associations identified by Rietveld et al. are indeed 
small: The largest effect size corresponds to an R2 of only 
approximately 0.02% (equivalent to about 1 month of 
schooling per allele). This is far smaller than the effect 
sizes for medical and anthropometric traits; for example, 
it is less than one tenth the R2 of the largest associations 
discovered for height (R2 = 0.4%; Lango Allen et al., 2010) 
and body mass index (R2 = 0.3%; Speliotes et al., 2010). 
The Rietveld et  al. results therefore can serve as a test 
case for the robustness of the GWA approach to behav-
ioral traits.

We sought to investigate (a) whether the Rietveld et al. 
(2013) results could be replicated in an independent sam-
ple with far more stringent controls for population stratifi-
cation than are typically applied in GWA studies of medical 
and anthropometric traits, and (b) whether there is any 
evidence overall that the meta-analytic results are contami-
nated by unaccounted-for population stratification.

Study 1: Replication of Associations 
With Specific SNPs in 23andMe 
Data With Extensive Controls for 
Stratification

Method

In Study 1, we sought to replicate the three genome-wide 
significant SNP associations identified by Rietveld et al. 
(2013) in a new independent sample. Rietveld et al. tested 
approximately J = 2 million SNPs for association with 
educational attainment by running the following regres-
sion separately for each SNP j ∈ {1, 2, . . . , J}:

	 y x Zi j j ij j i ij= + + +µ β γ ε , 	 (1)

where yi is the dependent variable (the phenotype); μj 
is a constant term; xij is the number of reference alleles 
(0, 1, or 2) that individual i is endowed with at SNP j; βj 
is the coefficient of interest; and Zi is a vector of con-
trols, which include age, sex, and the first four principal 
components of the variance-covariance matrix of the 
genotypic data. Rietveld et  al. studied two dependent 
variables: EduYears, a measure of the number of years 
of schooling completed by the individual, and College, 
a binary variable equal to 1 if the individual had earned 
a college degree or its equivalent. (The point-biserial 
correlation between the two measures is roughly .8; see 
Section 1 in the Supplemental Material.) The tests of 
association with years of schooling (EduYears) were 
conducted by running the linear regressions described 
above, and the tests of association with receipt of a col-
lege degree or its equivalent (College) were conducted 
analogously using logistic regressions.

We sought to replicate the original associations using 
data provided by 23andMe for a cohort based on a sample 
of volunteer participants (Eriksson et al., 2010) that was not 
included in the Rietveld et al. (2013) study. After quality-
control filters were applied and the sample was restricted 
to include only individuals of European descent who 
responded to a survey question about educational attain-
ment, the sample size was 34,428. Because of the small 
effects, replication samples of this magnitude are required 
for adequate power. Given the sample size of 34,428, our 
power to replicate an association with R2 of 0.02% at p < .05 
was 75% (see Section 6 in the Supplemental Material).
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We used the same regression models (see Regression 
1) as in Rietveld et al., except that in our analysis, the 
vector of controls (Zi) included (in addition to age and 
sex) the first 25 principal components from the sample’s 
genotype-covariance matrix—compared with only four 
principal components in Rietveld et al. (2013)—in order 
to reduce potential population-stratification confounding 
by partialing out more of the population structure. (For 
more details on methods, see Section 2 in the Supplemental 
Material.)

Results

As shown in Tables 1 and 2, all three SNP associations 
reported in Rietveld et  al. (2013) were replicated at a 
nominal significance level of .05, in the same direction 
and with similar effect sizes as in the original report. The 
replication of effect sizes suggests that the additional 
controls for population stratification from including more 
than four principal components made little difference 
(for related evidence, see Section 5 in the Supplemental 
Material). As a caveat, we note that because all research 

participants were completely anonymous to us, we can-
not rule out overlap between the 23andMe sample and 
the Rietveld et al. discovery or replication samples; in the 
case of such overlap, the new results would not be fully 
independent from the results of Rietveld et al. We believe, 
however, that such potential overlap is likely to be min-
iscule and is therefore unlikely to have driven our repli-
cation findings.

Study 2: The Robustness of Polygenic 
Scores in the Swedish Twin Registry 
and the Queensland Institute of 
Medical Research Data With Two 
Distinct Methods of Controlling for 
Stratification

Method

Whereas in Study 1, we used a new data set to replicate 
the three genome-wide significant SNP associations 
reported by Rietveld et  al. (2013), in Study 2, we used 
some of the same data used in the original report to probe 

Table 1.  Replication of Associations Between Single-Nucleotide Polymorphisms and Receipt of College Degree or Equivalent 
Reported in Rietveld et al. (2013) in 23andMe Data

SNP

23andMe (N = 34,428)
Rietveld et al. (2013) discovery 
sample (Ns = 95,407–95,419)

Rietveld et al. (2013) replication 
sample (Ns = 23,663–23,668)

OR p OR p OR p

rs9320913 or 
rs12206087

1.035 (0.018) .046 1.049 (0.011) 1.06 × 10–5 1.042 (0.021) .022

rs11584700 0.954 (0.020) .025 0.924 (0.012) 2.07 × 10−9 0.923 (0.022) 4.86 × 10−4

rs4851266 1.071 (0.019) .0001 1.069 (0.012) 2.20 × 10−9 1.058 (0.022) .003

Note: Odds ratios (ORs) represent the relative likelihood of attending college for an individual with one more reference allele and were estimated 
using logistic regression (see discussion after Equation 1 in the main text). Standard errors are shown in parentheses. The Rietveld et al. sample 
sizes are shown as ranges because different sample sizes are available for the three single-nucleotide polymorphisms (SNPs). Because rs9320913 
was unavailable in the 23andMe data, we used rs12206087 as a (very reliable) proxy (R2 = .99; see Section 2.3 in the Supplemental Material). 
Rows in boldface indicate the SNPs found by Rietveld et al. to be associated with the receipt of a college degree or its equivalent in their 
discovery sample.

Table 2.  Replication of Associations Between Single-Nucleotide Polymorphisms and Years of Schooling Reported in Rietveld 
et al. (2013) in 23andMe Data

SNP

23andMe (N = 34,428)
Rietveld et al. (2013) discovery 
sample (Ns = 101,048–101,061)

Rietveld et al. (2013) replication 
sample (Ns = 23,523–23,573)

β p β p β p

rs9320913 or 
rs12206087

0.058 (0.020) .004 0.106 (0.018) 4.19 × 10–9 0.077 (0.034) .012

rs11584700 –0.053 (0.025) .032 -0.086 (0.021) 2.98 × 10–5 -0.126 (0.041) 9.61 × 10–4

rs4851266 0.086 (0.021) 4.28 × 10–5 0.076 (0.018) 3.64 × 10–5 0.103 (0.035) .002

Note: Beta values represent the effect of an increase in one reference allele on years of schooling estimated by the linear regression model (see 
Equation 1 in the main text). Standard errors are shown in parentheses. The Rietveld et al. sample sizes are shown as ranges because different 
sample sizes were available for the three single-nucleotide polymorphisms (SNPs). Because rs9320913 was unavailable in the 23andMe data, we 
used rs12206087 as a (very reliable) proxy (R2 = .99; see Section 2.3 in the Supplemental Material). The row in boldface indicates the SNP found 
by Rietveld et al. to be associated with years of schooling in their discovery sample.
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the robustness of Rietveld et al.’s reported polygenic-score 
results to potential confounding from population stratifi-
cation. Following Purcell et al. (2009), polygenic scores 
are commonly constructed in the GWA literature in order 
to allow investigators to evaluate the joint predictive 
power of a large number of SNPs (possibly including 
SNPs whose effects are too small or estimated too impre-
cisely to reach genome-wide significance).

Following a common approach in the genetics litera-
ture (Purcell et al., 2009; Yang et al., 2012), Rietveld et al. 
(2013) constructed a polygenic score ( ĝi ) for each indi-
vidual (i) as equal to a weighted sum of the number of 
reference alleles (0, 1, or 2) across a set of SNPs, where 
the weights were derived from the regression coefficients 
from a GWA study of either years of schooling (EduYears) 
or receipt of a college degree or its equivalent (College). 
They then evaluated the predictive power of an individu-
al’s score ( ĝi) for the individual’s educational attainment 
using two hold-out samples (i.e., samples excluded from 
the GWA study used for estimating the weights): the 
Swedish Twin Registry (STR) sample and the Queensland 
Institute of Medical Research (QIMR) sample. Although 
the original data sets were from family-based samples, 
one member from each family was selected at random to 
be included in the analyses. In each sample (and for 
scores constructed using GWA studies of each of years of 
schooling and receipt of a college degree), Rietveld et al. 
tested four scores constructed from increasingly large sets 
of SNPs—the sets of SNPs whose GWA-study associations 
with educational attainment fell below the respective 
p-value thresholds: 5 × 10−8 (i.e., only the genome-wide 
significant SNPs), 5 × 10−5, 5 × 10−3, and 1 (i.e., all SNPs). 
For each polygenic score ( ĝi ), Rietveld et al. examined its 
predictive power by running the following regression:

	 yi i i ig Z= + + +µ β γ εˆ , 	 (2)

where the dependent variable yi is always EduYears 
(never College); μ is a constant term; β is the coefficient 
of interest; and Zi is a vector of controls, which include 
age, sex, and the Age × Sex interaction, but no principal 
components (although principal components were 
included as controls in the GWA analyses that generated 
the weights for constructing each ĝi). Rietveld et al. found 
that the incremental predictive power of the score (i.e., 
the increase in R2 from estimating Regression 2 with the 
score as an independent variable relative to the R2 with-
out the score) was larger when more SNPs were included 
in the score. The score that contained all SNPs, which 
had the largest incremental predictive power, accounted 
for approximately 2% of the variance across individuals 
in educational attainment.

To explore the robustness of the original findings, we 
reran these prediction analyses using two distinct 

methods that controlled more stringently for population 
stratification. In the first, we estimated the same regres-
sion model (Regression 2), except we additionally 
included in the vector of controls the first 20 principal 
components as control variables. In the second, we esti-
mated mixed linear models (Kang et al., 2010) in place of 
the regression models. Conceptually, these models 
involve two steps: (a) The genome-wide data are used to 
estimate the degree of genetic similarity between each 
pair of individuals in the sample, and (b) unlike in a stan-
dard regression, in which the covariance of the error 
term (in an educational-attainment regression) between 
any two individuals is assumed to be zero, the covariance 
is fitted as an increasing linear function of the individuals’ 
genetic similarity. In other words, if two individuals are 
more recently descended from a common ancestor (as 
can be very accurately measured by overall genetic simi-
larity)—and thus more likely to be similar on unobserved 
environmental factors—then these individuals are treated 
as correlated observations on the relationship between 
educational attainment and the score. (For more details 
on methods, see Section 3 in the Supplemental Material.)

Results

The results are shown in Table 3. The upper panel shows 
the results from the association analyses with the scores 
constructed using different p-value thresholds. We sepa-
rately report results for the STR and QIMR samples and 
for the scores constructed from weights estimated using 
the College and EduYears variables. The middle and lower 
panels show results from regressions with 20 principal 
components included as controls and from mixed linear 
models, respectively. Each coefficient is the estimated 
effect of a 1-standard-deviation increase in the score.

When all SNPs were used to construct the score, it had 
the predicted sign in all analyses and accounted for 
approximately 2% of the variance in educational attain-
ment. In the STR sample (the larger and therefore better-
powered cohort), the polygenic score was statistically 
significant in all scenarios, even when only genome-wide 
significant SNPs were included. The joint effect of the 
SNP associations with a significance level of p < 5 × 10−8 
explained approximately 0.1% to 0.2% of variance in 
years of schooling in the STR sample. Because this poly-
genic score included three SNPs (when constructed using 
the College variable) or five SNPs (when constructed 
using the EduYears variable), the results are roughly con-
sistent with Rietveld et al.’s (2013) estimate that each of 
the most strongly associated SNPs explains approxi-
mately 0.02% of variance in years of schooling. Overall, 
there was no systematic tendency for the predictive 
power of the scores to change when additional controls 
for stratification were included.
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Study 3: Replication and Within-Family 
Robustness of Polygenic Scores in the 
Framingham Heart Study

Method

The gold standard for ruling out concerns about popula-
tion stratification is to show that the association holds 
within families. The original Rietveld et al. (2013) study 
reported a within-family analysis using the pooled STR 
and QIMR samples. For this within-family analysis, the 
linear polygenic score constructed using all SNPs in the 
GWA study of years of schooling was strongly associated 
with educational attainment, and the score constructed 
using a p-value threshold of 5 × 10−3 was marginally sig-
nificant. Power was too low to draw conclusions about 
the scores constructed using p-value thresholds of 5 × 
10−5 and 5 × 10−8 (which contained information from 
fewer SNPs). The STR and QIMR analyses were based on 
sample sizes of 2,774 dizygotic twin pairs and 572 full-
sibling pairs, respectively.

In Study 3, we used data from an independent sample, 
that of the Framingham Heart Study (FHS), to attempt to 
replicate the within-family analyses of the linear poly-
genic scores. The FHS is an epidemiological study on 
three generations of individuals in the Massachusetts 
town of Framingham; data from the FHS were not 
included in any of Rietveld et al.’s (2013) analyses (see 
Section 4 in the Supplemental Material). In the FHS sam-
ple, there are 395 families, each with two or more full 
biological siblings. Fewer SNPs are available in the FHS 
than in the STR and the QIMR (see Section 4.1 in the 
Supplemental Material). Consequently, we expected the 
polygenic scores in Study 3 to have lower explanatory 
power than the analogous scores from Study 2. Our focus 
here was on examining, within the FHS data set, how the 
estimated effect of the score would be affected by restrict-
ing the analysis to within-family variation.

Our analyses proceeded in three steps. First, we 
applied quality controls to the data, pruned the SNPs for 
linkage disequilibrium, and constructed the polygenic 
score using the meta-analytic results from Rietveld et al. 
(2013). Second, we identified all biological full siblings. 
Finally, we tested the score ( ĝi ) within families by run-
ning regressions of the following form:

	

EduYearsi i

k

K

k ik ig X= + +
=
∑β εˆ ,

1

γ

	
(3)

where i indexes individuals, k indexes families, and Xik is 
an indicator variable assigned a value of 1 if individual i 
belongs to family k and 0 otherwise. Including the family 
fixed effect (Xik) is equivalent (except for the resulting R2) 

to running a regression after both years of schooling 
(EduYearsi) and the score ( ĝi ) are demeaned at the fam-
ily level; hence, the analysis used only the within-family 
variation in years of schooling and the within-family 
variation in the score. To account for the nonindepen-
dence of the error term among siblings, we clustered the 
standard errors (Liang & Zeger, 1986) at the level of the 
family. Because we expected to have less power for this 
analysis than did Rietveld et al. (2013) as a result of the 
smaller number of individuals and the smaller number of 
SNPs, we ran these analyses for only two scores, one 
constructed from all SNPs in the sample and one using a 
p-value threshold of 5 × 10−3. (We did not conduct 
within-family tests of the individual SNPs because our 
statistical power would have been less than 7%—too low 
to draw a meaningful conclusion regardless of how the 
analysis turned out; see Section 6 in the Supplemental 
Material.)

Results

Each coefficient in Table 4 is the estimated effect of a 
1-SD increase in the score. The two columns on the left 
show the results from the new within-family analyses 
using the FHS data: Whether or not we controlled for 
20  principal components, both polygenic scores con-
structed from all SNPs and from SNPs whose associa-
tions reached a significance level of p < 5 × 10−3 were 
positively and significantly associated with educational 
attainment. In the two columns on the right, we report 
analyses analogous to those from Study 2 (i.e., exclud-
ing the family fixed effects, thus leveraging both 
between- and within-family variation in the score). In 
these analyses, both scores were positively associated 
with educational attainment, and results were again sim-
ilar with and without the principal-component controls. 
The score from SNPs reaching p < 5 × 10−3 was margin-
ally significant, and the score from all SNPs was highly 
statistically significant.

Summary

To summarize, in Study 1, we replicated in an independent 
sample the associations between educational attainment 
and Rietveld et al.’s (2013) three genome-wide-significant 
SNPs, using more stringent controls for population strati-
fication than is typical in the GWA literature; the next two 
studies showed that polygenic scores were robustly rep-
licated in regressions with controls for population strati-
fication and in within-family analyses.

To facilitate a comparison of the effect sizes across 
Studies 1 through 3 and Rietveld et al.’s (2013) analyses, 
we present 95% confidence intervals for the effect on 
years of schooling (EduYears) in Figure 1. An effect size 
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of 0.1, for example, is equivalent to approximately 1 
month of schooling. For the individual SNPs, the average 
effect of changing the number of reference alleles by 1 is 
shown, and for the polygenic score containing all SNPs, 
the average effect of increasing the score by 1 standard 
deviation is shown. Figure 1a shows that the effect sizes 
of the genome-wide significant SNPs are comparable 
across data sets. The effect sizes of the polygenic scores 
shown in Figure 1b are also similar across the QIMR and 
STR data sets and methods of controlling for population 
stratification. The effect sizes of the polygenic score in 
the FHS (Study 3) are not comparable to those from the 
QIMR and the STR; the effect sizes are attenuated in the 
FHS because the scores were constructed from the 
smaller number of SNPs available in this sample (see 
Section 4 in the Supplemental Material). Within the FHS, 
the effect sizes remained similar across different methods 
of controlling for population stratification, including the 
within-family analyses.

Although these results are encouraging, we also note 
a potential limitation of this study. Our evidence, espe-
cially the finding that the polygenic score is significantly 
associated with educational attainment in within-family 
analyses, suggests that it is extremely unlikely that the 
findings of Rietveld et al. (2013) were largely an artifact 
of stratification. However, biases due to very subtle pop-
ulation stratification may still account for some of the 
observed relationships between educational attainment 
and some of the individual SNPs. This possibility cannot 
be conclusively ruled out until large enough family sam-
ples (e.g., N = 47,000 sibling pairs; see Section 6 in the 
Supplemental Material) are available to enable adequately 
powered within-family tests of association with individ-
ual SNPs. This potential limitation applies to all GWA 
studies. Our findings suggest, however, that the 

individual SNPs’ associations with educational attainment 
were robust even when we included substantially more 
stringent controls than are standard in medical genetics.

Discussion

The contrast between the robustness of our findings and 
the disappointing replication record of most candidate-
gene studies of behavioral traits is striking. To draw the 
appropriate methodological conclusions, it is necessary 
to understand the causes of this difference.

A first major contributing factor is that the Rietveld et al. 
(2013) analyses were based on a sample size that was 
unprecedentedly large by the standards of social-science 
genetics. If, as now seems likely, the effects of individual 
genetic variants on most behavioral traits are small, then 
much larger samples than are generally used are required to 
produce credible findings. This is a methodological lesson 
that applies to all studies, whether they are GWA studies or 
not. However, in practice, candidate-gene studies tend to be 
based on much smaller samples. Though it seems clear that 
much larger samples are needed, it is important to recog-
nize that statistical power also depends on the reliability of 
the available phenotypic measure. Researchers will some-
times face a trade-off between studying a cruder variable 
available in a larger sample (e.g., educational attainment) or 
studying more proximal variables available in a smaller 
sample (e.g., cognitive ability). Rietveld et  al. (2013, 
Supplementary Online Material, Section 7) provided a 
framework for quantifying this trade-off.

A second contributing factor is that some of the seem-
ing discipline underlying the hypothesis-based research 
of existing candidate-gene studies is illusory: Because a 
vast majority of genes are expressed in the brain 
(Ramsköld, Wang, Burge, & Sandberg, 2009), it is usually 

Table 4.  Results From Analyses of Polygenic Scores for Years of Schooling in the Framingham Heart Study Sample

Threshold for inclusion of SNPs in 
polygenic score and statistic Within-family variation only Between- and within-family variation

No principal-component adjustment p < 5 × 10−3 p < 1 (all SNPs) p < 5 × 10−3 p < 1 (all SNPs)
  β 0.2386 (0.0934) 0.2677 (0.1034) 0.1142 (0.0637) 0.2448 (0.0614)
  p .011 .010 .073 7.44 × 10−5

  ∆R2 .0036 .0037 .0031 .0141
Controlling for 20 principal components  
  β 0.2308 (0.0947) 0.2642 (0.1044) 0.1173 (0.0634) 0.2534 (0.0621)
  p .015 .012 .065 5.13 × 10−5

  ∆R2 .0033 .0036 .0031 .0140

Note: Beta values represent the effect of a 1-SD increase in the polygenic score on years of schooling estimated by Linear Regression Model 3 (for 
within-family variation; see Equation 3 in the main text) or by Linear Regression Model 2 (for between- and within-family variation; see Equation 
2 in the main text). Positive beta values indicate that the score predicts the years-of-schooling (EduYears) variable in the same direction in the 
replication sample as in the discovery sample. Standard errors are shown in parentheses. All p values are for two-tailed tests. ΔR2 is the increase in 
R2 (in units of percentage points) from a model that includes the polygenic score as an independent variable relative to a model that excludes it. 
All analyses were conducted with data from 1,256 individuals (395 families with two or more children). SNP = single-nucleotide polymorphism.
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possible to create an ex post rationalization for an 
observed association between a candidate gene and a 
behavioral trait that sounds at least superficially biologi-
cally plausible. Therefore, the main advantage of the can-
didate-gene approach—namely, the theoretical discipline 
that it imposes on the investigator—may be exaggerated.

We believe that there are two key implications of our 
findings for research on genetics of behavioral traits. First, 
our results suggest that standard GWA-study protocols 

from epidemiological research can indeed be successfully 
applied to the study of behavioral traits and may therefore 
offer a way to avoid the replication failures that are plagu-
ing much research on the genetics of complex behavior. 
Second, even if (given the current state of  biological 
knowledge) current candidate-gene approaches are not 
bearing fruit, this does not rule out an eventual “come-
back” for hypothesis-based research on the genetics of 
behavioral traits. In fact, we envision that as the number 
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Fig. 1.  Absolute value of the effect on years of schooling (EduYears) of a change in one reference allele for each of 
the three individual single nucleotide polymorphisms (SNPs) as a function of SNP and sample (a) and absolute value 
of the effect on years of schooling of a 1-SD change in polygenic score (including all SNPs) as a function of study 
and type of analysis (b). Because rs9320913 was unavailable in the 23andMe data, we used rs12206087 as a (very 
reliable) proxy (R2 = .99; see Section 2.3 in the Supplemental Material). Error bars show 95% confidence intervals. 
QIMR = Queensland Institute of Medical Research; STR = Swedish Twin Registry; FHS = Framingham Heart Study; 
PC = principal component.
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of credibly established associations from GWA studies 
rises, these discoveries will usher in a new era of “empiri-
cal” candidate-gene studies in which the candidates are 
drawn from among the SNPs identified by GWA studies of 
related phenotypes. For example, the SNPs associated 
with educational attainment could be used as candidates 
to study cognitive and personality traits that may be part 
of the causal pathway. Such follow-up studies will of 
course need to be adequately powered to produce robust 
results, but because the GWA-study results restrict the 
number of SNPs that are subsequently tested for associa-
tion, the p-value threshold can be set much more liberally 
than the level of genome-wide significance.

What does the finding of small effect sizes—reported 
by Rietveld et  al. (2013) and replicated in our three 
studies—imply about how genetics research in psy-
chology should be conducted and what its payoffs will 
be for the field? An immediate implication is that cur-
rent research using genotypic data in laboratory experi-
ments is almost certainly underpowered, and that 
psychology should therefore accelerate its move away 
from such methods, as they are unlikely to yield robust 
findings. A more subtle implication of the small effect 
sizes is that—as Turkheimer (2012) has persuasively 
argued—exuberant forecasts that the availability of 
genetic data will quickly transform the social sciences 
should be viewed skeptically. In principle, a genetic 
variant identified in an association study can explain a 
tiny part of the variation in the phenotype and yet point 
to an interesting biological system (this has happened 
several times in medical genetics). In practice, it seems 
likely that SNPs with smaller effect sizes, on average, 
are more likely to operate on the phenotype through 
distal causal pathways involving a large number and 
many layers of mediating environmental factors. 
Therefore, it is conceivable that the identification of 
SNPs with very small effects will not lead to a useful 
psychological theory of the phenotype.

At present, the extent to which the identification of 
individual SNPs will reveal new biological and psycho-
logical insights about highly polygenic behavioral traits 
remains an open question. But we believe it is likely that 
genetic-association research will benefit psychology in 
the long run, for at least two other reasons. First, even if 
genetic associations can be discovered only in samples of 
many tens of thousands of individuals, once the genetic 
variants to focus on have been identified, large-but-
attainable samples of a few thousand individuals will 
provide sufficient statistical power to address interesting 
research questions, such as questions about the nature 
and magnitude of gene-environment interactions.

Second, even though individual genetic variants have 
very small effects, polygenic scores can have large 

enough effects to be usable even in relatively small sam-
ples. The polygenic score explored here has modest 
explanatory power (R2 ≈ 2%), but when the weights for 
constructing the score are estimated in larger samples, 
the explanatory power will be much greater. For exam-
ple, Rietveld et al. (2013, Supplementary Online Material, 
Table S26) estimated that a polygenic score constructed 
using results from a discovery sample of 500,000 indi-
viduals will have an R2 of approximately 12%. We antici-
pate that such sample sizes will be attainable in the next 
few years, making it possible to construct such a score. 
Once a polygenic score with an R2 of 12% can be calcu-
lated for each genotyped participant in a study, a sample 
of only 62 participants will be needed for 80% power to 
detect its effect.

In summary, our results suggest that in psychology, a 
shift away from candidate-gene studies and toward GWA 
studies is likely to be fruitful. However, before the poten-
tial payoffs can be realized, the focus of much research 
on the genetics of behavioral traits will need to be reori-
ented, and new research infrastructures will need to be 
created—for example, to build much larger sample sizes 
than most GWA studies of behavioral traits have had 
access to. Nevertheless, we believe that this investment is 
worth making, because it may lead to the accumulation 
of reliable and replicable knowledge about the genetics 
of behavioral traits.
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