Validation of satellite HCHO retrievals with aircraft (SEAC4RS) observations

Lei Zhu1, D. J. Jacob1, P. S. Kim1, J. A. Fisher2, K. Yu3, K. R. Travis2, L. J. Mickley1, R. M. Yantosca1, M. P. Sulprizio1, I. De Smedt3, G. Gonzalez-Abad3, K. Chance1, C. L.1,4, R. Ferrare1, A. Fried1, J. W. Hair2, T. F. Hanisco2, D. Richter4, A. J. Scarno6, J. Walega7, P. Weibring8, G. M. Wolfe3,9

1Harvard University, 2University of Wollongong, 3Belgian Institute for Space Aeronomy, 4Harvard-Smithsonian Center for Astrophysics, 5University of Maryland, College Park, 6NASA Goddard, 7NASA Langley, 8University of Colorado, Boulder, 9Science Systems and Applications, Inc., 10University of Maryland, Baltimore County

1. Introduction

- Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of VOCs, but validation of the data has been extremely limited.
- Here we use accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August–September 2013 to validate and intercompare six operational and research retrievals of HCHO columns.
- The SEAC4RS aircraft did not conduct direct satellite validation profiles, nor would these be helpful because of the large noise in individual satellite retrievals.
- Instead, we use an indirect validation method involving joint comparisons of satellite and in situ HCHO observations with the GEOS-Chem chemical transport model.
- Under such a validation framework, satellite and in situ observations do not need to be concurrent, thus increasing considerably the range of data and conditions that can be used for validation.

2. SEAC4RS HCHO aircraft observations

(a) SEAC4RS DC-8 flight tracks (in grey) and the CAMS measurements aboard the aircraft in the mixed layer. (b) Mean vertical profiles observed by the CAMS and ISAF instruments, and simulated by GEOS-Chem, for the Southeast US domain (box in panel a). (c) Mean HCHO columns derived from the CAMS.

3. GEOS-Chem model simulation

Comparisons between HCHO from CAMS and ISAF (left) aboard the SEAC4RS aircraft, and simulated by GEOS-Chem (right), for the Southeast US flight tracks.

4. Intercomparison and validation of satellite data sets

HCHO vertical column densities over the Southeast US averaged over the SEAC4RS period. The bottom panels show six retrievals from four satellites (OMI, GOME-2A, GOME-2B and OMPS) and three different groups. The top panels show (1) GEOS-Chem model results sampled on the OMI schedule and increased by 10% to correct for the bias relative to CAMS aircraft measurements; and (2) columns derived from the CAMS aircraft measurements. Color bar is a logarithmic scale.

5. Conclusions

- All retrievals capture the HCHO maximum over Arkansas and Louisiana, reflecting high emissions of biogenic isoprene, and are consistent in their spatial variability over the Southeast US (r=0.4–0.8 on a 0.5\degree x 0.5\degree grid) as well as their day-to-day variability (r=0.5–0.8).
- This success demonstrates that HCHO columns observed from space can provide a reliable proxy for isoprene emission.
- Satellite retrievals are biased low in the mean, by 20% to 51% depending on the retrieval.
- The bias is smallest for OMI-BIRA and could be further reduced (-12%) by correcting the assumed HCHO vertical profiles assumed in the AMF calculation. Aside from OMI-BIRA, the shape factors used in the retrievals are not a significant source of error.
- Other retrievals have larger biases that appear to reflect a combination of (1) spectral fitting affecting the corrected slant columns, and (2) scattering weights in the radiative transfer model.
- Improvement in HCHO retrievals should focus on slant column fitting, on corrected slant columns, and on calculation of scattering weights.

Acknowledgments:
We acknowledge contributions from the NASA SEAC4RS Science Team, especially the CAMS, ISAF, and DIAL/HSRL lidar group. We would also like to thank the SEAC4RS flight crews and support staff for their outstanding efforts in the field. This work was funded by NASA.