A Model of Score Minimization and Rational Strategic Behavior in Golf

Andrew B. Mack

May 2015

Abstract:

This paper represents the first step of a larger research project which aims to study strategic decisions in golf. Given that the goal of the game is to achieve the minimum possible score on a hole or over a round, I argue that the most rational approach to playing golf involves an agent minimizing his expected score on a hole given a choice of strategies. Next, I define golf club distances and golf shot error probability using a series of simple equations. I use these in order to examine the choices that the score-minimizing agent will make in different scenarios and under different assumptions. Among other things, my model predicts that the rational golfer will always choose additional yardage over additional accuracy for his tee shots.

I. Introduction

The goal of this research project is to develop a theoretical framework and the necessary models in order to examine how and why golf course architecture causes amateur golfers\(^1\) to make irrational strategic decisions, tee-to-green\(^2\), in the course of a recreational round of golf. In this paper, I define strategic behavior to be irrational if it is inconsistent with a strategy that minimizes expected score.

\(^1\) For the purposes of this project, my interest is the amateur golf game. In this paper, however, I do not think it makes a difference.

\(^2\) I focus on tee-to-green strategy in this research and assume, for all intents and purposes, that putting does not exist.
In the game of golf, a player is allowed to carry fourteen different golf “clubs” as established by the *Rules of Golf*. This constitutes the set from which he will choose in order to hit shots of varying distances. The strict objective of the game is to use a set of clubs to navigate a golf ball (1.68 inches in diameter) from a designated starting point called “the tee” into a hole or “cup” (4.25 inches in diameter) in as few stokes of the club as possible. This process is referred to as “playing a hole”. A standard golf course has 18 holes all of which are played in a “round of golf”.

Every hole has its own unique features which must be navigated. Golf is the only sport played on a field with no specific dimensions. Because courses tend to be laid out over large pieces of land, the array of potential shots which a golfer could face during a round is literally infinite. This forces players to make quick decisions on how to most effectively advance the ball to the hole given his current position. This the strategic behavior which I am interested in exploring. In this paper, I establish expected score minimization as the foundational standard model of rational behavior.

For the purpose of modeling hyper-rational golf course behavior, the concept of *homo economicus* will prove very useful. Imagine, every Saturday morning *homo economicus* plays a round of golf. This paper attempts to characterize the way he makes decisions. Henceforth, whenever I refer to “the player” or “the golfer”, assume that the individual playing golf is *homo economicus*.

Section II defines the golf terms for the benefit of the non-golfers who might read this paper. One might argue that golf behavior could be rational if the player were maximizing his

3 *Golf’s Grand Design*, PBS
4 I hope that reading this might motivate them to consider taking up the game.
golf utility function. In Section III, I explain why utility is important and argue that this particular baseline rationality model ought to be developed before exploring drivers of a representative golfer’s utility. In Section IV, I create a function which defines the distance the player is able to hit each club in the set. I also discuss the assumptions which I make in the process. Section V creates a model of how the golfer will make decisions if he has perfect control over his shots. This captures the essence of the rational decision making process. In Section VI, I dispense with the perfects shot-control model and develop a probabilistic framework for uncertain shot outcomes, discuss the assumptions I make for simplification, and show that the choice of strategy is different for the two very similar scenarios captured in Figure 3. I explain the motivation for this shift the context of Figure 4. In Section VII, I augment the model in the previous section by adding creating a function for the uncertainty of the outcomes for shots played from bad positions. I incorporate this into the expected score equation to identify how the player’s new strategy choice for the scenario in Figure 3. Section VIII discusses my findings.

II. Definition of terms

Golf Club – This is the implement used in playing the game. A club is assembled by gluing a small metal head to the end of a long, thin shaft made of graphite or steel. A player carries

5 Although I will give more formal definitions, Robin Williams’s 2-minute sketch mocking the game of golf in which he explains the objective and most of these terms far more effectively than I.
fourteen clubs which vary in loft and in length. A specific combination of these variables allows the player to hit the golf ball a given distance.

Rules of Golf – A book of rules which govern the playing of the game. Golf played in the United States and Mexico is governed by a version of the rules written by the United States Golf Association. Golf played anywhere else in the world follows the rules as specified by The Royal and Ancient Golf Club of St. Andrews.

Shot – same as stroke; one swing of the club made with the intention of hitting the ball

Tee-to-green strategy – A unique set of steps for moving the ball from the tee to the green.

The tee – A small patch of ground where the golfer begins playing a hole by hitting his drive.

Drive – The first shot hit on any hole. Generally, a shot which is played from the tee to the fairway.

Landing area – the region of the fairway where most players will likely to hit their tee shots

Fairway – An intermediate area of very short grass which guides the player to the green. The golfer intends for his drive to settle in the fairway thus providing him the best opportunity to reach the green.

Approach shot – A shot played either from the fairway or the rough which has the green as its immediate target.

The green – A circular area of extremely short grass which surrounds the cup.

A Putt – a golf shot made with a putter; the type of stroke used to advance the ball towards the hole once the ball is already on the green
Natural distance of a club – The distance travelled by a ball hit solidly with a specific club by a player using an ordinary golf swing (no effort to hit it extra hard or soft), given perfect weather conditions.

Out-of-bounds – an area where a player might hit the ball but from where he is not allowed to play it, usually because it lies outside of a golf course’s property line. The player must replay a shot which settles “OB” from the original position using his next shot. An additional one-stroke penalty is incurred.

Sand trap, Bunker – a defined area of sand on a golf course where a ball may come to rest; an obstacle out of which it is difficult for a golfer to hit a good shot

III. Why choose a minimization of expected score approach?

Rational behavior in golf could be modeled using two different methods. I chose the method by which a player minimizes expected score given an array of strategies. It could be argued that a player maximizing his golf utility function would also be behaving rationally. This utility function would take into account golf preferences other than scoring. This assumes that a golfer's behavior is motivated by more than just his raw score. While both could be equally valid, expected score minimization reflects a golfer’s desire to achieve the strict goal of the game playing the course in as few strokes as possible.

As I have already explained, the goal of this research project is to determine where a golfer is making irrational choices, identify the source of that irrationality, and determine what if any part course design has in inducing this behavior.
It has long been my hypothesis that the best holes in golf are ones which either lack a clearly dominant strategy or present themselves to the golfer in such a way as to cause him to play a strategy which has a higher expected score than the hole’s other strategic options. It may very well be that golf course architects exploit aspects of a representative golfer’s utility function in such a way as to cunningly trick him into making a non-optimal choice with respect to score. Exploring the complexities of a golfer’s utility function, seems to be the logical second step.

Developing both models appears to be central in the creation of a nuanced understanding of golf course architecture’s effect on the player’s strategic decisions.

IV. Defining golf club distances

Of the fourteen clubs which make up a set, the putter is irrelevant for the purposes of this paper.

Let club$_j$ represent a unique club where j can take discrete values between 1 and 13. Table 1 in the appendix lists the common names for each j. The natural length (where $d_{std} = 0$) of a shot hit with club$_j$ is given by Dist$_j$. This is not fixed, however. At will, a player can adjust his swing in order to increase or decrease this displacement. If the club is not a wedge ($j = 12, 13$), he can add or subtract a distance (d_{std}) of up to 5 yards6 to a shot without choosing a different club. The maximum and minimum displacements of shots played with club$_j$ are as follows:

$$Dist_j^{max} = Dist_j + 5$$

6In keeping with standard practice in U.S. golf, all distances discussed in this paper are measured in yards.
\[\text{Dist}_{j}^{\min} = \text{Dist}_{j} - 5. \]

Thus, a player is able to hit \(\text{club}_{j} \) any distance within the 10 yard interval, \([\text{Dist}_{j}^{\min}, \text{Dist}_{j}^{\max}]\).

The “driver” \((j = 1)\) is always the longest club in the bag. That is:

\[\text{Dist}_{j=1} > \text{Dist}_{j=2...13}. \]

I use \(\text{Dist}_{j=1} \) as reference point from which I can calculate the length of shots hit using every other club. For simplicity, I assume a distance function which is linear in \(j \).\(^7\) An increase from \(\text{club}_{j} \rightarrow \text{club}_{j+1} \) corresponds to a 10 yard decrease in the shot-distance it can naturally achieve.

For all \(j \leq 11 \), the yardage associated with \(\text{club}_{j} \) can be given by the function, \(D(j) \):

\[
D(j) = 10(1 - j) + \text{Dist}_{j=1},
\]

\[\text{where} \quad D'(j) < 0; D''(j) = 0. \]

I am going to assume that \(\text{club}_{j=12} \) and \(\text{club}_{j=13} \) both wedge clubs but \textit{not} a pitching wedge. Wedges cannot be hit a long way but they can be hit any distance less than their maximum distances.

For wedges, these are the maximum and minimum distances:

\[
\text{Dist}_{j=12}^{\max} = \text{Dist}_{j=12} + 5 \quad \text{Dist}_{j=12}^{\min} > 0
\]

\[
\text{Dist}_{j=13}^{\max} = \text{Dist}_{j=13} + 5 \quad \text{Dist}_{j=13}^{\min} > 0
\]

\(^7\) This is a very useful assumption and one which I think produces a fairly good approximation of reality.
Figure 1 illustrates how this model of golf club distances allows the golfer to hit any yardage in the range of $(0, Dist_{j=1}^{max}]$.

![Diagram showing natural, maximum, and minimum distances for $j = 1, ..., 4$.](image)

Figure 1: A diagram of natural, maximum and minimum distances for $j = 1, ..., 4$.

IV. Decisions with perfect ball-control

In this first model of strategic decision making, a representative golfer is able to hit every shot exactly where he wants it to go. Figure 2 shows a standard golf hole\(^8\). In order to minimize his score, the player chooses which club to hit given his distance to the target. Commonly-used technology such as GPS and laser rangefinders have made it easy for the player to know his precise yardage to the target. Therefore, I assume that the will know the true yardage (Y^{true}) for his shots.

Y^{true} must be adjusted, however, because the distance that a golf ball travels in the air can be affected by certain exogenous factors. Before each shot, the player must assess the

\(^8\) I chose to use a one-shot hole because my assumption of perfect ball-control, creates a situation where only approach shots are relevant. There is no decision to for a player to make if position does not affect the outcome of the approach shot.
relative elevation of the target, wind velocity, and wind direction9. Failing to do this increases the likelihood of a bad outcome and is inconsistent with score minimization.

The player estimates an adjusted yardage which reflects how far he actually needs to hit the ball for the best possible outcome.

\[Y_{(F_2)}^{adj} = Y_{(F_2)}^{true} + effect_{elevation} + effect_{wind} \]

This extremely simple model is important because it shows the general decision-making process. Rational behavior requires that the player consider the relevant factors before executing the golf shot. Though, here, I incorporate two factors which affect a shot’s distance. Going forward, I will assume that their effects do not exist and therefore, \(Y_{(F_2)}^{adj} = Y_{(F_2)}^{true} \).

9 There are more factors which might affect the golf ball’s flight but these are the ones which must be reassessed before every shot.
Figure 2: This hole, F_2^{10} is a fairly generic 1-shot hole. It is within reach for the player with either $club_j=9$ or $club_j=8$.

Source: This diagram originally appeared in Byrdy (2005). It has been adapted by the author for this paper.

V. Minimizing expected score when shot outcomes are uncertain

Probabilities associated with good and bad positions

In practice, no matter how much talent one has for the game of golf, it is impossible to control exactly where the ball is going to go. Simplistically, let’s say that shots either end up in good positions or bad positions. I define a good position to be the fairway. Any position which is not the fairway is a bad position. I will abbreviate a position in the fairway as p^{good} and a position not in the fairway as p^{bad}. The probability of a good position will vary inversely with the length of the shot. Expressed mathematically, I assert:

$$P(good|club_j) < P(good|club_{j+1}) < \cdots < P(good|club_{j=13})$$

(2)

Alternatively, I could show this by taking the probability of hitting a good shot as a function of j:

$$P(good): j \rightarrow f(j).$$

I define the function f as:

10 This should be taken as a generic golf hole rather than the hole which Byrdy intended to represent.
\[f(j) = (j - 1)\eta + P(\text{good}|\text{club}_{j=1}). \]

(3)

Thus \(\frac{d[P(\text{good})]}{dj} = f'(j) > 0 \) and \(f''(j) = 0 \).

In Table A.2, I illustrate how the golfer’s probability of hitting a good shot increases linearly in \(j \). I use this functional form in my models because it will help produce a more concrete result. Figure A.1 graphs \(P(\text{good}):j \) where \(\eta \) is a constant fraction \((0 \leq \eta < 1) \). This shows how as the club’s natural distance become shorter, shot accuracy increases. Table A.3 also models the probability of a good outcome given club selection. It has the same purpose as Table A.2, to capture how this probability increases as shot length decreases. This alternative probability function captures a more realistic effect: decreasing marginal accuracy gains over shot distance. This can be seen in Figure A.2. Exploring the impact which this will have on strategic decisions is an extension for future research. In this paper, for the sake of simplicity, I assume the first case: accuracy gains over shot distance are linear.

This matters because the player’s position after hitting a first shot influences his likelihood of hitting the second shot well hence being in a good position after he hits the second shot. If the ball is in the fairway, it is much easier to hit accurately than if it is in the rough. Holding \(\text{club}_j \) constant,

\[P(\text{good}|p^{\text{good}}) \gg P(\text{good}|p^{\text{bad}}). \]

(4)

Not all bad positions are created equally, however. Some bad positions only require that the player hit out of long grass from an area which is not the fairway. This is called the rough.
Henceforth, I will use $p_{\text{rough}}^{\text{bad}}$ to symbolize these positions. Other bad positions might require the player to hit through a forest, from a sand trap, or add a 1-shot penalty to his score.

This has important implications for an agent attempting to minimize expected score $E[S]$. The probabilities of being in a good position after playing shots from different categories of bad position also vary.

$$P[\text{good}| p_{\text{rough}}^{\text{bad}}] > P[\text{good}| p_{\text{trees}}^{\text{bad}}]$$

$$P[\text{good}| p_{\text{rough}}^{\text{bad}}] > P[\text{good}| p_{\text{sand}}^{\text{bad}}]$$

(5)

Minimization of expected score in Figure 3, Panel A

In Figure 3, O is the origin or tee box from which the first shot is always played. A rational golfer will choose the strategy (s_t) for this hole which minimizes $E[S|p^{O}]$.
Figure 3: This hole, F_3 is a generic 2-shot hole. It requires a tee shot and then an approach shot.

Source: This diagram originally appeared in Byrdy (2005). It has been adapted by the author for this paper.

The tee shot will be played to a position in the fairway according to the golfer’s choice of strategy, either $s_i = s_A$ or $s_i = s_B$. In Panel A, I amended the diagram by removing the bunkers on the left side of the hole. This has implications for the player’s strategy choice. A shot played from p^0 using $club_j=1$ will come to rest at either in the fairway at Position A, $p_{(sA)}^{good}$, with
\[P(\text{good}_O | \text{club}_{j=1}) = P(\text{good}_{(S_A)}) \text{ or in the rough parallel with Position } A, (p^\text{bad}_{\text{rough}}, S_A), \text{ with} \]
\[P(\text{bad}_O | \text{club}_{j=1}) = P(\text{bad}_{(S_A)}). \]
Note that:
\[P(\text{good}_{(S_A)}) + P(\text{bad}_{(S_A)}) = 1. \]

A tee shot using \text{club}_{j=2} will finish in the fairway at Position \(B, p^\text{good}_{(S_B)}, \) with
\[P(\text{good}_O | \text{club}_{j=2}) = P(\text{good}_{(S_B)}) \text{ or in the rough parallel with Position } B, (p^\text{bad}_{\text{rough}}, S_B), \text{ with} \]
\[P(\text{bad}_O | \text{club}_{j=2}) = P(\text{bad}_{(S_B)}). \]
Similarly,
\[P(\text{good}_{(S_B)}) + P(\text{bad}_{(S_B)}) = 1. \]

These are the outcomes which could be possible after the tee shot.

<table>
<thead>
<tr>
<th>(S_A)</th>
<th>(S_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^\text{good}_{\text{club}_1})</td>
<td>(p^\text{good}_{\text{club}_2})</td>
</tr>
<tr>
<td>(p^\text{bad}_{\text{club}_1})</td>
<td>(p^\text{bad}_{\text{club}_2})</td>
</tr>
</tbody>
</table>

As I have already shown, \(P(\text{good}_O | \text{club}_{j=1}) < P(\text{good}_O | \text{club}_{j=2}) \). This implies that he will be in the fairway more often if he uses \text{club}_{j=2} than if he uses \text{club}_{j=1}. It is important not to over-interpret this statement. Although the player will hit more fairways with \text{club}_{j=2}, it follows that he will need to hit a longer shot into the green. This is captured in both panels of Figure 3. If he chooses strategy, \(s_i = S_A \), the golfer can expect to hit an approach shot with \text{club}_{j=8}. If he chooses \(S_B \), he can expect to hit \text{club}_{j=7} into the green. I am describing two effects which run in the opposite directions.
Effect 1 – better chance of being in the fairway with s_B

$$P[p^\text{good}|s_B] > P[p^\text{good}|s_A]$$

(6)

Effect 2 – better chance of hitting the green from the fairway at Position A

$$P \left(\text{green} \big| p^\text{good}(s_B), club_j=7 \right) < P \left(\text{green} \big| p^\text{good}(s_A), club_j=8 \right)$$

(7)

At this point, it is impossible to know which effect will have a greater magnitude.

So far, I have looked at the potential scenarios if the player’s shot finishes in a good position. If p^{bad}, the obstacles which the golfer might face given both strategies in Panel A are the same:

$$p^{bad}, s_A \rightarrow p^{bad}_{rough} \quad \text{and} \quad p^{bad}, s_B \rightarrow p^{bad}_{rough}$$

This means that there are no obstacles which would be in play with one strategy but which would not be in play with the other.

All of this can be incorporated into an expected score equation. Note that in minimizing $E[S]$, he also includes his expected likelihood of hitting the green with his second shot given his choice of strategy. Having strategy in this equation incorporates the player’s club choices and thus it also incorporates the expected club uncertainties. Assuming that he is able to reach the green in two shots regardless of strategy, the player chooses:
\[
\min E[S] = 1 + E\{P[\text{hitting green with } 2^{nd} \text{ shot}] \mid s_i\} \quad \text{where } s_i \in [A, B, \ldots, i]
\]

For the scenario illustrated by Figure 3, Panel A, the equations for expected score are:

\[
E[S|p^O, s_A] =
\]

\[
= 1 + P[\text{good}(s_A)] \cdot P[\text{green} \mid p^{\text{good}}, s_A] + P[\text{bad}(s_A)] \cdot P[\text{green} \mid p^{\text{bad}}, s_A]
\]

and

\[
E[S|p^O, s_B] =
\]

\[
= 1 + P[\text{good}(s_B)] \cdot P[\text{green} \mid p^{\text{good}}, s_B] + P[\text{bad}(s_B)] \cdot P[\text{green} \mid p^{\text{bad}}, s_B].
\]

It follows that any advantage that the golfer gains by being in the fairway more often after choosing \(s_i = s_B\) will be offset by his need to hit a longer club into the green. Therefore, this leads me to conclude that the expected scores given both strategies are equal and suggests that the player will be indifferent between the two strategies in Panel A.

\[
P[\text{good}(s_A)] \cdot P[\text{green} \mid p^{\text{good}}, s_A] + P[\text{bad}(s_A)] \cdot P[\text{green} \mid p^{\text{bad}}, s_A]
\]

\[
= P[\text{good}(s_B)] \cdot P[\text{green} \mid p^{\text{good}}, s_B] + P[\text{bad}(s_B)] \cdot P[\text{green} \mid p^{\text{bad}}, s_B]
\]

\[
\therefore E[S|p^O, s_A] = E[S|p^O, s_B]
\]

This is a very interesting result. It shows that in the absence of fairway obstacles, the golfer gains no advantage by being in the fairway off the tee over hitting the ball longer. Under the assumptions of this model, the advantage of \(p^{\text{good}}_{(s_B)}\) is cancelled by the increased probability \(P(\text{green} \mid p^{\text{good}}, s_A)\).
Minimization of expected score in Figure 3, Panel B

It is common in the game of golf for obstacles to be placed in the vicinity of the landing area to punish inaccurate tee shots of a certain length. In these cases, different positions in the fairway bring into play unique combinations of challenges, penalties, or both. This is illustrated in Panel B of Figure 3. Panel A and Panel B are diagrams of the same hole but for the sand traps to the left of the fairway in Panel B. These sand traps or bunkers are in the range for club\(_j=1\) but not for club\(_j=2\).

This has important implications for the golfer’s choice of either \(s_A\) or \(s_B\). Given these two options, the possible outcomes after hitting a tee shot are different than they were in the previous example.

\[
\begin{array}{c|c|c}
S_A & S_B \\
\hline
p^{\text{good}} & P[\text{good}|\text{club}_1] & p^{\text{good}} \\
p^{\text{bad}} & \delta \cdot P[\text{bad}|\text{club}_1] & p^{\text{bad}} \\
(1-\delta) \cdot P[\text{bad}|\text{club}_1] & p^{\text{sand}} & p^{\text{sand}} \\
\end{array}
\]

Here, the probability of hitting a bad shot with the driver is the same as before except, now, there is an additional bad potential outcome for an inaccurate drive: the sand. The probability of hitting the green from the sand trap is lower than it would be from the rough. This is shown in Eq. (5).

Since the probability that a player will hit a bad shot from \(p^{O}\) if he uses club\(_j=1\) is

\[
P(bad_o|club_j=1) = P(bad(s_A)),
\]

the ball will find the rough with the probability \(\delta \cdot P(bad(s_A))\).
and will find the sand with the probability \((1 - \delta) \cdot P[bad_{(sA)}]\). This can be incorporated into the expected score equation as follows:

\[
E[S|p^O, s_A] = \\
= 1 + P[good_{(sA)}] \cdot P[green|p^{good}, s_A] + \delta \cdot P[bad_{(sA)}] \cdot P[green|p^{bad}_{rough}, s_A] + \\
(1 - \delta) \cdot P[bad_{(sA)}] \cdot P[green|p^{bad}_{sand}, s_A]
\]

and

\[
E[S|p^O, s_B] = \\
= 1 + P[good_{(sB)}] \cdot P[green|p^{good}, s_B] + P[bad_{(sB)}] \cdot P[green|p^{bad}_{rough}, s_B].
\]

The player’s new minimization problem has to take this into account. When he chooses:

\[
\min E[S] = 1 + E\{P[hitting\ green\ with\ 2^{nd}\ shot| s_i] \quad where \quad s_i \in [A, B, \ldots, i]\}
\]

In the Eq. (6) and Eq. (7), I assert that when giving up distance for accuracy off the tee by playing club_{j=2} rather than club_{j=1}, the player then faces increased inaccuracy on the approach shot because he needs to use club_{j=7} rather than club_{j=8}. This still holds. Unlike in the previous example, however, the presence of the bunkers will change the magnitudes of both effects, thus they will no longer cancel.

\[
\delta P[green|p^{bad}_{rough}, s_A] + (1 - \delta)P[green|p^{bad}_{sand}, s_A] \less P[green|p^{bad}_{rough}, s_A]
\]

From this logic, the model predicts the following choice:

\[
P[good_{(sA)}] \cdot P[green|p^{good}, s_A] + \delta P[bad_{(sA)}] \cdot P[green|p^{bad}_{srough}, s_A] + (1 - \delta)P[bad_{(sA)}] \\
\cdot P[green|p^{bad}_{sand}, s_A]
\]
\[P[\text{good}(s_B)] \cdot P[\text{green}|p^{\text{good}},s_B] + P[\text{bad}(s_B)] \cdot P[\text{green}|p^{\text{bad}}_{\text{rough}},s_B] \]

and therefore, for the situation faced in Panel B, the player will choose strategy, \(s_B \):

\[E[S|p^O,s_A] > E[S|p^O,s_B]. \]

In words, the player will choose the strategy where he gives up yardage off the tee.

Importantly, it seems that this is not in order to gain the increased accuracy of \(c\text{lub}_{j=2} \) but rather because it eliminates the possibility of hitting the ball into the bunkers.

Expected score minimization in Figure 4

The scenario presented in Figure 4 is nearly identical to the one presented in Panel B of Figure 3. The only difference is that, by hitting \(c\text{lub}_{j=1} \), the player can avoid the bunker on the right while \(c\text{lub}_{j=2} \) brings the sand into play. This can be seen clearly in Panel B of Figure 4.

Without doing the calculations, it is safe to say that:

\[E[S|p^O,s_A] < E[S|p^O,s_B]. \]

Though it may seem superfluous, I have included this example in order to underscore the implication from the previous example. The player’s choice of accuracy over distance in Panel B of Figure 3 is seemingly driven entirely by his desire to eliminate \(p_{\text{sand}}^{\text{bad}} \). This same motivation is responsible, here, for his choice of \(s_A \).
Figure 4: This hole, F_4, is a generic 2-shot hole. It requires a tee shot and then an approach shot.

Source: This diagram originally appeared in Byrdy (2005). It has been adapted by the author for this paper.

VI. Alternate assumptions for shots played from bad positions

Throughout this body of research, I emphasize the fact that not all positions off the fairway are equally bad. First, I will separate the p^{bad}'s into two categories, playable and unplayable. These two categories can be divided into subcategories as follows:
Though it is true that under very unusual circumstances there are positions in the water which can be playable, and positions in the rough or trees which can unplayable, I will assume that these exceptions do not exist for the purposes of this research. Hitting a ball into the water or out-of-bounds adds a penalty to the player’s score but allows him to play his next shot from positions which are generally favorable. Shots which must be played from the rough, trees, or sand are subject to a different penalty.

Understanding this penalty requires me to briefly explain a little bit of golf reality. It is much easier for a golfer to hit a short club out of a bad position than it is for him to hit a long club. In good positions, small imperfections in the player’s golf swing can still produce a good result. This is not true if the position is bad. Here, the margin-for-error in a player’s swing becomes smaller as the attempted shot becomes longer. This is an effect which I think ought to be present in my models.

Keeping Eq. (4) and Eq. (2) in mind Given that the player is in the rough, I add the fraction, μ to further diminish the probability of hitting a good shot as j decreases. Again, I am going to make this effect linear for the sake of simplicity. The details of this fraction, μ, can be seen in Table A.4 and Figure A.3 and are defined by the following equation:

$$P(\text{good}|\text{club}_j, p_{\text{rough}}^b): j = \mu(j - 2) + P(\text{good}|\text{club}_j=2, p_{\text{rough}}^b), \quad j \in [2, 11]$$
In Eq. (5), I said that $P[\text{good}|p_{\text{bad}}^\text{rough}] > P[\text{good}|p_{\text{sand}}^\text{bad}]$. I capture this effect by augmenting μ with ϵ, a fraction which is also described in Table A.4 is defined by Eq. (9).

$$P(\text{good}, p_{\text{sand}}^\text{bad}|\text{club}_j): j \rightarrow [\mu(j - 2) - \epsilon(j - 1)] + P(\text{good}|\text{club}_{j=2}, p_{\text{sand}}^\text{bad}), \ j \in [2, 11]$$

(9)

Incorporating μ into the expected score minimization for Figure 3, Panel A

In a previous example, I show that the golfer is indifferent between s_A and s_B. This is true under the assumptions which I made. If I incorporating the concept that the probability of hitting a good shot from a bad position decreases as the length of the attempted shot increases, I expect this result to change. I previously concluded that for the scenario in Panel A,

$$p_{\text{bad}}, s_A \rightarrow p_{\text{bad}}^\text{rough} \quad \text{and} \quad p_{\text{bad}}, s_B \rightarrow p_{\text{rough}}^\text{bad}. $$

While this continues to signify that there are no obstacles which would be in play with one strategy but which would not be in play with the other. The statement does not imply, however, that the potential downsides are equal. I can now be more specific using Eq. (8). (p_{bad}, s_A) implies the use of club$_j=8$ while (p_{bad}, s_B) will require the use of club$_j=7$

$$P(\text{good}|\text{club}_{j=8}, p_{\text{bad}}^\text{rough}) = \mu + P(\text{good}|\text{club}_{j=7}, p_{\text{rough}}^\text{bad})$$

If I take this into consideration in the player’s expected score minimization equation,

$$E[S|p^O, s_A] =$$
\[= 1 + P[good(s_A)] \cdot P[green | p^{good}, s_A] + P[bad(s_A)] \cdot \frac{P(good | club_{j=8}, p^{bad})}{P(green | p^{bad}, s_A)} \]

and

\[E[S|p^O, s_B] = \]

\[= 1 + P[good(s_B)] \cdot P[green | p^{good}, s_B] + P[bad(s_B)] \cdot \frac{P(good | club_{j=7}, p^{bad})}{P(green | p^{bad}, s_B)}. \]

Therefore:

\[P[good(s_A)] \cdot P[green | p^{good}, s_A] + P[bad(s_A)] \cdot \frac{P(good | club_{j=8}, p^{bad})}{P(green | p^{bad}, s_A)} \geq P[good(s_B)] \cdot P[green | p^{good}, s_B] + P[bad(s_B)] \cdot \frac{P(good | club_{j=7}, p^{bad})}{P(green | p^{bad}, s_B)}. \]

I have increased the model’s connection with reality by augmenting it with this new effect \(\mu \). It now predicts:

\[\therefore E[S|p^O, s_A] > E[S|p^O, s_B] \]

The scenario in Panel A of Figure 3, an expected-score minimizer chooses a strategy which delivers greater distance over additional accuracy.

VII. Discussion

This paper is able to make a few helpful conclusions. In Section III, I show that correct club choice is an essential element of rational behavior. I also show that the expected-score minimizer adjusts for exogenous factors such as before every shot. These predictions may be obvious, but there is a more subtle point, here.
(a) I show that the golfer must adjust his yardage so as to account for how certain factors will affect his specific shot;

(b) the rational golfer will be able to choose the correct club for the shot at hand;

(c) every shot is independent because (a) and (b) are different for every shot a player might face;

(d) rational decisions require (a) and (b) for every shot.

(e) Therefore, I can characterize the golfer’s general strategic process in the following statement: When behaving rationally, the golfer will treat every shot as independent of the previous one. He, therefore, will select a new strategy to minimize expected score before each shot.

In Section IV, I show that on a generic two-shot hole, where bad positions are not differentiated, the golfer will be indifferent between a conservative strategy from the tee which increases his probability of hitting the fairway and an aggressive strategy which improves the prospects for his second shot, given that he hits a good tee shot. I then differentiate bad positions so that a bad shot might find either rough or sand. Assuming that it is more difficult to hit from the sand than from the rough, the golfer will minimize expected score by choosing a strategy such that the worst outcome (the sand) is not within the range. He does this by selecting a club which will either travel beyond the sand or stay short of it.

The golfer’s indifference between the two strategies in Panel A of Figure 3, as predicted by the model in Section IV, is not entirely in line with what I anecdotal observe in watching people play golf. Rarely does the golfer choose 3-wood over driver for his tee shots. Once I factor in the μ effect, the model now predicts a robust preference for distance over accuracy.
This is the most important prediction of this paper because it provides a rational justification for the driver-off-the-tee strategy which is so easily to observe in reality.

References

Appendix

<table>
<thead>
<tr>
<th>$club_j$</th>
<th>Common Name</th>
<th>Distance (yds)</th>
<th>Max, Min Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = 1$</td>
<td>Driver</td>
<td>$Dist_{j=1}$</td>
<td>$Dist_{j=1}^{max} = Dist_{j=1} + 5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$Dist_{j=1}^{min} = Dist_{j=1} - 5$</td>
</tr>
<tr>
<td>$j = 2$</td>
<td>wood club #1</td>
<td>$Dist_{j=1} - 10$</td>
<td>...</td>
</tr>
</tbody>
</table>
\[j = 3 \quad \text{wood #2, hybrid club #1, or 2-iron} \quad \text{Dist}_{j=1} = 20 \]

\[j = 4 \quad \text{wood #3, hybrid #2, or 3-iron} \quad \text{Dist}_{j=1} = 30 \]

\[j = 5 \quad \text{wood #4, hybrid #3, or 4-iron} \quad \text{Dist}_{j=1} = 50 \]

\[j = 6 \quad \text{hybrid #4 or 5-iron} \quad \text{Dist}_{j=1} = 60 \]

\[j = 7 \quad \text{6-iron} \quad \text{Dist}_{j=1} = 70 \]

\[j = 8 \quad \text{7-iron} \quad \text{Dist}_{j=1} = 80 \]

\[j = 9 \quad \text{8-iron} \quad \text{Dist}_{j=1} = 90 \]

\[j = 10 \quad \text{9-iron} \quad \text{Dist}_{j=1} = 100 \]

\[j = 11 \quad \text{pitching wedge} \quad \text{Dist}_{j=1} = 110 \]

\[j = 12 \quad \text{gap wedge or sand wedge} \quad \text{Dist}_{j=1} = 120 \]

\[\text{Dist}_{j=12}^{\text{max}} = \text{Dist}_{j=12} + 5 \]
\[\text{Dist}_{j=12}^{\text{min}} > 0 \]

\[j = 13 \quad \text{sand wedge or lob wedge} \quad \text{Dist}_{j=1} = 130 \]

\[\text{Dist}_{j=13}^{\text{max}} = \text{Dist}_{j=13} + 5 \]
\[\text{Dist}_{j=13}^{\text{min}} > 0 \]

Table A.1: The commonly recognized golf club names which are associated with each value of \(j \). *(Note: The composition of a club set can vary but significantly. This composition does not affect the \(\text{Dist}_j \)'s. In this model and also in practice, players choose between woods, hybrids, and irons based on which they find easiest to hit.)*

| \(club_j \) | Category | \(P(\text{good}|\text{club}_j) \) | \(P(\text{good}) : j \rightarrow \eta(j - 1) + P(\text{good}|\text{club}_{j=1}) \) |
|--------------|----------|---------------------------------|---|
| \(j = 1 \) | driver | \(P(\text{good}|\text{club}_{j=1}) \) | \(P(\text{good}|\text{club}_{j=1}) \) |
| \(j = 2 \) | 3-wood | \(P(\text{good}|\text{club}_{j=2}) \) | \(\eta + P(\text{good}|\text{club}_{j=1}) \) |
| \(j = 3 \) | 5-wood | \(P(\text{good}|\text{club}_{j=3}) \) | \(2\eta + P(\text{good}|\text{club}_{j=1}) \) |
| j | Club | $P(good|\text{club}_{j}=\cdot)$ | $3\eta + P(good|\text{club}_{j}=\cdot)$ |
|------|----------|---------------------------------|---------------------------------|
| 4 | 3-iron | $P(good|\text{club}_{4})$ | $3\eta + P(good|\text{club}_{1})$ |
| 5 | 4-iron | $P(good|\text{club}_{5})$ | $4\eta + P(good|\text{club}_{1})$ |
| 6 | 5-iron | $P(good|\text{club}_{6})$ | $5\eta + P(good|\text{club}_{1})$ |
| 7 | 6-iron | $P(good|\text{club}_{7})$ | $6\eta + P(good|\text{club}_{1})$ |
| 8 | 7-iron | $P(good|\text{club}_{8})$ | $7\eta + P(good|\text{club}_{1})$ |
| 9 | 8-iron | $P(good|\text{club}_{9})$ | $8\eta + P(good|\text{club}_{1})$ |
| 10 | 9-iron | $P(good|\text{club}_{10})$ | $9\eta + P(good|\text{club}_{1})$ |
| 11 | wedge | $P(good|\text{club}_{11})$ | $10\eta + P(good|\text{club}_{1})$ |
| 12 | wedge | $P(good|\text{club}_{12})$ | $10\eta + P(good|\text{club}_{1})$ |
| 13 | wedge | $P(good|\text{club}_{13})$ | $10\eta + P(good|\text{club}_{1})$ |

Figure A.2: The probabilities of hitting a good shot with each club as a linear function of η.

$(0 \leq \eta < 1)$
Note: To construct this graph, I choose $P(good|club_j) = 0.60$ and take $\eta = 0.02$.

Figure A.1: $P(good|club_j)$
<table>
<thead>
<tr>
<th>club<sub>j</sub></th>
<th>Category</th>
<th>P(good)</th>
</tr>
</thead>
<tbody>
<tr>
<td>j = 1</td>
<td>Driver</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 2</td>
<td>Fairway wood</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 3</td>
<td>Fairway wood</td>
<td>P(good</td>
</tr>
<tr>
<td></td>
<td>Hybrid club</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 4</td>
<td>Hybrid club</td>
<td>P(good</td>
</tr>
<tr>
<td></td>
<td>Long-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 5</td>
<td>Long-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 6</td>
<td>Long-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 7</td>
<td>Mid-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 8</td>
<td>Mid-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 9</td>
<td>Short-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 10</td>
<td>Short-iron</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 11</td>
<td>Wedge</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 12</td>
<td>Wedge</td>
<td>P(good</td>
</tr>
<tr>
<td>j = 13</td>
<td>Wedge</td>
<td>P(good</td>
</tr>
</tbody>
</table>
Table A.3: The probabilities of hitting a good shot with each club in a form which exhibit decreasing returns to distance. \((0 \leq \tau < 1)\)

<table>
<thead>
<tr>
<th>club (_j) ((j))</th>
<th>(P(good))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.63</td>
</tr>
<tr>
<td>3</td>
<td>0.648</td>
</tr>
<tr>
<td>4</td>
<td>0.672</td>
</tr>
<tr>
<td>5</td>
<td>0.69</td>
</tr>
<tr>
<td>6</td>
<td>0.699</td>
</tr>
<tr>
<td>7</td>
<td>0.711</td>
</tr>
<tr>
<td>8</td>
<td>0.72</td>
</tr>
<tr>
<td>9</td>
<td>0.7245</td>
</tr>
<tr>
<td>10</td>
<td>0.729</td>
</tr>
<tr>
<td>11</td>
<td>0.7335</td>
</tr>
<tr>
<td>12</td>
<td>0.7335</td>
</tr>
<tr>
<td>13</td>
<td>0.7335</td>
</tr>
</tbody>
</table>

Figure A.2: \(P(good|club_j)\)

Note: To construct this graph, I choose \(P(good|club_{j=1}) = 0.60\) and take \(\tau = 0.03\).
club_j	Name	P(good)	P(good	p_{bard}^{bad}_{rough})	P(good	p_{bard}^{bad}_{sand})	
j = 1	driver	—	—	—			
j = 2	3-wood	P(good	club_{j=2})	P(good	club_{j=2})	−ε + P(good	club_{j=2})
j = 3	5-wood	P(good	club_{j=3})	μ + P(good	club_{j=2})	μ − 2ε + P(good	club_{j=2})
j = 4	3-iron	P(good	club_{j=4})	2μ + P(good	club_{j=2})	2μ − 3ε + P(good	club_{j=2})
j = 5	4-iron	P(good	club_{j=5})	3μ + P(good	club_{j=2})	3μ − 4ε + P(good	club_{j=2})
j = 6	5-iron	P(good	club_{j=6})	4μ + P(good	club_{j=2})	4μ − 5ε + P(good	club_{j=2})
j = 7	6-iron	P(good	club_{j=7})	5μ + P(good	club_{j=2})	5μ − 6ε + P(good	club_{j=2})
j = 8	7-iron	P(good	club_{j=8})	6μ + P(good	club_{j=2})	6μ − 7ε + P(good	club_{j=2})
j = 9	8-iron	P(good	club_{j=9})	7μ + P(good	club_{j=2})	7μ − 8ε + P(good	club_{j=2})
j = 10	9-iron	P(good	club_{j=10})	8μ + P(good	club_{j=2})	8μ − 9ε + P(good	club_{j=2})
j = 11	wedge	P(good	club_{j=11})	9μ + P(good	club_{j=2})	9μ − 10ε + P(good	club_{j=2})
j = 12	wedge	P(good	club_{j=12})	9μ + P(good	club_{j=2})	9μ − 10ε + P(good	club_{j=2})
j = 13	wedge	P(good	club_{j=13})	9μ + P(good	club_{j=2})	9μ − 10ε + P(good	club_{j=2})

Table A.4: The probabilities of hitting a good shot with each club as a linear function of μ.

(0 ≤ μ < 1) Note: club_{j=1} is never used in bad positions.
Figure A.3: $P(\text{good} | p^{\text{bad}}, \text{club}_j)$

Note: To construct this graph, I choose $P(\text{good} | p^{\text{bad}}, \text{club}_{j=2}) = 0.20$ and take $\mu = 0.06$.