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Optimal Multi-unit Auctions

ERIC MASKIN AND JOHN RILEY

1. Introduction

Recently, a large literature has examined alternative methods for
auctioning off an indivisible good. (See McAfee and McMillan 1987;
Milgrom 1986; and Wilson 1987 for surveys.) Particular attention has
been paid to two auctions used frequently in practice: the open,
ascending-bid auction (also called the English auction), and the sealed,
high-bid auction. A theoretical benchmark is provided by the Revenue
Equivalence Theorem (Vickrey 1961b; Myerson 1981, and Riley and
Samuelson 1981). This theorem asserts that, when each bidder’s reserva-
tion price for the good is an independent draw from the same distribution
and bidders are risk-neutral, the two common auctions give rise to
exactly the same expected revenue for the seller.!

A good deal of research has considered the implications of relaxing one
or more of the underlying hypotheses. Thus, Holt (1980) substitutes
risk-averse for risk-neutral buyers and shows that, in this case, the
sealed-bid auction generates greater expected revenue than its open
counterpart. :

In contrast, Milgrom and Weber (1982) show that, when reservation
prices are not independent but are positively correlated, the additional
informational about other buyers emerging in the open auction raises
revenue on average relative to that in the sealed-bid auction.

A third strand of this research (Maskin and Riley 1986) relaxes
symmetry. That is, buyers’ reservation values are no longer postulated to
be identically distributed. In this case, the ranking of the two auctions
depends on how the distributions vary across buyers.

Rather than simply compare the expected revenue from specific
auction schemes, one may wish to characterize optimal selling proce-
dures, that is, selling procedures that maximize the seller’s expected
revenue. Under the hypotheses of the Revenue Equivalence Theorem,
and provided that the distribution of reservation prices is sufficiently

The helpful comments of David Kreps, David Levine, Steven Matthews, Rober Myerson,
and Barry Nalebuff are gratefully acknowledged. This research was supported by the
National Science Foundation and the UK Social Science Research Council.

' For a formal statement of this result, generalized to the case of multiple units, see
Section 2.
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regular (see Section 3 for a precise definition of regularity), the open- w:a
sealed-bid auctions are both optimai if the seller sets an appropriate
minimum allowable bid (called a reserve price). Myerson (1981) charac-
terizes optimal auctions when regularity fails w:@ also ér.oz the symmetry
assumption is dropped. Matthews (1983), Maskin and Riley (1984b), and
Moore (1984) study the case of risk-averse buyers, whereas Myerson
(1981), Maskin and Riley (1981), and Cremer mda Zorowc (1985)
consider correlated reservation prices. Finally, Harris and Raviv (1981)
relax the assumption that only a single good is to vw sold. .

This last paper is the starting point of our analysis here. mnq the mb@ﬁw_
case of a uniform distribution of reservation prices, Harris msa. Raviv
show that the Revenue Equivalence Theorem continues to hold if there
are multiple units for sale and each buyer wishes to E:or.mmo at most a
single unit. Here we establish equivalence for all a_,ﬁzgco:ww and w_m.a
show that, as long as the regularity assumption mentioned wcoé is
satisfied, the standard auctions with appropriate reserve prices are
optimal for the seller. In addition, we characterize the optimal auction
when this restriction is violated.

We then relax the restriction to unit demand and instead assume
simply that each buyer has a downward-sloping demand curve. We
observe that, in general, the standard auctions are no longer optimal.
Instead, an optimal procedure is to set a payment schedule T(g) and ask
each buyer to submit an order g; a buyer iro. demands q pays T(gq). If
aggregate demand is less than supply, the auctioneer fills each order. ~m.
however, orders exceed supply, the auctioneer scales aoi:.awm: buyer’s
demand, in a predetermined way, until the capacity constraint is :.:z.

The optimal procedure is thus a nonlinear pricing scheme modified to
take account of the supply constraint. Not surprisingly, 52&.0.8, Eo
methods of analysis build on earlier work on :o:::own. pricing, in
particular that of Mussa and Rosen (1978) and Maskin and Riley (1984a).

2. Formulation of the Seller’s Optimization Problem

The seller has g, units of a good for sale. There are n U:.v\onm.. each of
whose ‘type’ v is drawn independently from the same %m:&::oa F(v).
A buyer of type v has preferences represented by the utility function

U(q, R, cvmﬁ}x_ v)dx —R=N(q,v)-R (1)

where g is the number of units purchased from the seller and R is total
spending on these units. The seller and other buyers do not observe a
buyer’s v but know that it is drawn from F(v). ‘_,?,o:mrccr we shall
assume that higher levels of v are associated with higher demand.
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Moreover, we suppose that buyers’ demand curves are never positively
sloped and that demand is finite for all p=0.

To be precise, we impose the following restrictions.

AssumptioN Al. For all v, the demand price function p(q,
twice continuously differentiable, strictly decreasing in g,
increasing in v whenever p is greater than zero.

v) is finite,
and strictly

Since it is of independent interest, we shall sometimes make the
alternative assumption of unit demand, as follows.

ASSUMPTION Al*,

Unit Demand. Preferentes are given by the demand
price function

v, g=1
r(gq,v) ?. g>1,

so that v is the buyer’s reservation price.

We also assume that the unobservable
distributed and that the cumulative distribut
following assumption.

parameter v is continuously
ion function F(-) satisfies the

AssumpPTION A2. The cumulative distribution function F(v) is strictly

increasing and continuously differentiable on the interval [0, ©], with
F(0)=0and F(v)=1.

Although, in general, it is not possible td rule out gains to randomized
selling procedures, we show in Section § that, under a fairly weak
restriction on the distribution of types, the following assumption is
sufficient for the optimal selling scheme to be deterministic

(f we
interpret (1) to be a buyer’s von Neumann-Morgerstern utility fun

ction).
Assumrrion B1. Non-decreasing Price Elasticity. Demand elasticity is
non-decreasing in the demand price. That is,

MAINWNVAO
du\ pag '

For a buyer of type v, formula (1) gives us

;,NA;@MQ mcv.L m A a%v
v\ 3¢’/ 39/ qov\ paq)

Assumption B1 implies, therefore, that absolute risk aversion with
respect to consumption is non-decreasing in v.

Readers should note that we have a great deal of flexibility of our
choice of a parameterization. In particular, if p(q, v) represents a family
of inverse demand curves satisfying Assumptions A1, A2, and B1, then
plq, w(v)] represents the same family and also satisfies these three

B r e
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assumptions if () is strictly increasing and twice oowmncozmq
differentiable. For convenience, we shall henceforth n:onmo“ without :.umw
of generality, a parametrization for which the increases in demand price
are non-decreasing as v rises.

AssuMPTION B2. piy(q, v) <0.

Elsewhere (Maskin and Riley 1984a) we have mroéa that there are
large classes of preferences satisfying these four assumptions.

The seller cannot force buyers to purchase his goods; his sales aoﬁ.@:a
on their behaviour. Hence, a selling procedure is a rule 5.,& assigns
buyers quantities and charges them prices on the cmm_m of :.Q.n actions.
Depending on the procedure, an action might nosm_.ﬂ of making a bid,
submitting a demand function, or, in principle, anything w_mm that a buyer
might do to signal his demand. Formally, a procedure is a schedule of
pairs, one for each buyer:

ﬂﬁ\%h_‘ L ) u.:vv \M..AM_» L] .w.:v-

where s, is buyer i’s strategy, lying in strategy space S;, and R; w.:a g, are,
respectively, his payment and allocation of the good. Allocations must
satisfy the aggregate supply constraint

i=1,...,n 2

n

M Gi(s)=<qo 3)

i-1
where s =(s;,...,s,). The tildes reflect the possibility :z.: payments
and allocations may be random. Initially, however, we restrict wzm:co.:
to deterministic procedures, so that (2) can be rewritten in deterministic

form as ;
[Gi(si, 5-:), Ri(si, s_3)] C))

where s_;=(Sy, . .-, Sie1) Sivts - -+ » Sn)- . . .

We suppose that the seller can select any selling procedure it aow_.nom
and makes its selection to maximize expected revenue. ‘;o. _Sx to m€<_=m
its optimization problem is the incorporation of the constraints implied c.«
the buyers’ choice of strategies. We assume that buyers n:.QOmo their
strategies without collusion. Thus, they E.ww a game of incomplete
information. A natural non-cooperative solution concept for such a game
is the Bayesian equilibrium of Harsanyi (1967-8), an extension of
ordinary Nash equilibrium. .

To define a Bayesian equilibrium, we introduce 5.@ notion of a m:”m:umv\
rule for buyer i, a function s/(-) that, for each vomm_c._@ type v,, assigns a
strategy s;(v;). With buyers behaving zmj-omuoﬁnwwgo? the <mo8m of
strategy rules (s7(-), ..., s:(-)) is an @nc,:_v:c-: if, when ncq._mﬁnﬂo to
by all others, each buyer’s best option (in the sense of maximizing :.a
expected utility) is to conform to it also. Of course, there is no reason, in
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general, why equilibrium should be unique. (But see Maskin and Riley
1982 for a treatment of uniqueness in sealed-bid and open auctions.)
Thus, when we speak of a procedure that maximizes expected revenue,
we really mean that there is an equilibrium of that procedure that
maximizes expected revenue.

Consider the expected surplus of buyer i if, when his parameter value

is v;, he chooses the strategy $; =57 (x) instead of s*(v;). With other
buyers adopting the strategy rules

SR S s, - 50
buyer i has an expected surplus of
TL(x, v) = E,_[N(§i(s?(x), s2qv_0)), v) = Ri(s?(x), s*(u_))] (5)

where N(q, v;) = [¢ p(z, v;) dz and where the expectation is taken with
respect to the distribution F(-). Let us suppress the functions s*(-) and
define

qilx, v_;)= Gi(s} (x), uukcl‘vv w

R() = E,_ Rils?(x), 7). ©
Then (5) can be rewritten as
IL(x, v;) = E, N(qix, v_g), v) — R;(x). Q)

Since we have defined s} (v;) to be buyer i’s optimal strategy, if his
parameter value is v;, it follows that IT;(x, v;) must take its maximum at
x =u,; that is, for all i and v,,

(v, v) = max IL(x, v). 8)

We now show that, given (6)-(8), we can express maximized surplus
IT;(v;, v;) solely in terms of the allocation rule q:(v;, v_)).

Prorosirion 1. Necessary Condition for Self-selection, i.e., Incentive
Compatibility. Under Assumptions Al (or A1*) and A2, the maximized
expected surplus of buyer i with parametet value U; can be written as

(v, v,) =110, 0) + E, h " Ny(qi(z, v_;), 2) dz. )

Remark. We have derived [¢,(-), R;(°)] from [§,(-), R,(")] through (6).
However we can think of [¢,(-), R(")],i=1,...,n, as a selling proce-
dure itself in which buyers announce parameter values as strategies; in
other words, it is a direct revelation mechanism. Condition (8), moreover,
ensures that buyers announce their frue values in equilibrium. Of course,
if instead we confront a buyer with arbitrary functions ¢,(-) and R,(-), it
may not be in his interest to reveal truthfully. Proposition 1 implies that,
if I1,(x, v;) is defined by (7), a necessary condition for truthful revelation
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is (9). That is why we have attached the label ‘incentive compatibility’ to
the proposition.

Proof.? Because I1(v;, v;)=1L(x, v;) (from (8)), and if (v;>x)
IL(x, v;) = [L(x, x),
M(v;, v) — i(x, x)=0, for v,>x (10)
Also, from (7),
(v, v) — M(v;, x) = Mc-.AZQAS. v_), v) = N(gi(vi, v.y), X))

qiviv.-;)

~E,, [ et yyay a2

0

Q.A:..cluc..
mm EEN,:&&. c:
Q0 X
where the inequality follows from Assumption B2 (which, without loss of
generality, we can assume holds). Hence, for all v;>x,
qi(viv-i)

0=<II,(v;, v,) — (x, x) < (v; — X)E, | pa(z, x)dz. (12)

0
Therefore, IT(v;, v;) is continuous. In fact, since 0<gq, < gq,, the expec-
tation in (12) is bounded and so IL;(v;, v;) is an absolutely continuous
function.
From (8), for all x and v,,

v, € arg Bxi [M(x, x) = I (v, x)}. (13)

i i i i f x. Moreover, as we
From (7), IT1{v;, x) is a differentiable function o \
have _.Acmw wnmm:&. I1;(x, x) is continuous and non-decreasing, :m:.oo
differentiable almost everywhere. Thus, almost everywhere we can write
the first-order condition for (13) as
, .
EAH. kvim:l.?:kvuc at x=u,.
dx ox

From (7),
Al (W, x)|  =E, Nlqv, v_), vl
ox x=v;

A necessary condition for (8) to hold, therefore, is
4 ,(v;, v;) = E,_Ny(qi(v;, v_;), v;) almost everywhere. (14)
Qcm i\Yiy Yy —

Moreover, since IT,(v;, v;) is absolutely continuous, we can rewrite (14)
in the more convenient integral form (9). QED

2 For the proof presented here we acknowledge the helpful suggestions of Steven
Matthews.
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Because the seller cannot force any buyer to participate, the expected
surplus of every buyer must be non-negative. Since Il(v, v,) is a

non-decreasing function, this ‘voluntary participation’ constraint can be
expressed simply as

I1,(0, 0) = 0. (15)

Propositions 1 showed that (9) is a necessary condition for arbitrary
functions [q,(:), R(")], i=1,...,n, to constitute a direct revelation
mechanism in which truth-telling is an equilibrium. We next show that, if

the function ¢,(-) is suitably monotonic, then conditions (9) and (15) are
sufficient conditions.

Lemma 1. Suppose that preferences satisfy Assumption Al or Al*.

>mm:3m§m:~..?:cl:mm non-decreasing function of v;, and define T1,
by (9). Then if I, satisfies (15), we have

(1) (v, v;) = My(x, v;)
and
Gii) (v, v)=0
for all x and v,.
Proof. If T1(v,, v,) satisfies (9), then for any y = x

'y
M) =Te x) = B, [ M(qi(z, v_), 2) oz

'y
=L, [ Mg, v, 2) d2 (16)

since, by hypothesis, g,(z, v_;) is non-decreasin
tion Al (or A1*), p,=N,; is non-ne
from (15), (ii) holds. But, from ),

g in z, and, by Assump-
gative and N, is positive. Hence,

Y
W) =T 0 =E,, [ Mot vy de )
Thus, combining (16) and (17), we obtain
IL(y, y) = i(x, y), y > x.

Hence, (i) holds for all x <v,. An almost id

entical argument establishes
that it holds for all x > v, as well. QE.D

A selling procedure can be extremely complicated, and therefore, in
principle, so can be maximizing expected revenue over the class of all
procedures. As we have seen, however, any selling procedure is
equivalent (in allocation and expected payments) to a direct revelation
mechanism. (This equivalence is sometimes called the Revelation Prin-
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ciple.) Thus, the optimization can be Rmimﬁom to 9@. Scnr.mimzwn n_wwmm
of such mechanisms. Lemma 1 helps simplify this ov:B_N.w:osﬂrmw
establishing that, if the functions [g{v;, v_,)] are :c:-aonanmmﬂnm, nen
there exist corresponding payment mczoﬁwo:m tﬁ.: suc that
[¢:(), Ri(+)), i=1,...,n is a direct revelation Smnrmz_m” in ,Mn:wa
truth-telling is an n@E:@l:E‘.H:ammaw from (7) and (9), the exp
payment by buyer i with valuation v_, is

Ri(v)= mc-mﬁzs_,?: v_y), c..vib .,ZNS..AN. v_;), 2) QL ~11,(0,0). (18)

Thus, the seller’s problem boils down to maximizing o<mﬁ?=o:o=m a:(+).
mma&.mom:w, the expected revenue from buyer { can be written as

R.=FE ,H“N(AQ%AC? Ql..v. C..v - % . 2&AQ.AN» Ctmvu Nv QN“ - HJ—..AO“ Ov.
i (R TIN o

Integrating the second term on the right by parts, we obtain

R, =E, , [N(g(v;, v_.), vi) — Noqi(vi, vy, v} p(v)] - 110, 0)  (19)

= ; —~ F(v,)] is the hazard rate for F.
irm.wmmﬂmmmV~WGAMMM~MMWM_%_N\WM CcM ovz_n_Omaa in braces is 5&.@@.@:@03 of
10, 0), and because the latter must satisfy (15), Bmxéﬁm:ﬂ“ Mm
expected revenue clearly ::m:.mm setting 11,(0, 0) = 0. Summing o R
we obtain the following proposition.

ProposiTioN 2. Expected Seller Revenue. Consider a selling vwogmcnw
R 51 i / i ameter value zero has zer

§.(5), Ri(s)];.cs, in which a buyer with paramet

WM@WRQM.WWE”; in equilibrium. Under Assumptions Al or A1* and A2,

expected revenue equals

m.::ev_““Mau (g, (v, v_)), v;) M givi, v.y) MQL (20)

i=1 i=1
where
I(q;, vy = N(q;, v;) — Naq;, v;) p(vi) (21)
and [g,(-), Ri(-)] is the direct revelation mechanism corresponding to
E..A.v, %A: )

As a direct implication of Proposition 2, we can .ao-:o:m:mg that two
standard selling procedures—the open and mam_oawca auctions—generate
the same expected revenue when buyers rmwn unit amimsa. In ﬁ.”_m _%ﬂﬁm
auction, the auctioneer raises the asking price continuously .E:M a ~ w

c&&ma have dropped out (assuming that there are g units for sa ﬂ .
mw,wnr remaining bidder receives one item m:m. pays the m:& price. mm the
sealed-bid auction, buyers all submit secret bids. The winners are the go
highest bidders, and they pay their bids.
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Prorosrrion 3. Revenue Equivalence. If Assumptions Al* and A2 hold,
expected seller revenue is the same under the sealed-bid and the open
auctions.

Remark. Harris and Raviv (1981) and Vickrey (1961a) establish this
result for the case of a uniform distribution.

Proof. 1t is clear, first, that in both types of auctions IT,(0, 0) =0, In
the open auction, each buyer’s dominant strategy is to remain in the
auction until the asking price equals his parameter valye. The items for
sale are thus sold to those with the ¢, highest values; that is,

{1 if v; is among the g, highest values
9V v-) = ?g otherwise. @2)

In view of Proposition 2, it remains only to show that (22) holds as well
in the sealed-bid auction. To do so, it suffices to show that there exists an
equilibrium in which buyers all use the same, strictly increasing, bidding
strategy b, = B(v,). In such an equilibrium, the goods are clearly sold to
those with the highest values. The methods of Maskin and Riley (1982)

can, moreover, be applied to establish that this is the unique equilibrium.
Define

P(x) = Pr{fewer than g0 of n — 1 buyers have valuations greater than x}
qg-1 -1
=2 (" Fer - reop
k=0 k

Suppose B(x) is the solution to the differential equation

mm (P(x)B(x)] = x QMM&. B(0) =0. (23)

Rewriting (23) in integral form, we obtain

v dP
Ecmw?,v = \o X (x) dx. (24)
Because dP(x)/dx >0,

v gp u gp
hﬁhE&Ah U de=vP),  v>0.

From (24) it thus follows that, for v,>0, B(v;,) < v;. From (23),

dB(v,) dP
=2 1o, - B

Because B(v,) <uv,, it follows that B(v)) is strictly increasing,
Suppose that all buyers but i bid according to B(-) and that buyer i bids
b; = B(x) for some x not necessarily equal to v,. His expected surplus is

P(v,)
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then ' .
I1;(x, v;) = Pr{x is among the g, highest valuations}(v; — b;)
= P(x)v; - B(x)].
Differentiating by x, we obtain

oI, dP(x) d
- ;) = U; = — — [ P(x)B(x)].
2 v) = v - PWB)
Substituting from (23), we can rewrite this as
oI, dP(x)
— ¥ Cm = .Cm - .Hv ——"
ax v =( dx

Because P(x) is strictly increasing, it follows immediately :.z:. buyer i’s
optimal choice is x = v;, that is, to Ea. Ec...v. ,EEP m.@ is indeed an
equilibrium bidding strategy. Because it is strictly increasing, we conclude
Ids for the sealed-bid auction. Q.E.D .
EM%MWWM w. An almost identical argument can be used to establish the
equivalence of the open and sealed-bid auctions when the seller sets a
- erve price.

=oMmN~MMwMoM éomrwﬁw concentrated in Proposition 3 on the open and
sealed-bid auctions, but it is clear that there are many other auctions as
well that satisfy I1,(0, 0) = 0 and (22) and so generate :.o. same expected
revenue. For example, the (admittedly peculiar) auction in which buyers
submit sealed bids and the g, highest are winners, but only losers pay
their bids satisfies these conditions.

3. Solving For the Revenue-maximizing Selling Procedure: the Regular
Case

ve for the optimal (deterministic) selling procedure, we begin by
M%owwwsm q()= E.w.v, .+, 4,(-)] to maximize AMON._ <<o. then mroi.Eﬁ
the solution to this problem ¢*(-)=[q7(-), ... _aqc_ is monotonic mM
required by Lemma 1 if the distribution is .Jo,m:_m.wn in the sense define
below. Thus, g¢*(-) solves the seller’s optimization uqov_@-:. .‘:6 reg-
ularity assumption, which we will invoke throughout this section, is as
follows.

. . . . U
Assumprion C. Regularity of the Distribution Function

Jv)=v —— (25a)

3 See Maskin and Riley (1984a) for a discussion of ,Em&mmcanzo:.. Qou.q_m, it ﬁwuw%mm
if the hazard rate p{v) cither increases or does not decline too mav_a_<.£_~ww.. e
earlier that we can always choose our parametrization so :::, Assumption is E .
The choice, however, may affect whether or not Assumption C holds.
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is increasing or

Hﬂsa@é TH
pAG(v), v)aul  p(v)
where §(v) solves (81/39)(q, v) =0.
We first consider the case of unit demand, Assumption Al1*, Although
units are themselves indivisible, the optimization problem is not so

constrained, since we can give g; a probabilistic interpretation. That is, g;

between zero and unity should be thought of as the probability that buyer
i receives a unit. Given Assumption Al1*,

(25b)

(g, v,) =J(v;) min{gq,, 1} (26)

where J(-) is given by (25a). Substituting (26) into (20),

. we seek the
solution to

max Tws.:-. M J(v)g: |0<gq, =<1, M q; Maou_ . 27

i=1 i=1

Define
v’ =max{v | J(v) = 0}. (28)

If >wm=5m:.o= C holds, so that J(v)is increasing,* then J (v) is positive if
and only if v > v [t follows immediately that the solution to @7, g*(¢),
satisfies

q: (v, v_)=0,v,<0°
We now establish the following proposition.

Proposrrion 4. Optimal Selling Procedure for Unit Demand: the Regular
Case. If buyers’ preferences satisfy A1* and F(v) satisfies Assumption C
(so that J(v) is increasing), expected seller revenue is maximized by
selling up to g, units to those buyers with the highest reservation prices in
excess of v” (defined by (28))
Remark. There are clearly many selling procedures that satisfy the
conditions of Proposition 4 and are therefore optimal. Indeed
and sealed-bid auctions described abov
auctioneer sets a minimum price of v°,
Proof. Suppose there are m buyers for whom J(v;) >0, that is, m
buyers with reservation values exceeding v° If m < 9o, the term in braces
in (27) is maximized by setting ¢, =1 if v,> v° and 4, =0 otherwise. If
m>q¢° the term in braces is maximized by setting q:=1 for those g,
buyers with the highest values of J, that is, with the 4o highest reservation

, the open
¢ are optimal as long as the

* For the unit demand case, condition (25b) reduces to (25a).
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values. To summarize, (27) is solved by choosing
qi (v, v_y)

H. :Schm:ach mBQ:mEo?EmroﬁaomaZw:oncm_zmm
Ao. otherwise.

(28a)

Since ¢/(v;, v_;) is a non-decreasing function of v, it satisfies the
hypotheses of Lemma 1. Thus, ¢/ (v, v_,), i=1,...,n, is the expected
revenue-maximizing allocation rule. Q.ED

We now consider the problem of general downward-sloping demand
curves. Perhaps the best-known selling procedure for %Bm:.a curves of
this type is the US Treasury bill auction. Buyers may mag.::. orders at
one or more prices. Thus, in principle, a buyer can approximate any
demand curve arbitrarily closely. Current practice is for the Hn.ommcnw to
fill orders at the prices submitted until orders filled on_cw_. the size of Em
offering. However, the Treasury has also experimented with a sealed bid
auction in which all buyers pay the price of the highest unsuccessful
bidder.’ A .

As we will see, neither of these auctions is optimal even with areserve
price. Moreover, expected revenue from the two auctions is not in

ral the same.
mommwﬂomm that Assumptions A1, A2, B1, B2, and C :.oE. MO_EEQ, 9.0
problem of maximizing (20). If, for all i, the solution ¢(v;, v.;) is
non-decreasing in v;, then once again the 3@05@%3 of FoBB.w H are
satisfied. Thus, if g/ (v;, v_;) satisfies this monotonicity property, it is E.n
solution to the seller’s optimization problem. The following lemma is
helpful.

LemMa 2. If Assumptions Al, A2, B1, B2, and C hold, then

(a) I(q, v) is a strictly quasi-concave function of ¢ .Q:N; is, :.m mn.ooz.a
derivative with respect to ¢ is negative whenever its first derivative is
non-negative); and )

b) al/3q is strictly increasing in v.
A wvs&n aa<o first establish that Assumptions Al, A2, and B1 together
imply (a). From (21),

o= b, )= ps(a V)/p). (29)

* The Treasury has not yet announced the results of its experiment with the one-price
auction. In future work we plan to use the results of this paper to compare the two no:g.om
Treasury bill auctions with the theoretical optimum. For a a_macwm.os of the one-price
auction when buyers bid for a share of a divisible good, see Wilson (1979) and Maxwell
(1982).
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Hence,

ol . .

3 >0if and only if 1/p <p/p,. (30)
Note that

3
WMMHP —P/p.

If pi; is non-negative, 81/34% is negati i i
, gative, since, by Assumption Al
P1<0for p>0.1f p,, i negative, then by (30), pon A%

iv@..,r...As,m_,N.mummﬁ.um@v.
p

oq 3q* P2 gpydv
By Assumption B1, the final expression is non-positive. Thus, I(q,v) is

indeed strictly quasi-concave. Furthermore,
el 2(2)
dqou  ? p20ui\p

HENT + ab\acv Pz

p? p

wmsoo&Acv\acng.lab\&v\bwﬁEwc>mm=.
: . , ‘
&1/3q v is strictly positive 0.E.p y mptions B2 and C,

Form the Lagrangean for the maximization of (27); that is,

L= ME.F%M NS.: u)+ u(v,, :l..vAQc - M:u Q..vg.

i==1 1
E=1
The solution g7(-), . .., g*(-) satisfies

(v, v_))=0and u(vi, v_;) non-negative

u(y;, ca..vﬁM WNAF; v_)— QL =0 )
i=1
. al
e F;?m @@ v-) w)—po, v )| =0 @
) 3l
q (v, v) = cleM O, v)= p(v, v_,).

J

Given the hypotheses of Lemma 2, I(g:, v;) is strictly quasi-concave in
q w hence Eo*umnommmd\ conditions (31) are also sufficient. To show that
q1(:), ..., qx() solves the seller’s maximization problem, it remains to
argue that ¢f(v, v_,) is non-decreasing in v;, so that ,éo can apply
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Lemma 1. For given (v, v.;), either ¢'(v;, v.;)=0, in which case
(8q}13v)(v;, v_;) is trivially non-negative, or else ¢/ (v;, v;)>0. In the
latter case, (31) implies that

.MMSXS. v.), v) = plv, v_y).

Moreover, the equality holds in a neighbourhood of (v;, v_)).
Differentiating this last equation with respect to v;, we obtain

Flagt, 1 _an

3q* dv; dgdv dv;’
Suppose that 3u/3dv; is non-positive. Because 3°I/3q dv is positive and
(thanks to strict quasi-concavity) 8°//9q” is negative. (31a) implies that
8q}/du; is positive. Assume, therefore, that du/dv; is positive; this
implies, in particular, that u > 0. If, for j #i, 3l(q; (v, v-)), v;)/ 39 < p,
then 9q;/dv;=0. Morecover, if 3dl(q/(v;,v_),v;)/3q=p, then
(8%1/39%)(3q} /3v,) = du/ dv;, implying that 3q,"/3v, <0. In either case,
therefore m&.,\ dv, is non-positive for j #i. But because

(31a)

n

99
»Mu“_ v, (v, v))=0
(since p>0), we can deduce again that dg;/3v; is non-negative. Hence
qi(), . .., qi(*) solves the seller’s problem.
Define §(v,) so that (31/3g)(g(v,), v;) = 0 for all v;, and let ¢(-) be the
inverse of §(v;). Take

R(q:) =R} (¢(q:)) (32)

where R}(v;) satisfies (18) with ¢,(-) = ¢;(-) and IT;(0, 0) = 0. Given the
preceding analysis, the following result describes an optimal selling
procedure.

Prorosimion 5. Optimal Selling Procedure for General Demand: the
Regular Case. If Assumptions Al, A2, B1, B2, and C hold, expected
revenue from the sale of g, units is maximized if the seller sets the
payment schedule R(g,) defined by (32). Each buyer i submits an order g;
and pays R(q,). If total orders exceed supply, final allocations are
reduced according to the rationing scheme:

e%&éw. #(q:)) - L =0

3y,
MS;M? (33)
fe=1
al
* = () — Ov i) = U
q; i%u ¢(g))<u
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For the special case in which demand curves have the simple form
p(qi, v)=v, - yq,
the allocation rule is especially straightforward. From (33), we obtain
9'>0=v(q—q)—pu=0-q =g, p/y.
Thus, the seller simply reduces each buyer’s order by the same amount
(subject to its remaining non-negative) if demand exceeds supply.

It is easy to see that the open and sealed-bid auctions,® as well as the
two Treasury bill procedures, cannot be optimal in general. Suppose, for
example, that g, is so large that the supply constraint is never binding.
Then all these auctions have the property that the equilibrium price is
just the seller reserve price, at which buyers can buy all they want. In the

optimal selling procedure, however, pricing is nonlinear: 3 buyer with
value v, buys G(v), solving 1(§(v), v) =0, and pays

R(v)=N(G(v), v) - Ny(q(v), v)/p(v).

4. Optimal Selling Procedures: the General Case

We next study revenue-maximizing procedures when Assumption C is
not imposed. To simplify matters, we consider only the case of unit
demand.

In addition to the necessary conditions (9) and (15) derived in Section
2, we first note that the allocation rule must satisfy a monotonicity
conditoon. (Earlier we noted that monotonicity was a sufficient
hypothesis for Lemma 1.) For unit demand, (7) becomes

O:(x, v;)= E, vig(x,v_))— Ri(x).
Thus,

i(x, x) - Ii(x, v;) = (x— SVMF‘SAR. v_)). (34)
From (8),

IL(x, x) = (v, x) 2 0 and M,(v,, v,) - M(x, v;) = 0.

Adding these two inequalities and substituting from (34), we obtain

(vi— x)E, _[q:(v;, v_) —qix, v_)]=0.
Thus, the allocation rule g:(v;, v_;) must satisfy the condition that

E, gv,v_)is non-decreasing in v,. 35

¢ When buyers may want more than one unit, these auctions must be modified slightly. In

the open auction the auctioneer continuously raises the price, and at each level buyers
indicate how many units they would want to buy. The actual price is determined when the

level is raised high enough so that supply equals demand. In the sealed-bid auction, buyers

submit demand curves, and the auctioneer uses these to compute the market-clearing price
and allocations.
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Adding this constraint to programme (27), we obtain the maximization
problem

amx ﬁmd\ c M .\AC.,VNNN m::..Q_MAQ? Clmv is :Oﬂ:&ﬂﬁﬂmmw:um*
{q:()} A

0241, 3 e <} (6)

the function J(v)= v —1/p(v) is non-monotonic, and s0
Emsmmmhm_%zw_mmcaoi does =0M generalize m.BBa&mS_v.f Instead we ammm:
by defining a modified function J*(v) that is monotonic, w:a mo_<o. for t _o
optimal {g;(:)} with J* replacing J. We then m.:os that this w:@owccs rule
also solves the original problem. Finally, we interpret the optimal selling
procedure as an auction.

Mopiriep J Funcrion. Let {{x®, y¢] :sAu«eivemo be a collection of
subintervals of [0, ] such that (a) the function

J(v), ifve U [x% y¥]
.\;ACV..N A v weld
J(y®), ifve[x® y¥] for some w

is non-decreasing, and (b) the function
o
k*w)= [ VE)-IrdFe)

satisfies

=0, forall usy®

w

K ?vﬁ =), v=x%
A proof that the collection {[x®, y“]} exists can be ooswmmcoﬂoa m_osxm the
following geometrical lines. Consider Figure K.H. m:.:é:m .2 v=10 and
moving to the left, we define J*(v) = J(v) until a point y' is reached at
which, for some x <y!,
.v\_

[ v -16M14F@ =0 %)
Since J(v) <v, s 9 =J(D), y', if it exists, is less than o. U@mzo x'to c_o
the smallest such x satisfying inequality .A:v and define J*(v)=J(y")
over [x', y']. This process is continued until v =0.

Prorosimion 6. Optimal Allocation Rule. For any (v;, v_;), choose .M_ .mm
that the number, M, of buyers with parameter <mEWm c.‘*mg whicl
J*(v;)=J is at least g, and the number, m, for which \.QLM.\c_m
at most go—1. Then expected seller revenue is maximize y
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Sy
k‘
=
<
v
<

Fig. 14.1 Derivation of J*.

a’(C), ..., q.() satisfying

M. itJ*(w)>J7>0

* y=d Qo—m ;

@ v) =y g Iy =720 (37)
0, otherwise.

Proof. Because J*(+) is non-d i
. -decreasin F(y; i i
in v;. Hence, (35) is satisfied. The Eom.w O i thre g

First, we show that, for a . is completed in three steps.
(36), ’ ny ¢,(), ..., 4.(*) satisfying the constraints of

_m,s.FZMﬁL J(v)g(v, v_)<sE S
“ i l~v S.cim \iACLQ..AQ? v_;). Awmv
Next, we show that g*
xt, qi(), ..., q1() defined b
; . . c 1 qn y (37) sol i
Mw wﬂ%ﬂ%”%nﬁow—na in ér_m: J(-) in (36) is 3%5%& c@ownﬂ.ﬂw E%M_d_wa
x at, for g,() = g*(), (38) holds with equalit S
?o<o§om§m8?2naom=@ 9 <.

Gi(v;) = E, q:(v, v_,)
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for any allocation {g,(+)} satisfying the constraints of (36). Then,

Eupo (o) =T @) vi, v-0) = % "V () = I*(0))div) dF (v)

1l

v d
5, [ e =16 0w

5 - ﬁs&ms

3 -] G wama (39)

Il

where the last two equations follow directly from the definitions of J* and
K“. By construction, K“(v) is non-positive and §;(v) is non-decreasing.
Thus, integrating by parts, we obtain
- &NAS 4 ar wy @ o w (34 o
- gy W) dv= K2(x*)§(x*) - K*(y")4(y*) <0  (40)
from the definition of K*. Inequality (38) follows from (39) and (40).
Next, consider the maximization problem

mﬁF.fMt?x.?fv omsﬁ, Msmi. Aé
A i=1 i=1
Because J* is non-decreasing, the solution, from the argument in Section
3, is to set g7 = 1 for the (up to) g, buyers with the highest non-negative
values of J*. Since J* is not strictly increasing, ties occur with positive
probability. These can be broken by randomizing—that is, by giving all
buyers with J*=J a chance (go— M)/ (M —m) of winning—thereby
obtaining exactly g, ‘winners’. Thus, {q(-)} given by (37) solves the
maximization problem (41).

By definition, ¢/ (v;, v-;) is a constant as a function of v; on any
interval [x“, y“], w € Q. Hence,

VEQNAS 2 % [ @ w w18 * w
S 07 ) dy = (K~ Kl () =0
where
Qn.%A.Cv = m:;.QWAC. C.\..v.

Thus, (39) implies that (38) holds with equality.

Finally, note that, because qi(v,v_)is non-decreasing in v;, Lemma
1 implies that, because it solves (36), it solves the seller’s optimization
problem. QED

Combining (18) and (37), we can readily compute the expected

payment R}(v;) made by buyer i with parameter value v, in the optimal
selling procedure. Thus, the seller can maximize expected revenue
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through a direct revelation mechanism in which, if the n buyers
‘announce’ parameter values (x4, ..., x,), the allocation and expected
payments are

ﬂﬂw&k:...?ﬁ:v. N~WA\«..V~. «.“ﬁ..ix.

We next show that, m:aasm:co? the seller can use a modification of the
open-bid auction,

Prorosimion 7. Optimal Multi-unit Auctions with Unit Demand. Let
{[x*, y*I}weq be the collection of intervals in the definition of J*. For
each w, there exists z%¢ (x®, y*) such that if, in an open auction, the
asking price is started at v’ =max[v |J *(v) =0}, and is raised discon-
tinuously from x® to z® whenever it reaches x“, then that auction is
optimal.

Remark. When the price rises from x® to z“, buyers’ decisions about
whether to continue bidding must be revealed simultaneously (since, with
positive probability, several will drop out at the same time). One way of
achieving this is for the auctioneer to confer (privately) with each buyer
to determine whether more than g0 wish to continue bidding. If not,
those remaining in the auction pay z“ and receive one unit. The winners
among those dropping out are selected at random and pay x .

Proof. 1t suffices to show that we can choose z“ such that the

corresponding allocation rule is defined by (37). For each w, choose z*
so that

m.et..mﬁWAHS. Ql..v ~ nu.A.wa C!mv VQQ.& :AVS I..HSV
= Melﬂﬁ.‘&.% S. Clmv ~ &..AHS» cl..v > qo— :A%S - NSV. AANV

where #,(v;, v_,) is defined to be the nuraber of buyers (other than i)
whose parameter value is at least v;. In (42), 2z is chosen so that a buyer
with reservation value y® is indifferent between staying in and dropping
out when the price reaches x“. Hence all buyers with values less than y¢
drop out when (or before) the price rises to x“ but stay in if their
reservation values exceed y“. The induced allocation rule of this modified
open auction thus equals that of (37). oED

We should point out that in the auction of Proposition 7 all buyers with
reservation values in an interval [x“ y*“] have an equal chance of
winning. This means that there is a positive probability that a buyer who
does not have one of the qo highest reservation values will be assigned a
unit. The proposition therefore assumes implicitly that the seller can
enforce a no-resale provision. In the absence of such a provision, the
prospect of resale changes buyers’ behaviour, and expected seller
revenue declines. None the less, we show in Maskin and Riley (1980) that
the conditions under which it is optimal for the seller to raise the asking
price discontinuously are the same with and without resale.
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We conclude this section by illustrating the seller’s voﬁoz.:m_ gain from
using the optimal rather than the sealed-bid or open auctions. mcﬁvmmo
that the distribution F(-) can be approximated by the following two-point

distribution: 0 <

F(v)=~{3/4, 32<u<80
1, v >80,

Suppose there are two buyers and wao.:sz for sale. Qawn__v: ._m czzm
ordinary open auction with reserve price is to be used, the sel er is m_w
off setting the reserve price equal to 32 or 80. If the ,mozsob the item sells
for 32 unless both buyers have a valuation of .mo. Since the latter occurs
with probability 1/16, expected seller revenue is

: A J
i i%u&.
Aavuf 16

If the reserve price is 80, there are no bids with probability (3/4)(3/4) =
9/16. Expected seller revenue is therefore

q
— 180 = 35.
(i)

Thus, in this example a reserve price of either 32 or 80 is optimal for the
i n auction.

mm_m_ﬂmwswmawww. suppose that the seller uses an .m:oaoa :xw a::. of
Proposition 7 and opens the bidding at 32 but .:6; _cavm.ﬁro bid to mewm”
less than) 56. Suppose that buyer 2 stays in the _auction only i | _mm
reservation value is 80. Then buyer 1 gains from staying in himself on uﬂ i

buyer 2 has a low reservation value. (If both m.Sw in, all consumer surplus
is bid away.) His expected gain is therefore slightly greater than

m (80 — 56) = 18.

If buyer 1 chooses not to stay in the auction, he wins (with h:.ucmw::%
1/2) only if buyer 2 has a low valuation. Thus his oxno&oa gain is

wao ~-32)=18.

Buyer 1 therefore has an incentive to use the same strategy as buyer 2, s0
that this is the equilibrium bidding strategy. Expected seller revenue is

therefore
)2 (gm0 + ()56 =
— - 180 + | — 156 = 44,
Aavuw+A5 8 16

By jumping the bid, the seller can thus increase its expected revenue by
9, a gain over 25 per cent.
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5. Randomized Selling Schemes

At the outset, we noted that the seller could in principle use a selling
procedure in which the outcome is a random schedule

E%c: clv, \M.Ac_: U rur:..:.q

We restricted attention however, to deterministic selling procedures. In
this section we investigate the desirability of randomness.
Because preferences take the form

q
Q.AQ~ R, CV "\ ﬁﬁkn Cv Q‘t - R,
0

so that buyers are neutral towards income risk, i.e., they are indifferent
between the random payment R,(v,, v_;) and its mean (given v,). Thus,
we may assume that the optimal selling procedure is of the form

[Gi(v;, v_y), Ri(v)].

Moreover, for the special case of unit demand, it is clear that there is no

loss in generality in assuming that each realization of gi(vi, v_;) is no
greater than unity. Thus,

Ui(q., R;)= Vg — R,

is linear in g;, and so buyers are again intifferent to risk. Hence, in the
case of unit demand, the seller gains néthing by using random selling

procedures. We next show that the same principle applies to a broad class
of smooth demand curves.

ProrosiTion 8. Under Assumptions Al, A2, B1, B2, and C, the optimal

deterministic selling procedure generates at least as much expected
revenue as any random one.

Proof. Let [§i(+), R(-)] be a random selling procedure. Although
Gi(v;, v_;) is now a random variable, we can still argue as in Section 2 to
establish the following counterpart of (9):

M v-) - 10,0 =, [E [ M@te v0 az] @y

where the inner expectation is over the possible realizations of §(z, v_,).
It follows immediately that the counterpart of (18) holds, namely,

Ri(v) = S;T?a.?: v_) - h " Moz, v, 2) %: ~ T1,(0, 0).
(44)

7 We are expressing all selling procedures in this section as direct revelation mechanisms,
which, by the Revelation Principle, we are entitled to do.

Optimal Multi-unit Auctions 333

Since there can be no gain to supplying the .cc%on with more :MS
q°(v;), the amount he would purchase mw a zero price, we can assume ~ M:
each realization of §; satisfies §,<q"(v;). Thus, N Q.: v;) is m:_.ﬁ y
increasing over the domain of g;, and we can define the inverse function

g:i=N""'(n, v;). 45

For any random variable §; and 7 = N(§;, v;), we can then choose
G, = N"'(#, v;) where i = E(f). That is,

MZAQN- Cmv = ZA@: Cmv = f. Ab@v
Consider the function Gny = NN~ 1), 0, .
We shall suppose that G(-) is convex. (We will later confirm that this is
the case.) Thus

EG(ii) = ENy(§;, v)) = G(r) = Ny(g;, v,). (48)

Next, define )
M, v) =, [ M@z v, 2) dz, (49)

(i}

where N(G,(vi, v_;), v;)) = EN(G:(v;, v_;), v). Then g; satisfies the neces-
sary condition (9). Arguing exactly as in Section 2, we deduce that the
expected payment schedule for buyer i is

Ri(v) = B, | NG 00,0 - [ Nz v-), 2) dz ] = 110,0)
i\Vi v N
(50)
ight-hand side of (44) and (50) are
From (46), the first terms on the right :ma
oa:m_.ﬁmﬂoa (48), the second term in (44) is no greater than the second
term in (50). Thus R(v)= Ri(v)). (51

We now show that the procedure [G.(-), Ri(-)] satisfies the aggregate
feasibility condition ;
M m%cr v_;) < go.
i1
By Assumption A1, N is an increasing, concave function of . Therefore,
from Jensen’s Inequality,

MZA@.,A.CT Qimv. .C..v = ZAMWAM..AC? Clmv. Cmv‘
and so
gv, vo) < EGv;, v_y).
But

M §i(v;, v_;) =4y,

=1

establishing feasibility.
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Because we are imposing regularity (Assumption C), the optimal
i=1.....n SOlves the problem of

aﬁo.n:.mim:n selling procedure [¢}'(-), R}(-)]
Bmx._BnNmnm expected revenue subject only to feasibility, (9), and (15). In
vmz_ncmmr we need not impose monotonicity; thanks
Proposition 4, it is satisfied automatically. Now, [g,(-), R,(*)] satisfies )
and (15) by construction, and as wé have seen it satisfies feasibilit
Hence EZR!(v,)=EZR(v;). Thus, in view of (51), EZR}v) W
EZR,(v;); that is, the optimal deterministic selling vwogac._.a mn:ovm:Wm at
least as Emn: expected revenue as the random one.

wa MMM:MMW .8 establish that, as hypothesized, G(n) is convex. From

G(N(g, v)) = Ny(gi, v;).
Thus, differentiating by ¢; and rearranging, we obtain

dG
MM. (N(q:, v;)) = Np/N, = p2/p.

Differentiating again by g,, we obtain

2
.M.MWMZS: v)lp(q;, v;) H%m AWV
PP~ p1p,;
P
-2 E
du\p

=0 by Assumption B1,

6. Concluding Remarks

In this paper we have shown how the earlier anal sis of optimal i

by Harris and Raviv (1981), Myerson (1981), uzw Riley M:a mmM“M__M%M
(1981) can be generalized to multiple units. We conclude with some
comments on the crucial assumptions,

.m_amﬁ.om all, we have assumed agents to be neutral towards income risk
<§§ risk-averse buyers, the analysis is considerably more oo_:c:omﬁma.
With only a single, indivisible unit for sale, it is relatively easy to m:osw
that the mwm_wa high-bid auction generates greater expected revenue than
the maoo.na-ga auction. However, the expected profit-maximizing sellin
mnroim is no longer a simple auction. Instead, as Matthews (1983) mzm
Maskin and Riley (1984a) establish, the seller can exploit v:wmm. risk

aversion still further by making losers as w. i ;
. ell as winners p:
sealed-bid auction. pay m a

to the proof of
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A second important assumption is that parameter values are drawn
independently. This implies that any pair of buyers, with possibly very
different parameter values, has the same beliefs about the parameter
value of a third buyer. Although this is the natural first approximation,
there are situations in which it is clearly deficient. For example, suppose
that, as in the auctioning of mineral rights, the true value of the item is
unknown. Each buyer has an estimate based on his research. In this case
it is natural to assume that a buyer with a low estimate will have more
conservative beliefs about the estimates of other buyers than a buyer with
a high estimate. Milgrom and Weber (1982) apply the concept of
‘affiliatedness’ (implying positive correlation of parameter values) to
formalize this idea to compare the scaled-bid and open auctions. A
central result is that the information revealed as the open auction
progresses raises the expected selling price. With risk-neutral buyers,
there is no equivalent effect in the sealed-bid auction, and so the open
auction dominates in terms of expected revenue.®

This conclusion suggests that the seller might be able to exploit the
correlation of buyer’s reservation values with a selling procedure very
different from either of the usual auctions. Indeed, work by Myerson
(1981), Cremer and McLean (1985), and Maskin and Riley (1981) shows
that, when buyers are risk-neutral and their parameter values are
correlated and discretely distributed, the seller can extract all surplus.

Finally, agents’ parameter values are assumed to have been drawn
from the same distribution. Although symmetry is a commonly invoked
theoretical simplification, it is certainly a strong restriction. To illustrate,
suppose that several contractors bid for the right to resurface a section of
roadway. If one contractor is much busier than the others, he will have to
hire workers overtime, reduce maintenance, and so on. If, moreover, the
other bidders know about this, symmetry is violated. As we show in
Maskin and Riley (1986), either the sealed-bid or the open auction can
dominate the other (in terms of expected revenues), depending on the
nature of the asymmetry.

¥ Because risk aversion has the effect of improving the sealed bid auction relative to the
open auction, there is no simple ranking of the two except given risk-neutral buyers.
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Optimal Multi-unit Auctions

ERIC MASKIN AND JOHN RILEY

1. Introduction

Recently, a large literature has examined alternative methods for
auctioning off an indivisible good. (See McAfee and McMillan 1987;
Milgrom 1986; and Wilson 1987 for surveys.) Particular attention has
been paid to two auctions used frequently in practice: the open,
ascending-bid auction (also called the English auction), and the sealed,
high-bid auction. A theoretical benchmark is provided by the Revenue
Equivalence Theorem (Vickrey 1961b; Myerson 1981, and Riley and
Samuelson 1981). This theorem asserts that, when each bidder’s reserva-
tion price for the good is an independent draw from the same distribution
and bidders are risk-neutral, the two common auctions give rise to
exactly the same expected revenue for the seller.’

A good deal of research has considered the implications of relaxing one
or more of the underlying hypotheses. Thus, Holt (1980) substitutes
risk-averse for risk-neutral buyers and shows that, in this case, the
sealed-bid auction generates greater expected revenue than its open
counterpart. :

In contrast, Milgrom and Weber (1982) show that, when reservation
prices are not independent but are positively correlated, the additional
informational about other buyers emerging in the open auction raises
revenue on average relative to that in the sealed-bid auction.

A third strand of this research (Maskin and Riley 1986) relaxes
symmetry. That is, buyers’ reservation values are no longer postulated to
be identically distributed. In this case, the ranking of the two auctions
depends on how the distributions vary across buyers.

Rather than simply compare the expected revenue from specific
auction schemes, one may wish to characterize optimal selling proce-
dures, that is, selling procedures that maximize the seller’s expected
revenue. Under the hypotheses of the Revenue Equivalence Theorem,
and provided that the distribution of reservation prices is sufficiently

The helpful comments of David Kreps, David Levine, Steven Matthews, Rober Myerson,
and Barry Nalebuff are gratefully acknowledged. This rescarch was supported by the
National Science Foundation and the UK Social Science Research Council.

' For a formal statement of this result, generalized to the case of multiple units, see
Section 2.
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regular (see Section 3 for a precise definition of regularity), the open- wsa
sealed-bid auctions are both optimal if the seller sets an appropriate
minimum allowable bid (called a reserve price). Myerson (1981) charac-
terizes optimal auctions when regularity fails and also ir.a: the symmetry
assumption is dropped. Matthews (1983), Maskin and Riley (1984b), and
Moore (1984) study the case of risk-averse buyers, whereas Myerson
(1981), Maskin and Riley (1981), and Cremer w‘:a gnrnmﬁ (1985)
consider correlated reservation prices. Finally, Harris and Raviv (1981)
relax the assumption that only a single good is to _.uw sold. .

This last paper is the starting point of our analysis here. mﬁ.:, the mwmo_w_
case of a uniform distribution of reservation prices, Harris m:a. Raviv
show that the Revenue Equivalence Theorem continues to hold if there
are multiple units for sale and each buyer wishes to an:.mmo at most a
single unit. Here we establish equivalence for all Em:_cj:onm. and m_m.o
show that, as long as the regularity assumption mentioned wvoé is
satisfied, the standard auctions with appropriate reserve prices are
optimal for the seller. In addition, we characterize the optimal auction
when this restriction is violated. .

We then relax the restriction to unit demand and instead assume
simply that each buyer has a downward-sloping demand curve. We
observe that, in general, the standard auctions are no longer optimal.
Instead, an optimal procedure is to set a payment schedule T(q) and ask
each buyer to submit an order g; a buyer Ero. demands g pays T(q). If
aggregate demand is less than supply, the auctioneer fills each order. ~m.
however, orders exceed supply, the auctioneer scales aoé:. ommr buyer’s
demand, in a predetermined way, until the om@mﬂ.@ constraint is met.

The optimal procedure is thus a nonlinear pricing scheme modified to
take account of the supply constraint. Not mcnwamm:m_w, Eo_,om.o._.o, G@
methods of analysis build on earlier work on aos::ama. pricing, in
particular that of Mussa and Rosen (1978) and Maskin and Riley (1984a).

2. Formulation of the Seller’s Optimization Problem

The seller has g, units of a good for sale. There are n cc.wna., each of
whose ‘type’ v is drawn independently from the same a.ﬁ:w::oa F(v).
A buyer of type v has preferences represented by the utility function

UG, R, Smh%. v)dr — R=N(g, v) - R (1)

where ¢ is the number of units purchased from the seller and R is total
spending on these units. The seller and other buyers do not observe a
buyer’s v but know that it is drawn from F(v). dgnocmrocr we shall
assume that higher levels of v are associated with higher demand.



