Abstract—The optimal power flow (OPF) problem is generally nonconvex. Recently a second-order cone relaxation for OPF has been proposed using the branch flow model. In this paper, we provide sufficient conditions under which the relaxation is exact, and demonstrate that these conditions hold for a wide class of practical power distribution systems.

I. INTRODUCTION

In previous work [1], [2], we advocate the use of branch flow models for the design and operation of power systems, including optimal power flow, demand response, and Volt/VAR control. In contrast to bus injection models which focus on nodal variables such as bus current and power injections, branch flow models focus on currents and power flows on individual branches [3], [4]. They have been used mainly for modeling distribution circuits which tend to be radial, but has received far less attention. The optimal power flow (OPF) problem seeks to minimize a certain cost function, such as power loss and generation cost, subject to physical constraints including Kirchoff’s laws, thermal constraints, as well as voltage regulation constraints. There has been a great deal of research on OPF since Carpentier’s first formulation in 1962 [5]. OPF is generally nonconvex and NP hard, and a large number of optimization algorithms and relaxations have been proposed; see, e.g., [6], [7], [8], [9], [10]. Recently, a semidefinite relaxation (SDR) of OPF is proposed in [11] and a sufficient condition is derived in [12] under which the SDR is exact. This condition is shown to essentially hold in various IEEE test systems. While this line of research has generated a lot of interest, limitations of the SDR have also been studied in [13] using 3, 5, and 7-bus system. Moreover, if SDR fails to provide exact relaxations, the solutions produced by the SDR are physically meaningless in those cases. Remarkably, it turns out that if the network is radial, then the sufficient condition of [12] always holds, provided that the bounds on the power flows satisfy a simple pattern [14], [15], [16]. This is important as almost all distribution systems are radial networks.

Indeed, for radial networks, different convex relaxations have also been studied using branch flow models. The model considered in this paper is first proposed in [3], [4] for the optimal placement and sizing of switched capacitors in distribution circuits for Volt/VAR control. Recasting the model as a set of quadratic equality constraints, references [17] [1] propose a second-order-cone (SOC) convex relaxation, and prove that the relaxation is exact for radial networks, when there are no upper bounds on the loads. See also [18] for an SOC relaxation of a linear approximation of the branch flow model in [3], [4], and [19], [20], [21] for other branch flow models.

Ignoring upper bounds on the load may be unrealistic, e.g., in the context of demand response. In a previous paper [2], we prove that the SOC relaxation is exact for radial networks, provided there are no upper bounds on the voltage magnitudes and some other sufficient conditions hold. Those sufficient conditions however place strong requirements on the impedance of the distribution lines and on the load and generation patterns in the radial network. In this paper, we propose less restrictive sufficient conditions under which the SOC relaxation is exact. As examples, we show that these conditions hold in two distribution circuits of the Southern California Edison (SCE), with high penetration of photovoltaic (PV) generation. Roughly speaking, these sufficient conditions hold in many real distribution systems where \(v \sim 1 \text{ p.u.}, \ p, q < 1 \text{ p.u., } r, x << 1 \text{ p.u.,} \) and \(\frac{r}{x} \) is bounded. Here \(v, p, q \) are the bus voltage, real power consumption, and reactive power consumption; and \(r, x \) are the resistance and reactance of the distribution lines. Moreover, we provide upper bounds on the voltage magnitudes for the SOC relaxation solutions. This would facilitate the voltage regulation in distribution systems.

The paper is organized as follows. We first present the branch flow model in section II. We then provide in section III sufficient conditions under which the SOC relaxation is exact for radial networks when there are no upper bounds on bus voltage magnitudes. Finally, in section IV, we illustrate these sufficient conditions using two real-world distribution circuits.

II. PROBLEM FORMULATION

Due to space limit, we introduce here an abridged version of the branch flow model; see, e.g., [1], [2] for more details.

A. Branch flow model for radial networks

\(V_i, v_i \)	complex voltage on bus \(i \) with \(v_i =	V_i	^2 \)
\(s_i = p_i + q_i \)	complex net load on bus \(i \)		
\(i_{ij}, \ell_{ij} \)	complex current from buses \(i \) to \(j \) with \(\ell_{ij} =	f_{ij}	^2 \)
\(S_{ij} = P_{ij} + Q_{ij} \)	complex power flowing out from buses \(i \) to bus \(j \)		
\(z_{ij} = r_{ij} + 1\xi_{ij} \)	impedance on line \((i, j) \)		

TABLE I: Notations.
Consider a radial distribution circuit that consists of a set N of buses and a set E of distribution lines connecting these buses. We index the buses in N by $i = 0, 1, \ldots, n$, and denote a line in E by the pair (i, j) of buses it connects. Bus 0 represents the substation and other buses in N represent branch buses.

For each line $(i, j) \in E$, let I_{ij} be the complex current flowing from buses i to j, $z_{ij} = r_{ij} + jx_{ij}$ the impedance on line (i, j), and $S_{ij} = P_{ij} + jQ_{ij}$ the complex power flowing from buses i to bus j. On each bus $i \in N$, let V_i be the complex voltage and s_i be the complex net load, i.e., the consumption minus generation. As customary, we assume that the complex voltage V_0 on the substation bus is given.

The branch flow model was first proposed in [3], [4] to model power flows in a steady state in a radial distribution circuit:

$$ p_j = P_{ij} - r_{ij} \ell_{ij} - \sum_{k:(k,j) \in E} P_{jk}, \ j = 1, \ldots, n $$

$$ q_j = Q_{ij} - x_{ij} \ell_{ij} - \sum_{k:(k,j) \in E} Q_{jk}, \ j = 1, \ldots, n $$

$$ v_j = v_i - 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) + (r_{ij}^2 + x_{ij}^2) \ell_{ij}, \ (i, j) \in E $$

$$ \ell_{ij} = \frac{P_{ij}^2 + Q_{ij}^2}{v_i}, \ (i, j) \in E $$

where $\ell_{ij} := |I_{ij}|^2$, $v_i := |V_i|^2$, and p_i and q_i are the real and reactive net loads at node i. Equations (1)-(4) define a system of equations in the variables $(P, Q, \ell, v) := (P_{ij}, Q_{ij}, \ell_{ij}, (i, j) \in E, v_i, i = 1, \ldots, n)$, which do not include phase angles of voltages and currents. Given an (P, Q, ℓ, v), these phase angles can be uniquely determined for radial networks. This is not the case for mesh networks; see [1] for exact conditions under which phase angles can be recovered for (an extension of the model here for) mesh networks.

B. Optimal power flow

Consider the problem of minimizing a cost function over the network where the optimization variables are $p := (p_1, \ldots, p_n)$, $q := (q_1, \ldots, q_n)$, as well as (P, Q, ℓ, v). Let

$$ p_i := p_i^c - p_i^g, \ q_i := q_i^c - q_i^g $$

where p_i^c and q_i^c are the real and active power consumption at node i, and p_i^g and q_i^g are the real and reactive power generation at node i. In addition to power flow equations (1)-(4), we impose the following constraints on power consumption and generation:

$$ p_i^c \leq p_i^c \leq \overline{p_i}, \ q_i^c \leq q_i^c \leq \overline{q_i}, \ i = 1, \ldots, n. $$

$$ p_i^g \leq p_i^g \leq \overline{p_i}, \ q_i^g \leq q_i^g \leq \overline{q_i}, \ i = 1, \ldots, n. $$

$$ f_i^c(p_i^c, q_i^c) \leq 0, \ f_i^g(p_i^g, q_i^g) \leq 0, \ i = 1, \ldots, n. $$

Here, equation (7) models additional constraints on (p_i^c, q_i^c) and (p_i^g, q_i^g). For example, for PV generators, $(p_i^g)^2 + (q_i^g)^2$ is the capacity of the PV generation [22]. We assume f_i^c, f_i^g are convex for all $i = 1, \ldots, n$.

Finally, the voltage magnitudes must be maintained to be above certain thresholds:

$$ v_i \leq 1, \ i = 1, \ldots, n. $$

Here we do not impose upper bounds on the voltage magnitudes. However, we derive below upper bounds on the optimal voltage magnitudes.

The objective of the optimal power flow problem is to minimize the power generation costs $C_i(p_i^c)$, the power losses $r_{ij}\ell_{ij}$, and maximize the user utilities $u_i(p_i^c)$:

OPF:

$$ \min_{p, q, \ell, v, \varphi} \ C_i(p_i^c) - \sum_{i=1}^{n} f_i(p_i^c) + \sum_{(i,j) \in E} r_{ij}\ell_{ij}, $$

s.t. (1) - (4), (5) - (8).

OPF is NP hard in general, due to the quadratic equality constraint (4).

III. Exact relaxation

A. Second-order cone relaxation

Following [17], [1], [2], we relax the quadratic equalities in (4) into inequalities and consider the following convex relaxation of OPF.

ROPF:

$$ \min_{p, q, \ell, v, \varphi} \ C_i(p_i^c) - \sum_{i=1}^{n} f_i(p_i^c) + \sum_{(i,j) \in E} r_{ij}\ell_{ij}, $$

s.t. (1) - (3), (5) - (8)

$$ \ell_{ij} \geq \frac{p_{ij}^2 + q_{ij}^2}{v_i}, \ (i, j) \in E. $$

Obviously, ROPF provides a lower bound on OPF. It was shown in [17], [1] that this relaxation is exact when there are no upper bounds on the real and reactive power consumptions in (5) but with upper bounds on the voltage magnitudes in (8).

The main result of this chapter is a variety of sufficient conditions for exact relaxation when there are no upper bounds on the voltage magnitudes. Given a solution of the relaxed problem ROPF, one can always check if equality is attained in (4). If it is, then the relaxed solution is optimal for the original problem OPF as well. Otherwise, it is not feasible for OPF. Our goal is to develop sufficient conditions for exact relaxation that can be checked without having to solve ROPF first.

B. Sufficient condition for exact relaxation

We start by developing our results on a simple network, a one-line distribution circuit (main feeder). Then we will extend the results to general radial networks.

1We can also include in the objective function the cost $C_0 \left(\sum_{(i,j) \in E} P_{ij} \right)$ on the total power fed into the radial network. This additional term does not change the results of the paper.
1) Line networks: For a one-line network, we can abbreviate \(r_{ij}, x_{ij}, P_{ij}, Q_{ij} \) and \(l_{ij} \) by \(r_i, x_i, P_i, Q_i \) and \(l_i \) respectively, as shown in Figure 1. Rewrite the OPF problem in terms of the simplified notations as:

LOPF:

\[
\begin{align*}
\min_{P,Q,\ell,v,p,q} & & \sum_{i=1}^{n} C_i(p_i^q) - \sum_{i=1}^{n} f_i(p_i^c) + \sum_{i=0}^{n-1} r_i \ell_i \\
\text{s.t.} & & \frac{P_i^2 + Q_i^2}{v_i} = \ell_i, \; i = 0, \ldots, n - 1 \\
& & P_i = P_{i+1} + r_i \ell_i + P_i^c - P_{i+1}^c, \; i = 0, \ldots, n - 1 \\
& & Q_i = Q_{i+1} + x_i \ell_i + Q_i^c - Q_{i+1}^c, \; i = 0, \ldots, n - 1 \\
& & v_i - \ell_i + 2(r_i P_i + x_i Q_i) - (r_i^2 + x_i^2) \ell_i, \; i = 0, \ldots, n - 1 \\
& & (5) - (8).
\end{align*}
\]

The above optimization problem can be relaxed to the following second-order cone program:

RLOPF

\[
\begin{align*}
\min_{P,Q,\ell,v,p,q} & & \sum_{i=1}^{n} C_i(p_i^q) - \sum_{i=1}^{n} f_i(p_i^c) + \sum_{i=0}^{n-1} r_i \ell_i \\
\text{s.t.} & & \frac{P_i^2 + Q_i^2}{v_i} \leq \ell_i, \; i = 0, \ldots, n - 1.
\end{align*}
\]

The next lemma provides a sufficient condition guaranteeing that RLOPF is an exact relaxation of OPF. For each bus \(i, k \in N \setminus \{0\}, \) define

\[
R_k := \sum_{j=0}^{k-1} r_j, \quad X_k := \sum_{j=0}^{k-1} x_j, \quad R_{i,k} := \sum_{j=i}^{k-1} r_j, \quad X_{i,k} := \sum_{j=i}^{k-1} x_j
\]

as the cumulative resistance and reactance from the feeder or bus \(i \) to bus \(k \). Also define \([a]^+ := \max(a, 0) \).

Lemma 1. Any optimal solution \((P,Q,\ell,v,p,q)\) of RLOPF is also optimal for OPF provided that for each \(k \in N \setminus \{0\}\) the following condition holds: if \(x_k - \frac{R_k}{X_k} \geq 0 \), then

\[
v_i + 2P_i \left(\frac{x_k}{X_k} X_k - R_{i,k} \right) + 2Q_i X_i > 0; \forall i < k
\]

otherwise,

\[
v_i + 2P_i R_i + 2Q_i \left(\frac{x_k}{X_k} R_k - X_{i,k} \right) > 0; \forall i < k
\]

Moreover, for each node \(i \in N \setminus \{0\}, \) the voltage is upper-bounded by:

\[
v_i \leq v_0 - 2 \sum_{k=0}^{i-1} (r_k (P_k - r_k x_k) + x_k (Q_k - x_k x_k))
\]

Proof. Introducing dual variables for Problem LOPF, denoted as

\[
\alpha = (\lambda_i, \theta_i, \xi_i, \gamma_i^c, \gamma_i^q, \bar{c}_i, \bar{q}_i, \bar{c}_i^q, \bar{q}_i^c, \bar{c}_i^q, \bar{q}_i^c, \mu_i, \ldots)
\]

where \(\mu_i \geq 0, \xi_i \leq 0 \). Let \(z \) denote the primal variables. The Lagrangian dual function is given as:

\[
L(x, \alpha) = -\sum_{i=0}^{n} f_i(p_i^c) - \sum_{i=0}^{n-1} r_i \ell_i + \sum_{i=0}^{n-1} \lambda_i (P_i - P_{i+1} - r_i \ell_i - P_{i+1}^c) + \sum_{i=0}^{n-1} \theta_i (Q_i - Q_{i+1} - x_i \ell_i - Q_{i+1}^c) + \sum_{i=0}^{n-1} \mu_i (P_i^2 + Q_i^2 - \ell_i)
\]

\[
+ \sum_{i=1}^{n} (\gamma^c_i f_i^c(p_i^c, q_i^c) + \gamma^q_i f_i^q(p_i^c, q_i^c)) + \sum_{i=1}^{n} (\xi_i v_i + (\bar{c}_i - \bar{q}_i) p_i^c + (\bar{q}_i - \bar{c}_i) q_i^c) + \sum_{i=1}^{n} (\bar{c}_i^q - \bar{q}_i^q) p_i^c + (\bar{q}_i^q - \bar{c}_i^q) q_i^c) + \sum_{i=1}^{n} (\bar{c}_i^c - \bar{q}_i^c) p_i^c + (\bar{q}_i^c - \bar{c}_i^c) q_i^c)
\]

\[
+ \sum_{i=1}^{n} (\bar{c}_i^c - \bar{q}_i^q) p_i^c + (\bar{q}_i^q - \bar{c}_i^q) q_i^c)
\]

\[
+ \sum_{i=1}^{n} (\bar{c}_i^c - \bar{q}_i^c) p_i^c + (\bar{q}_i^c - \bar{c}_i^q) q_i^c)
\]

If \((x^*, \alpha^*)\) are the primal-dual optimal, then \(\partial L(x^*, \alpha^*) = 0 \).

In the following, we will drop the \('*'\) for simplicity. Define \(\beta_i = \frac{\mu_i}{\xi_i} \) for each \(i = 0, \ldots, n - 1 \). \(\partial L(x, \alpha) = 0 \) gives that for all \(i = 0, \ldots, n - 1 \),

\[
\frac{\partial L}{\partial P_i} = -\lambda_i + \lambda_i + 2 \beta_i P_i - 2 \omega_i r_i = 0, \quad (17)
\]

\[
\frac{\partial L}{\partial Q_i} = -\theta_i + \theta_i + 2 \beta_i Q_i - 2 \omega_i x_i = 0, \quad (18)
\]

\[
\frac{\partial L}{\partial \ell_i} = r_i - \lambda_i r_i - \theta_i x_i - \beta_i v_i + w_i (r_i^2 + x_i^2) = 0, \quad (19)
\]

and for all \(i = 1, \ldots, n \),

\[
\frac{\partial L}{\partial v_i} = -\mu_i P_i^2 + Q_i^2 \ell_i - w_{i-1} + w_i + \xi_i = 0, \quad (20)
\]

\[\text{Note that } P_k - r_k x_k \text{ and } Q_k - x_k x_k \text{ are the real and reactive power received by bus } k + 1 \text{ from bus } k.\]
where we introduce dummy variables \(\lambda_{-1} = \theta_{-1} = \beta_n = \mu_n = l_n = w_n = 0 \).

By (20), it is straightforward to show that \(w_i \leq 0 \), for \(i = 0, \ldots, n \). Note that for \(i = n \), we have \(-w_{n-1} + \xi_n = 0 \), which implies that \(w_{n-1} = \xi_n \leq 0 \). Then by induction, we can show that \(w_i \leq 0 \), for \(i = 0, \ldots, n - 1 \).

The rest of the proof will show that \(\beta_i > 0 \) for all \(i \in N \). Then by complementary slackness, we know that all equality (10) holds for each \(i \in N \), implying that exact relaxation holds.

Suppose there exists such \(i \in N \) that \(\beta_i = 0 \). Let \(k = \min \{ i \in N : \beta_i > 0 \} \). Suppose \(k = 0 \). By (17, 18, 19), we have:

\[
\lambda_0 - 2w_0 r_0 = 0 \tag{21}
\]

\[
\theta_0 - 2w_0 x_0 = 0 \tag{22}
\]

\[
r_0 - \lambda_0 r_0 - \theta_0 x_0 + w_0 (r_0^2 + x_0^2) = 0. \tag{23}
\]

Substituting (21, 22) into (23), we have:

\[
r_0 - w_0 (r_0^2 + x_0^2) = 0.
\]

The LHS is strictly positive since \(r_0 > 0 \) and \(w_0 \leq 0 \). Therefore by contradiction, \(k > 0 \).

Suppose \(k > 0 \). Write \(\lambda_l \) and \(\theta_l \) for each \(l \leq k \) in terms of \(w \) and \(\beta \). Summing up (17) from \(i = 0 \) to \(i = l \), we have:

\[
\lambda_l = 2 \left(\sum_{i=0}^{l} w_i r_i - \sum_{i=0}^{l} \beta_i P_i \right), \quad l = 0, \ldots, k. \tag{24}
\]

Similarly, summing up (18) from \(i = 0 \) to \(i = l \):

\[
\theta_l = 2 \left(\sum_{i=0}^{l} w_i x_i - \sum_{i=0}^{l} \beta_i Q_i \right), \quad l = 0, \ldots, k. \tag{25}
\]

Substituting (24, 25) into (19) for \(l \leq k \):

\[
\beta_l v_l = r_0 + w_l (r_l^2 + x_l^2) - 2r_l \left(\sum_{i=0}^{l} w_i r_i - \sum_{i=0}^{l} \beta_i P_i \right) - 2x_l \left(\sum_{i=0}^{l} w_i x_i - \sum_{i=0}^{l} \beta_i Q_i \right). \tag{26}
\]

Summing up (26) from \(l = 0 \) to \(l = k - 1 \) gives:

\[
\sum_{l=0}^{k-1} \beta_l v_l = R_k + \sum_{l=0}^{k-1} w_l (r_l^2 + x_l^2) - 2 \sum_{l=0}^{k-1} \sum_{i=0}^{l} \left(w_i r_i r_l - \beta_i P_i r_l + w_i x_i x_l - \beta_i Q_i x_l \right)
\]

\[
= R_k + \sum_{l=0}^{k-1} w_l (r_l^2 + x_l^2) - 2 \sum_{l=0}^{k-1} \sum_{i=0}^{l} \left(w_i r_i r_l - \beta_i P_i r_l + w_i x_i x_l - \beta_i Q_i x_l \right)
\]

\[
= R_k - 2 \sum_{i=0}^{k-1} \sum_{l=0}^{k-1} \left(w_i r_i X_{i,k} - \beta_i Q_i X_{i,k} \right) - 2 \sum_{i=0}^{k-1} \sum_{l=0}^{k-1} \left(w_l (r_l^2 + x_l^2) \right).
\]

where \(R_{i,k} := \sum_{l=i}^{k-1} r_l \) and \(X_{i,k} := \sum_{l=i}^{k-1} x_l \).

Also, by (26) with \(l = k \), we have:

\[
0 = r_k - 2r_k \sum_{i=0}^{k-1} w_i r_i - 2x_k \sum_{i=0}^{k-1} w_i x_i - w_k (r_k^2 + x_k^2) + 2r_k \sum_{i=0}^{k-1} \beta_i P_i + 2x_k \sum_{i=0}^{k-1} \beta_i Q_i. \tag{28}
\]

If \(\frac{r_k}{x_k} - \frac{R_k}{X_k} \geq 0 \), applying the following operation on (27) and (28), and following similar arguments, we will get a contradiction as well. We can therefore claim the sufficient condition in the Lemma.

In the rest of the proof we will bound the voltage on each node \(i \in N \setminus \{ 0 \} \). Equation (13) implies that for each \(k \in N \),

\[
v_{k+1} = v_k - 2(r_k P_k + x_k Q_k) + (r_k^2 + x_k^2) \ell_k \leq v_k - 2(r_k P_k + x_k Q_k) + 2(r_k^2 + x_k^2) \ell_k
\]

\[
= v_k - 2(r_k (P_k - r_k \ell_k) + x_k (Q_k - x_k \ell_k))
\]

Summing up this inequality from \(k = 0 \) to \(k = i - 1 \), we have

\[
v_i \leq v_0 - 2 \sum_{k=0}^{i-1} \left(r_k (P_k - r_k \ell_k) + x_k (Q_k - x_k \ell_k) \right).
\]

The condition in Lemma 1 is not checkable before solving RLOPF as it involves a solution \((P, Q, \ell, v, p, q)\) of RLOPF. We now provide a checkable condition by bounding \(v_i, P_i, Q_i \) in terms of system parameters \(p_i, \bar{p}_i, q_i, \bar{q}_i, \ell_i \). Define

\[
P_i^{\text{nom}} \triangleq \sum_{j=i+1}^{n} (p_j^2 - \bar{p}_j^2); \quad Q_i^{\text{nom}} \triangleq \sum_{j=i+1}^{n} (q_j^2 - \bar{q}_j^2).
\]

Using (11–12) we can iteratively derive that for any \(i \in N \),

\[
P_i \geq P_i^{\text{nom}},
\]

and

\[
Q_i \geq Q_i^{\text{nom}}.
\]

Combining the above two inequalities with Lemma 1 gives the following result.
Theorem 2. Any optimal solution of RLOPF is also optimal for LOPF, provided that for each \(k \in N \setminus \{0\} \) the following condition holds: if \(\frac{r_k}{x_k} - \frac{R_{i,k}}{X_{i,k}} \geq 0 \),
\[
v_i + 2P_{i,k} \left(\frac{r_k}{x_k} X_{i,k} - R_{i,k} \right) + 2Q_{i,k} X_{i,k} > 0; \forall i < k; (30)\]
otherwise,
\[
v_i + 2P_{i,k} R_{i,k} + 2Q_{i,k} \left(\frac{x_k}{r_k} R_{i,k} - X_{i,k} \right) > 0; \forall i < k. (31)\]
Moreover, for each node \(i \in N \setminus \{0\} \), the voltage is upper-bounded by:
\[
v_i \leq v_0 - 2 \sum_{k=0}^{i-1} (r_k P_{i,k}^{nom} + x_k Q_{i,k}^{nom}).\]

Since \(v_i > 0 \) for each \(i \in N \), we have the following special case. If \(P_{i,k}^{nom} > 0 \) and \(Q_{i,k}^{nom} > 0 \) for all \(i \in N \setminus \{0\} \), then the right-hand sides of (30,31) are always non-positive, which implies that the sufficient condition in Theorem 2 is always satisfied. Hence the relaxation is exact provided that both the real and reactive powers do not flow backward. This condition in the special case is more stringent than (30,31) and usually does not hold in practice. The sufficient condition (30,31) depends only on how \(v_i \) compare with the products of resistances (reactances) and real (reactive) powers. In practice, \(|V| \sim 1 \text{ p.u.}, r, x \ll 1 \text{ p.u.}, \frac{r}{x} \sim [0.1, 10] \), and \(p, q < 1 \text{ p.u.} \). As we show in Section IV, condition (30,31) usually holds when the system parameters are in these ranges.

2) General radial networks: We now extend Lemma 1 and Theorem 2 to general radial distribution circuits. Given a radial network:

- For each node \(i, k \), define the unique path from \(i \) to node \(k \) by \(P_{i,k} \triangleq \{(j_1, j_2) : (j_1, j_2) \in E \text{ is on the path from node } i \text{ to node } k\} \).

- Define the cumulative resistance and reactance from root \(i \) to node \(k \) as \(R_{i,k} \triangleq \sum_{(j_1, j_2) \in P_{i,k}} r_{j_1, j_2} \) and \(X_{i,k} \triangleq \sum_{(j_1, j_2) \in P_{i,k}} x_{j_1, j_2} \).

It is straightforward to extend Lemma 1 to the case of general radial networks.

Lemma 3. Any optimal solution \((P, Q, \ell, v, p, q)\) of ROPF is also optimal for OPF, provided that for each \((k, l) \in E\) the following condition holds: if \(\frac{r_k}{x_k} - \frac{R_{i,k}}{X_{i,k}} \geq 0 \), then for any \((i, j) \in P_l\),
\[
v_i + 2P_{i,j} \left(\frac{r_k}{x_k} X_{0,k} - R_{i,k} \right) + 2Q_{i,j} X_{i,k} > 0; \quad (32)\]
otherwise, for any \((i, j) \in P_l\),
\[
v_i + 2P_{i,j} R_{i,j} + 2Q_{i,j} \left(\frac{x_k}{r_k} R_{i,j} - X_{i,j} \right) > 0. \quad (33)\]
Moreover, for each node \(i \in N \setminus \{0\} \), the voltage is upper-bounded by:
\[
v_i \leq v_0 - 2 \sum_{(j,k) \in P_l} (r_{j,k} P_{j,k} - r_{j,k} x_{j,k} + x_{j,k} Q_{j,k})\]

Proof. The proof for Lemma 1 can be easily extended to a radial network. We can first prove \(w_{i,j} \leq 0 \) for each \((i, j) \in E\) by induction. To prove \(\beta_{i,j} > 0 \), just focus on each lateral and use the same arguments as those for a line distribution network to prove that \(\beta_{i,j} > 0 \) on each lateral.

Similarly, this lemma involves a solution \(v_i, P_{i,j}, Q_{i,j} \) of ROPF. For a sufficient condition that does not require solving ROPF first, define
\[
P_{i,j}^{nom} \triangleq \sum_{i \in D(j)} (p_i^0 - p_i^0); \quad Q_{i,j}^{nom} \triangleq \sum_{i \in D(j)} (q_i^0 - q_i^0),\]
for each \(j = 1, \ldots, n \). Here \(D(j) \) is the set of all the descendants of \(j \) including \(j \) itself.\(^3\) Note that for any \((i, j) \in E\),
\[
P_{i,j} \geq P_{i,j} - r_{i,j} e_{i,j} \geq P_{i,j}^{nom}, Q_{i,j} \geq Q_{i,j} - x_{i,j} e_{i,j} \geq Q_{i,j}^{nom}.\]

Lemma 3 then implies the following extension of Theorem 2.

Theorem 4. Any optimal solution of ROPF is also optimal for OPF, provided that for each \((k, l) \in E\) the following condition holds: if \(\frac{r_k}{x_k} - \frac{R_{i,k}}{X_{i,k}} \geq 0 \), then for any \((i, j) \in P_k\),
\[
v_i + 2P_{i,j} \left(\frac{r_k}{x_k} X_{0,k} - R_{i,k} \right) + 2Q_{i,j} X_{i,k} > 0; \quad (34)\]
otherwise, for any \((i, j) \in P_k\),
\[
v_i + 2P_{i,j} R_{i,j} + 2Q_{i,j} \left(\frac{x_k}{r_k} R_{i,j} - X_{i,j} \right) > 0. \quad (35)\]
Moreover, for each node \(i \in N \setminus \{0\} \), the voltage is upper-bounded by:
\[
v_i \leq v_0 - 2 \sum_{(j,k) \in P_k} (r_{j,k} P_{j,k}^{nom} + x_{j,k} Q_{j,k}^{nom}).\]

Since \(|V| \sim 1 \text{ p.u.}, r, x \ll 1 \text{ p.u.} \), and \(p, q < 1 \text{ p.u.} \) in practice, the condition in Theorem 4 holds for both a 47-bus distribution circuit and a 56-bus distribution circuit of Southern California Edison (SCE), as shown in Section IV.

IV. Case study

In this section we evaluate these conditions for exact relaxation for two distribution circuits of SCE with high penetration of photovoltaic (PV) generation [17], [23]. Figures 2 and 3 show a 47-bus and a 56-bus distribution circuit respectively and Table II and III list the corresponding network data including line impedances, peak MVA demand of loads, and the nameplate capacity of the shunt capacitors and the photovoltaic generations. Note that in the 47-bus circuit, bus 1 indicates the substation, and there are 5 photovoltaic (PV) generators located on buses 13, 17, 19, 23 and 24. In the 56-bus circuit, there is 1 photovoltaic (PV) generator located on bus 45.

\(^3\) A rigorous definition of \(D(j) \) is:
\[
D(j) \triangleq \{ l \in N : \text{ there exist a sequence of nodes } j_0, j_1, \ldots, j_m, \text{ such that } j_0 = j, j_m = l, \text{ and } (j_s, j_{s+1}) \in E, \forall i = 0, \ldots, m - 1, \text{ where } m \geq 0.\}
TABLE II: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings for the distribution circuit in Figure 2.

<table>
<thead>
<tr>
<th>Network Data</th>
<th>Line Data</th>
<th>Line Data</th>
<th>Line Data</th>
<th>Load Data</th>
<th>Load Data</th>
<th>PV Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Bus</td>
<td>To Bus</td>
<td>R (Ω)</td>
<td>X (Ω)</td>
<td>From Bus</td>
<td>To Bus</td>
<td>R (Ω)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.259</td>
<td>0.808</td>
<td>8</td>
<td>41</td>
<td>0.107</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.031</td>
<td>0.092</td>
<td>8</td>
<td>9</td>
<td>0.031</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.046</td>
<td>0.092</td>
<td>9</td>
<td>10</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0.092</td>
<td>0.031</td>
<td>9</td>
<td>42</td>
<td>0.153</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0.214</td>
<td>0.046</td>
<td>10</td>
<td>11</td>
<td>0.107</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.336</td>
<td>0.061</td>
<td>10</td>
<td>46</td>
<td>0.229</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>0.061</td>
<td>0.015</td>
<td>11</td>
<td>12</td>
<td>0.076</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>0.015</td>
<td>0.031</td>
<td>12</td>
<td>13</td>
<td>0.046</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0.107</td>
<td>0.015</td>
<td>13</td>
<td>14</td>
<td>0.015</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>0.183</td>
<td>0.031</td>
<td>14</td>
<td>15</td>
<td>0.107</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
<td>0.214</td>
<td>0.031</td>
<td>15</td>
<td>16</td>
<td>0.015</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>0.061</td>
<td>0.015</td>
<td>16</td>
<td>17</td>
<td>0.046</td>
</tr>
<tr>
<td>13</td>
<td>36</td>
<td>0.015</td>
<td>0.031</td>
<td>17</td>
<td>18</td>
<td>0.046</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
<td>0.107</td>
<td>0.015</td>
<td>18</td>
<td>19</td>
<td>0.046</td>
</tr>
<tr>
<td>15</td>
<td>38</td>
<td>0.107</td>
<td>0.015</td>
<td>19</td>
<td>20</td>
<td>0.046</td>
</tr>
<tr>
<td>16</td>
<td>39</td>
<td>0.031</td>
<td>0.046</td>
<td>20</td>
<td>21</td>
<td>0.046</td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>0.046</td>
<td>0.015</td>
<td>21</td>
<td>22</td>
<td>0.046</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
<td>0.214</td>
<td>0.046</td>
<td>22</td>
<td>23</td>
<td>0.046</td>
</tr>
<tr>
<td>19</td>
<td>42</td>
<td>0.061</td>
<td>0.015</td>
<td>23</td>
<td>24</td>
<td>0.046</td>
</tr>
</tbody>
</table>

A. Verifying sufficient conditions

We verify that the condition in Theorem 4 holds in both circuits. To calculate P_{nom} and Q_{nom}, we only need values for lower bounds of (p_c^i, q_c^i) and upper bounds of (p_g^i, q_g^i):

- For load buses, we set p_c^i to be 0 and set q_c^i to be the
negative of peak MVA value.

- For PV generators, we set \bar{q}_i^p to be the generators' capacities.
- For shunt capacitors, we treat them as reactive power generators and set \bar{q}_i^c to be their shunt capacities.

After checking conditions in Theorem 4, we know that as long as the voltage magnitudes are maintained above 85% of the nominal value (which they are in practice) for each bus i, the conditions holds and ROPF is an exact relaxation of OPF.

Remark 1. All the above analysis is worst-case. In reality, \bar{p}_i^c and \bar{q}_i^c tend to be larger than the values we used above, and \bar{p}_i^p and \bar{q}_i^p smaller. This implies larger (P_{nom}, Q_{nom}) and larger values for the left-hand side of inequality (34) and of inequality (35) than the values we have calculated above. Thus the sufficient condition in Corollary 4 is easier to meet in practice.

Remark 2. The condition in Theorem 4 can be used as a rule of thumb for designing distribution circuits that will ensure that ROPF is an exact relaxation of OPF. Specifically, if the distribution lines have smaller resistance and reactance, then condition in Theorem 4 is easier to satisfy.

B. Simulation

We have also solved Problem ROPF using the CVX toolbox [24]. In the simulation:

- for each load bus, we set \bar{p}_i^c and \bar{q}_i^c as the peak MVA value, and \bar{p}_i^p, \bar{q}_i^p as half of the peak MVA value. We use utility functions of the form $-a_i[(p_i - \bar{p}_i^c)^2 + b_i]$ where a_i, b_i are drawn randomly from $[2.5, 5]$;
- for each PV generator, we set $(\bar{p}_i^p, \bar{q}_i^p)$ as the generator's capacity value, and \bar{p}_i^f, \bar{q}_i^f as 0. We use cost functions of the form $a_i p_i^2$ where a_i are drawn randomly from $[2.5, 5]$;
- for each shunt capacitor, we treat them as reactive power generators and set $\bar{p}_i^c = \bar{q}_i^f = \bar{q}_i^c = 0$ and \bar{q}_i^c as their shunt capacities;
- we use a cost $C_0(P_0) := C_0(\sum_{j \in E} P_{0,j})$ on the total power fed into this distribution system of the form $a_0 P^2 + b_0 P_0$ with $a_0 = 0.1, b_0 = 0.1$.

After solving ROPF using the CVX toolbox for both the 47-bus system and the 56-bus system, we verify that the solutions of ROPF satisfy the equality constraint (4) and are therefore optimal for OPF. This implies that ROPF indeed is an exact relaxation of OPF for both distribution circuits. Moreover, in each case, the maximum voltage magnitude of the optimal solution is 12.35KV which is the voltage magnitude of feeder and much less than the upper bound we provided in Section IV-A.

V. CONCLUSION

We have studied the second-order cone relaxation of the optimal power flow problem in radial networks using the branch flow model. We provide sufficient conditions under which the relaxation is exact when there are no upper bounds on the voltage magnitudes. We have verified that these conditions are satisfied in two real-world distribution circuits.

ACKNOWLEDGEMENT

The authors would like to acknowledge Lingwen Gan for his insightful discussions on this topic. This work is supported by NSF NetSE grant CNS 0911041, ARPA-E grant DE-AR0000226, Southern California Edison, National Science Council of Taiwan, R.O.C. grant, NSC 101- 3113-P-008-001, the Caltech Resnick Institute, and the Okawa Foundation.

REFERENCES