Intermittent Theta Burst Stimulation of the Dorsal Attention Network

Cerebellar Node Improves Selective and Sustained Attention

Michelle Thai\(^1\), Hidefusa Okabe\(^1\), Joseph DeGutis\(^1,3,5\), Simon Laganiere\(^6\), Mark A. Halko\(^6\), Michael Esterman\(^1,2,4,5,7\)

\(^1\)Translational Research Center for TBI and Stress Disorders (TRACTS), VA RRAD TBI Center of Excellence, VA Boston Healthcare System, Boston, MA \(^2\)VA Clinical Science Research and Development Career Development Award, VA Boston Healthcare System, Boston, MA \(^3\)Department of Psychiatry, Harvard Medical School \(^4\)Department of Psychiatry, Boston University School of Medicine \(^5\)Boston Attention and Learning Laboratory, Boston Division VA Healthcare System \(^6\)Center for Neurocognitive Brain Stimulation, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02215 \(^7\)Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System

Introduction

- Dorsal attention network (DAN) is a core cortical network supporting selective & sustained attention
- Transcranial magnetic stimulation (TMS) of select cortical nodes of DAN can impact attention\(^1\)
- Little known about how whole-network modulation of DAN impacts attention
- TMS of the cerebellum can upregulate whole-network DAN functional connectivity\(^2\)
- Using this cerebellar network TMS approach, we hypothesized increasing DAN functional connectivity would improve selective and sustained attention

Method

1. **Gradual onset continuous performance task (gradCPT):**
 - Stimulation Targets: 1) midline cerebellar node of the DAN and 2) right cerebellar node of the default mode network (DMN) as control
 - Targets identified using resting functional connectivity with cortical network seeds in each individual subject
 - Brainstim stereotactic localization system used for targeting

2. **Attentional Blink:**
 - **Stimulation Targets:**
 - N7 L 3 B
 - T1 T2

GradCPT Results

- **Commission Errors in-the-zone**
 - DAN: \(t(13) = 2.28, p = .04\)
 - Interaction: \(F(1, 13) = 6.86, p = .02\)

Attentional Blink Results

- **Second Target Errors**

Conclusions

- Temporarily increasing functional connectivity in the DAN via cerebellar stimulation can enhance selective and sustained attention

References

Acknowledgements

This research was supported by the Translational Research Center for TBI and Stress Disorders (TRACTS), a VA Rehabilitation Research and Development Traumatic Brain Injury Center of Excellence (B9254-C) and by Veterans Affairs Career Development Award 1k2CX001706-01A2, MAH and SL received support from the Sidney R. Baer Jr. Foundation for work on this project.

Cerebellar DMN Site

Cerebellar DAN Site