Implementing the PakesMcGuire Algorithm
for Computing Markov Perfect Equilibria in Gauss
Arle] Pakes, Gautam Gowrisankaran and Paul McGuice

Department of Economics, Yale University

June 7, 1993

® Overview

This paper has been written to accompany computer programs which provide
CGauss code to compute Markov Perfect Nash {MPN) Equilibria. These programs can
accessed by fiping to "econ.yale.edu”, entering "anonymous” as login and the actual login
name for password, and retrieving all files from the folder "pub/mrkv—eqm”. We ask that
anyone accessing that program send his or her name and adress by electronic mail to
"mrkv—egm@econ.yaleedu”; wsers may also send any guestions or comments to this
address. This will allow us to keep track of how useful our experiment in providing
computer code has been, and, in addition, inform wsers so that they may update their
copies when major refinements in our program become available

The program computes the MPN equilibria (Maskin and Tircle, 1988a and b)
generated by the restrictions enumerated in Ericson and Pakes {1993). In particular, it
implements the algorithm developed to compute those equilibria in Pakes and McGuire
{1993), and the user might find a copy of the Pakes and McGuire paper to be helpful. The
program provided here has been developed with ease of use, in contrast to speed, in mind.
The original Pakes and McGuire paper used a program written in C and used a series of
computational shortcuts not used here. Conseguently, the computation times reported in
that article are one to two orders of magnitude smaller than those the user should expect

from the program made available here.

If we start the program provided here fom "scratch” {at the default initial
condition for the recursive fixed point calculation]) on a Sun SPARCStation 1 {and
probably also a 486, it typically takes five to ten minutes to compute equilibria when the
maximum number of active ficms is 2, 4 hours when the maximum number of ficms is 3,
and 30 to 40 hours when the maximum number of ficms is 4. However, in many cases, the
user will be interested in comparing the equilibrivm generated by different parameter
values. For this type of problem, we allow the user to start the computation at the solved
values for another set of parameter values and this can decrease computational times
dramatically { we explain how this is done in Section 7).

The major reason for the huge increase in computation time over that reported
in Pakes—McGuire is that we are using the Gauss matrix—based programming language,
which is much slower than a compiled language sach as €. Additionally we have not
incorporated optimization methods which could either; 1) detract from the clarity of the
programming {and thus deter the user ffom being able to understand the programs), or ii)
which we have found that sometimes lead to convergence problems {even though in the
majority of cases they decrease computational times without leading to convergence
problems; see below).

We note that we are currently working on algorithms that should be simpler,
faster, and much less demanding in terms of memory; we will provide them when available
and appropriately debugged. However, the large volume of requests for this program,
together with our track record in completing projects on time have convinced us to
distribute the program at this time using the current versions of the algorithms. In spite of
the performance detriment to using (auss, we have chosen to distribute the (auss version
of the program because the Gauss language is relatively easy to understand, and is used by
many economists. Thus, we hope that by providing a program which can be easily
understood and modified, we are allowing students to investigate many rich and interesting

details of Industrial Organization structures.

® Section 1: The Model

As in Ericson—Pakes and Pakes—McGuire, a firm's profits are a function of its
own level of efficiency and a vector specifying the efficiency levels of its competitors. The
vector containing the number of firms at each different efficiency level will be termed the
"industry structure”. In principle "efficiency” may be a vector valued concept, but
curtently the algorithm is only set up to handle scalar valued efficiencies. The efficiencies
of all competitors evolve over time with the stochastic outcomes of their investment
expenditures.

Investment, entry and exit decisions are chosen to maximize the expected
discounted value (EDY) of future net cash flows conditonal on the current information set.
To make its decisions, each firm requires perceptions of the distribution of the foture
efficiencies of its competitors, or equivalently of the future industry structures, conditional
on the current information set. A given perception determines policies, which in turn
determine the true distribution of industry structures for the next period. Egquilibrium
occurs when t he perceived distribution of the efficiencies of its competitors in the future is,
in fact, the distribution generated by those perceptions. Thus in equilibrium, the perceived
distribution of future industry structures is equal to the actuwal distribution of future
industry structures generated by the actions of all {potential and actual) competitors when
those actions are chosen to maximize the EDV of future net cash flows resulting from those
perceptions. The algorithm is, therefore, computing a subgame—perfect Nash equilibrium
where the cholce variables are the amount of investment combined with the binary exit and
entry options.

The algorithm takes as input a one—period static profit function and outputs
the optimal policies {entry, exit and investment decisions) and the value function at each
possible state the firm may find itself in. The main components of the algorithm are

discussed in Section 2 ofthispaper. The possible states consist of couples, the first element

of which is a vector providing the industry structure, and the second element of which is a
scalar which lists which one of the firms that we have listed we are considering. The
algorithm allows for different profit functions to be used, in order to allow the modeling of
different industrial environments.

Also, separate programs are developed which input the profit function from an
analogous technological environment but assuming i) a social planner, and ii) a perfect
cartel, makes all decisions. These single—agent problems are discussed in Section 5. These
programs allow the user to compare the planner and the cartel solutions to the MPN
equilibria.

Finally we provide programs designed to simulate the evolution of the industry
given any one of these environments, and analyze both the descriptive and welfare aspects

of the outputs from those simulations.

PROEIT FUNCTIONS.

We have, to date, used three basic profit functions in our calculations. They
are:
i) a homogeneous products industry where equilibrium is Nash in quantities and firms have
differing marginal costs {here the marginal cost differences become our "efficiency”
differences; a particular parameterization of this profit function is used as the example in
Ericson—Pakes);
ii) a homogeneous products industry where equilibrium is Nash in gquantities and firms
have identical marginal cost up to a capacity which differs across firms {here the capacities
becomes our efficiency difference; a particular parameterization of this profit function is
used as the example in Berry and Pakes, 1993);
i) a differentiated products industry in which equilibrium is Nash in pricesand the quality
of the products marketed differs across firms but marginal costs do not (here the qualities

become our efficiency differences; different parameterizations of this profit function are

used extensively in Pakes—MoGuire).

These profit functions have been used intensively in the LO. literature. We
provide programs which construct types i) and iii) for different parameter values in Section
4, It should be easy for the user to construct other examples of profit functions and input

them into owur algorithm.

BASIC STRUCTURE.

Ericson—Pakes provide conditions which insure that:
i) there are a finite number of efficiency levels that any ficm will ever find itself at, and
ii) only a finite number of ficms that will ever be simultaneocusly active.
This provides us with a finite state space (if w is the number of efficiency levels, and N is
the maximum number of active ficms, then FN iz an upper bound to the cardinality of the
set of distinct industry structures).

We assume that the horizon is infinite {though firms will not be infinitely lived)
and that time is discrete. As specified by the Markov Perfect criterion, strategies are
restricted to be functions of the current values of the "payoff relevant” random variables
{see Maskin and Tirole, 1988a and bj. For each distinct industry structure the program
outputs the entry, exit, and investment decisions of all incumbents and potential entrants,

and the EDY of the future net cash flows of agents who follow these policies.

We start by defining the industry structures that firms may find themselves at.

DEFINITIONS.

(1) W is the set of efficiency values for an individual fitm. Typically, W =
{0,...,w}. The definition of "0 and of "w" depend on the parameters of the problem, and
we wil] show how to compute them below.

{2) N is the manimum number of ficms that can simultaneously be active in an

industry. N depends on the parameters of the problem and we will also show how to
compute it below.
¥
{3) A state [w,n]consists ofa we W , n € N, where

®

W = {I[wl, ...,W—N:I | wiEW, wlzw 2...EWN].|

For any firm, w represents the industry structure vector faced by the firm, while n
represents which element of this vector is the efficiency level of that firm. We can
represent the industry structure as a weakly descending N—tuple {as in W*] because two
industries are eguivalent regardless of the order in which the firms in that industry are
enumerated. Thus, the state w = [[7,5,5,2),1] and w' = [{2,5,7,5),3] are equivalent as the
firm at each state is faced with the exact same present conditions {the firm does not care in
what order its competitors are listed). Thus, we do not have to calculate separate value
and policy functions for w and w’, because any firm at either of these two states faces the
same economic environment and will choose the same policies. Formally, the value
function is exchangeable in the components of the state vector of the competitors, as is
discussed in more detail in Pakes {(forthcoming). We use this exchangeability to reduce the
dimensionality of the fixed point calculation needed for the computation of optimal
policies. We have developed a coding method based on binomial coefficients that uniquely

-
maps from W into the natural numbers F. We describe and motivate this map and its

IAn alternate definition of a state is a pair [k,w], wherek £ W, and w is a weakly descending
N—{ tupfe. In this definition, k is the own firm's efficiency level, while w is the competit ors'
efficiency levels. This focrmulation actually results in fewer states (the savings are about
20% for sizes we have used), as states such as [{%7,7,2),2] and [(9,7,7,2),3] are combined
into one state [7,{9,7,2)]; the exposition of the algorithm is also notationally easier with
this method. The problem with this formulation is that for some specifications it seemed
to have trouble with convergence when N was large. We postulate that this might be
because we are forcing these t wo states to have the same exit decisions at each iteration
{which causes cyclic behavior with both being active and both being inactive in alternate
iterations). Conditional on remaining active, the two firms must invest the same, but we
allow them to adopt different exit decisions {see below).

inverse in Section 3.

We also note that our definition of a state is different from the definition used
in Pakes—McGuire. In that paper, a state is defined as a w—dimensional vector, specifying
the mamber of active ficms at each of the w efficiency levels. As we will see in Section 3, if
N < w, then the definition used here will result in fewer states than the definition used in
Pakes—McGuire. It is for this teason {to minimize the number of states) that we use an

alternate definition in this paper.

IMPACT OF INVESTMENT. At any time period, each firm finds itself at a particular

efficiency level. The firm's efficiency level next period is generated by a Markov process
which depends on the firm's efficiency level in the current period, the firm's investment
level in the current period, and exogenous factors. Let k € W be the efficiency level that a
ficm is at in the current period and k'e W be the efficiency level next period, and let the
curtent period investment be x. Then, the program, at present, uses the following

controlled Markov process for the evolution of k*:

(1) k'=k+ 1%

where
™ = T—v,
and
o ifr=1
pi{T) = , and

Conceptually, T represents the output of the firm's own investment process,

while v represents factors which erode the profits of all firms in the industry. Depending
on the profit functions this evolution can be a result of improvements in the products
marketed outside the industry, or increases in the price of labor or other variable factors of
production {see below]. Note that the value of v is the same for all firms active at that
time. This generates positive correlation among the profits of the firms within the industry
and follows quite naturally from more primitive specifications of profit functions {see the
discussion in Ericson—Pakes, and in Pakes—McGuire). Note also that although this
specification allows for only limited movement in k over a single decision period, we have
leeway in determining how many decision periods there should be in any real time period
{say one year]. By allowing for many decision periods per year we can get much richer
distributions for the increments in k In any year {if we do this we have to adjust the
discount rate to reflect the fact that a decision period is less than a year).

Given the simple nature of our family of distributions, we can explicitly write
out the probabilities of changes in k. For instance, if we do not condition on the outside
world,

. 1 — 8) ax
Prob. (krisesby 1 | 1) = { — ;1 .
Similacly, the other two alternatives, that k remains the same and that k falls by 1 all have
easy to compute values in terms of the constant parameters and x. Upon inspection, we
can see that the probability a firm has of having its efficiency level rise is a monotonically
increasing concave function of the investment level, while the probability of its efficiency
falling is a2 monotonically decreasing convex function of x. This insures that there will be a
unigue solution to the first order conditions which will be used to determine optimal
investment, and hence simplifies computation. Also, as we show below, this particular
functional form makes it easy to solve analytically for the unique sclution to the first order

conditions for investment. However the user can replace this family of distribution

functions for T* given x with any other family with finite support and which is
stochastically increasing in x {in the first order dominance sense) and the algorithm should

still work. {For a more detailed discussion of the possibilities see Ericson—Pakes.)

FINDING BOUNDS EOR W. Theory tells us that there always exists an efficiency level

sufficient Iy high that firms do not want to invest at this efficiency level {no matter what
the industry structure is). Since our specifications insure that efficiency cannot improve
wit hout some investment, and that the increment in efficiency levels that results from
investment in any given period is bounded with probability one, it follows that the
efficiency level of a ficm will never be higher than some value, which we have called w.
Typically, we compute w as the maximum efficiency level that a monopolist would ever
reach: i.e. we start out with a very large w and compute the monopolist problem {this isan
easy computation, see below], and then use the w at which the monopeolist stops
investment as w In the subsequent calculations. In the examples we have tried this has
always been at least as high as the maximum efficiency level ever achieved by a firm when
there can be more than one ficm active. However, we have no proof that this must betrue,
so one must check whether there is zero investment when w=w at the end of the algorithm.

In determining a lowerbound to efficiency levels, theory is more helpful. First
of all, theory insuresthat if a ficm is at a sufficiently low efficiency level, which we call O, it
will always want to choose the exit option (which we will discuss shortly]. Moreover,
theory also tells us that the w at which a monopolist exits is low enough to induce exit no
matter bhow many ficms are active. So we choose efficlency level 0 as that efficiency level
that would induce a monopolist to exit. Note that it may be feasible to shorten the length
of W when we allow for a large number of active firms, and this would reduce the

computatjonal burden of the algorithm.

INVESTMENT COSTS. Firms attempt to maximize the EDV of all future net cash flows

10

{profits minus investment costs) using a discount factor B. Investment costs are cx, where

1 15 the amount of investment.

EXIT. Firms cease production if the EDVY of future net cash flow given optimal future
behavior is less then the scrap value of the firm. The scrap value is ¢, which is received

immediately, and a ficm which takes it does nor earn current period profits.

ENTRY. Potential entrants calculate the EDVY of entering and compare it to a one time
sunk entry cost; entering if the EDV exceeds the costs. If they do enter they receive no
profits in an initial startup year, and then enter at either W_E or W_E —1 in the
following period, depending on what happened to the outside alternative in the interim
{they enter at W_E —1 if v=1). In general, the sunk cost of entry, X_E, is a random
variable, which, for simplicity, we assume is distributed uniformly between X_EL to
X_EH ({one can replace this with any other distribution if one wishes). The incumbent
firms know only the distribution of X_E at the time of their decision process {thus the
realization of X_E is not part of their state). However, a potential entrant knows its draw
of X E at the time when it decides whether o not to enter. Mote that when
X_EL = X_EH, entry is deterministically specified by the EDV of future net cash flows.
In general, however, at each incumbent industry structure, there is a probability of there
being an entrant equal to the probability that the random entry cost is less than the EDY
of a new entrant. Random entry costs tend to smooth out the relationship between the
EDY of future net cash flows of incumbents and the value of entcy, and this tends to
eliminate convergence problems in our iterative algorithm (in the deterministic case there
is a discontinwity in the value function of incumbents to changes in the value function of
the entrant when that value function passes a critical level, and this can generate cycles in

the algorithm used to compute equilibria, see Pakes—McGuire).

11

UNIQUENESS. The MPN equilibrium strategies at any stage may not be unigue. In
particular in some equilibria a higher efficiency incumbent may exit whilea lower efficiency
incumbent remains active. As we do not want to find this kind of equilibria, we force the
algorithm to converge only to the type of equilibrium where the lower efficiency incumbent
afways exits when the higher efficiency incumbent is exiting. This ensures that all eguilibria
that result from our algorithm will be of the latter type {it does not insure that there is

only one such eguilibrium).

CONSTANTS IN THE ALGORITHM. We have implicitly defined several constants.

Here we list their function and give typical values for the examples we have computed:

Takle 1

Const Use Typical Value

a Const. used in state increase/ investment fn. 3

o Cost in dollacs of a dollars worth of investment 1 {unless tax cred?

N MNumber of ficms { maximum ever allowed active) <6

w Highest efficiency level attainable 19

W E Efficiency level at which new ficms enter 4

X_E Sunk cost of entry {deterministic entry) 0.2

X_EL Lowest sunk entry cost {w/ random entcy costs) 0.15

X_EH Highest sunk entry cost {w/ random entry costs) 0.25

E Discount factor 0.925
Probability of outside alternative rising 0.7

$ Scrap value at exit 0.1

® Section 2: The Algorithm

MATRICES CARRIED IN ALGORITHM. Pcrofits, IL is an invarciant matcix (it does not

change from iteration to iteration), inputted into the algorithm, which enumerates the
profits of the underlying one—shot game that we are using, for each possible industry

structure. Each iteration of the algorithm starts with a matrin X which contains the

12

investments, and a matrix ¥, which contains the value functions, outputted from the last
iteration. X, ¥, and Il are defined for every state [w,n]. For instance, if N=5, one element
of ¥ is V[[12,9,92,1),4], which provides the value of a firm with efficiency level 2 (the
fourth one) at this industry structure. Note that though the ficst index here is a vector, we
use the binomial encoding scheme we mentioned above in order to code descending
S5—tuples {in this case) into unique integers; so ¥ will have two integer indices, the first of

which maps into vectors.

ITERATIVE PROCEDURE. The algorithm iterates on the ¥V and X matrices, unti] the

maxitnum of the element—tby—element difference between successive iterations in these
matrices is below a tolerance level. The calculations in each iteration are performed
separately for each row {industry structure) using only the old values of the matrices V and
X. Thus, each row of the updated matrices at any iteration is a fanction only of the
previous iteration's matrices. We note that if each element of ¥V and X has converged, then
we are assured of having computed a MPN equilibrium to the dynamic game. This can be
checked by showing that the converged policies and value functions satisfy the list of
conditions that define an eguilibrivm in Ericson—P akes.

We now describe the process that provides us with new ¥V and X matrices at
every iteration. The computation is done separately for each element of ¥ and X. Thus
we describe what the algorithm does to ¥V[w,n] and X[w,n] for every [w,n] € {W*,N]. Keep
in mind that, although we illustrate the transformation process for the typical element, this
process is done to all possible states [w,n] € {W*,N]. The purpose of the iteration is to
calculate the optimal X[w,n] and ¥[w.n], given that all other rows in ¥ and X are as
specified in last iteration's output. Within an industry structure, we start with the highest
efficiency level firm, update its choices using last iteration's values, then replace its
investrment and entry/ exit choices {but not its value function) with the current iteration

choices for use in calculating policies for the second—highest efficiency firm. The

13

second—highest firm's investment and entry/exit choices {along with the highest) are
replaced with current iteration choices for the third—highest firm's calculations etc.

For a firm to make its investment decision {and hence for us to update x[w,n]]
that firm must have a perception of the distribution of its competitors' efficiency levels in
the next period. It forms this perception by using the ¥V matrix to determine which of its
incumbent competitors will remain active and whether a new entrant will appear. It then
uses the X matrix, the locations of the incumbents that continue, and the exogenocus
process determining the location a new entrant will enter at {if there is a new entrant] in
order to form its perception of where its competitors will be in the next period. Recall that
for all states outside its industry structuce, the ficm looks at last iteration's values, while

for states in its industcy structuce, the choice is different, as described above.

UPDATING NUMBER OF INCUMBENTS. A ficrm determines whether an incumbent

competitor exits by looking at the value function of its competitor. This is done by looking
at the value of different firms within the given industry structure, and then determining if
the value function at a competitor's state equals §. If it does, then the given ficm will
perceive that the competitor will go out of business at the start of this period (it can obtain
¢ simply by shutting down production).

In order to ensure that we are not computing an equilibrium where a ficm with
some efficiency level remains active and a ficm with lower efficlency level exits, we further
define the strategy set so that if a ficm perceives that a competitor with higher efficiency
leve] than its own has exited, then the ficm must also exit. {As above, in our version of the
program, this computation is a function of current iteration's values.)

To illustrate how we determine which firms are perceived to be active, we give
an example. Consider the state [w,n] = [(%872,1),3]. Then, to find out which of its

incumbent competitors it perceives to be active, we begin by examining whether

V[(98,7,2,1),1] is greater than ¢. If the ficm perceives that V[[9,8,7,2,1),11= ¢, then the

14

firm s forced to exit {as there is a competitor with efficiency level 3 who is exiting, while
the firm only has efficiency level 7). Similarly, the firm computes the activity of all of its
ot her competitors. If either of the last two competitors are inactive, this does not force the
firm to liguidate

As indicated earlier, this computational convention resolves one possible source
of nonunigueness in the results; when we can establish an eguilibrium if either one of two
firms exit we will always select the egquilibrium in which the firm with the lower value of
the efficiency parameter will exit. Of course there may also be an equilibrium in which
both ficms make the same exit decision.

For any [w.n], we define w' as that industry structure that resulis after exdt has
been accounted for, and m as the number of active firms {(firms with positive efficiency

levels) In w'. We will use this definition below.

UPDATING ENTRY. After iterating on which of a firm's incumbent competitors remain

active, we iterate on whether there will be entry. Recall that the algeorithm only allows for
entry if m < N, l.e if the number of active firms is less than the preset upper bound.
{Theory tells us that if we keep pushing N up we will eventually reach a situation where
there never will be entcy when m=NMN-1).

Entry is determined in the following manner. For any industcy structure, we
examine how many active firms there are, by counting those fitms with efficlency level
greater than zero. If the number of active ficms is less than N, we compute the EDV of
entering, and then calculate the probability of it being greater than the random entry fee
X_E. (We will discuss the calculation of ED¥Ys of entering later on in this section.)

The incumbent making the investment decision proceeds as follows: after
accounting for exit by other incumbent s as described in the last subsection, the incumbent
observes whether or not there is space for entry, by looking at whether the number of

incumbents is less than N. I there is space for entry, the incumbent perceives that a new

15

competitor will enter with probability given by the probability that the EDV of entry is
greater than X_E, and that there is no entry with one minus this probability. Letting
[w",n] be the state vector of incumbents after the exit decisions of competitors are made as
before, we will denote the probability of entry by A{w’,n). Recall thar only one new
entrant is allowed at any state in any itecation.

If there is entry, the entrant does not earn any profits and cannot invest in the
curtent period and becomes like any other ficm at the beginning of the next period with
efficiency of either W_E ot W_E — 1, depending on whether v in the interim is 1.

To illustrate how we find the firm's perceptions of its future competitors, we
revive the example used previously {of w= (%,8,7,2,1]), and assume that the firms with
values | and 2 will be inactive, wsing last iteration's values. Then, to determine entry, the
first four firms (assuming that their predecessors are all active] look at the EDVY of
entering for [{9,8,7,W_E,0),4]. {The fourth firm should lock at the EDY of entering for
[4872W_E).5], but this will be the same as the above as the firm at 2 exits last
iteration.) The last firm always assesses that there will be no entry, as if it is remaining
active, all its competitors are also active. If the probability of X_E being less than this
EDY is A{w’',n), then for purposes of determining investment and calculating value
functions, the {ficst three) incumbent firms effectively see their industry structures as
(9,8, 7, W_E,0) with probability Afk,w'), and (9,8,7,0,0) with probability I=h{w’,n). Note
that regardless of whether there is an entrant or not the firm evaluates that there is no
investment from the fourth slot, le that X[{%8,7,W_E,0) 4] = 0 {regardless of what the
value of x that was calculated in the last iteration for the "fourth” w). Similacly, ino both
cases of entry and no entry, the firm sees its competitors investing what last iteration's
values indicate that they would invest at states [(9,8,7,2,1),-], as in egwilibrium this will
yield the correct value. Finally, we note that the ficst three ficms evaluate their current
period static profit fonctions using II[(%8700),-], while the fourth firm wuses

I0[¢9,8,7,2,0),4] and the fifth ficem, I0[(9,8,7,2,1),5].

16

UPDATING INVESTMENT. We now assume that the firm's perception of future

competitors has been formed in the manner described above and then illustrate how it

chooses its optimal investment policy. Again this calculation is done separately for every

[w,n]e (W, NJ.

Motationally let:

® w' be the incumbent efficiency levels after updating for exit {as above);

® m{w’) be the number of active competitors at w=w" [l.e. m{w") is just the number of
elements in w’ that are strictly positive] {as above];

® A{w’,n) be the probability of entry as described above — we provide the details of how
Afw',n) is calculated below;

® of]) be a vector all of whose elements are zero except for the jth element which is one —
the dimension of ef) will be obvious from the context;

® ; be a vector all of whose elements are one — again its dimension will be cbvious from
the context;

® T be the vector containing the random T of competitors;

® 0. be the position of the entrant for any industry structure; ne = mi{w j+ 1 unless the
permutation cycle has been reordered.

» w;,...,w;[be the elements of t he vector w';

L] 1I,...,1N {except for x,) be the investments of the N—I competitors at w' ({these are

obtained by permuting the last iteration's X matrix and reading off 1[{w|,...,wﬂ],i],

i= l,..,o=1,0+ 1,...,NJ;
3hat () in a summation mean to omit that element; and
® define a permutation cycle of industry structures (vectors or points) to be all points

obtained by permuting the elements of a given [w,n]. If a permutation cycle contains an

element that is not in descending order, we reorder it.

17

Webegin by writing down the value function at the ith jteration a=

(2) Viw.n) = max { ¢ sups2p [Tiw’,0) —cx + BA(w ')

| | | i : -1 . .. -1
{ETI;ﬁ‘ETH.ﬂEV:ﬂV [w +W_Ee{nc]+’r—w,n:[Pr[Tl|1l] P'r[’l:h|1,v] PE[TNhN vpiv)]

+B[1-A{w " n]]
{E’Ifl.ﬂmz’lfﬂ.ﬂz‘:u]Vi_l [w*+ T—v,n]Pr [’I:I |1Ii—|,\f:| - -F‘r[’l."1 | v]- -F‘E[’I:N |1Ij[—|,v]pl[v:l }.
Note that each of the probabilities of the T being one or zero is an easily calculated function

of the investment for that agent, as described in equation { 1.

In order to ease notation, we let:

(3) Calcvaliw’,n) = l{w",n]{E}r I E’II: E'_ﬂ‘fi—l[w#W_E e{n.)+ T—v,0]

-
T ¥
I!ﬂ' h!ﬂ] N

P'E[TI|1:—|,V]- - -F‘r[’l.'I1 | 2] - -PE[TN|1I}",\f]pI[v]]

+ [1=A¢w " 0)){Z} I_ﬂ...z,'r lﬂ...z}fﬂﬂz\[ﬂw—l[ww T—iv,0]
n

F‘r[’l:I |1I}—|,v]- - -F‘E[’I:I1 [x.v]- - -F'|:[’|:N |1r}—|,\f]pl[\f] N

Calcval{-) sums out over the probability weighted average of the possible states of foture
competitors, but not over the investing firm's own future states. Thus, Calcvalf-)
indicates the firm's EDV for each of the two possible realizations of the own firm's

investment process, T. Substituting (3] into (2] we find that

(4] ¥Vilw,n) = max { §, sup.Zp [[[w',n]—cx +

Blax/ { 1+ ax)]Caleval{w +e{n),n) + B[/ {l+ax)]Calcval{w’,n]] }.

We let xi[w’,n] be the investment level that solves {4). To compute it we first

18

solve for the firm's optimal investment level given that this investment is not zero and that
the firm remains active; we call this solution x[w’,n]. We then set investment to be either
this number or zero; zero is our solution for investment if either x[w’,n] is negative, or if,
once we have calculated the optimal investment and substituted it back into {4), we find
that it is optimal for the firm to exit. More formally, letting D, dencte the derivative with

respect to x, the first stage investment solves:

x[w’,n] =
argsolv, {c = B|D,jan/{1+ax); Caleval{w '+e{n),n) + D, lf{l+ax]}Ca]cva]l[w*,n]

= argsolv, {c = B|Dy{an/{1+ax) } Calevaliw +e(n),n) —D,{an/{ 1+ a}L]}Ca]cva]{w’,n:l].

MNow note that Dl{lf{1+a1]} = a/{l+ax)? = a[l — p{x)]3 where p{x] = [ax/{1+ax]]. So,

letting vl = Caleval{w '+e(n),n) and v2 = Caleval{w’,n), we can write:

x = argsolv, {c = Ba[l —pi{x) ¥l —a[l —pix)]? v2]]

= x = argeolvy{c= Ba [l —p(x)]2 (vl =v2}]
—xi= argsn]vI{I —pix) = v = v }

(5) =—p) =1 - |y

Taking the inverse of p{x], we can see that:

(6) x[w',n]= a_%’ where p{x) is asin (5).

That is, we have derived an analfyric formula for the optimal x that a firm
chooses at any time period, given that it remains active and x20. In the actual algorithm

we obtain x directly from this formula. If we are at a boundary case where the optimal

19

probability of having the state rise conditional on the outside alternative is less than O then
we simply replace the p calculated from (6) with 0, as thisis the optimal feasible p. We do,
however, have to compute the function Calcval. Caleval and x are derived using last
iteration's ¥ and X matrix {except for a firm's own cohorts of higher efficiency).

It is now straightforward to derive the optimal value function; we need only

plug in our optimal x into an equation for the value function, and compute:

Viiw,n) = max { § [{w',n) —cx[w 0]+

B{ax[w ,n]/ { I+ ax[w’,n])} Caleval{w’'+e{n),n) + {1/ {(1+ax[w’,n]) Caleval[w’,n]}.

We now come back to the possibility that the firm will choose to exit in the
curtent period. In order to incorporate this, we note that if the value function calculated

above has the property that:

Vitw,n) = ¢,

then the firm's optimal investment strategy given that it remains in business is no better
than simply stopping production, and selling its equipment. The firm should then exit,
which implies not investing at all. Thus, if ¥i{w,n) = ¢Jthen we set x=0 with probability
one. Notationally, by substituting from (6), we determine the actual investment xi[w’,n]

using the above logic as:

(77 xifw',n]l= {Viiw,n) > ¢} x[w",n],

where { -} is the indicator function which takes the value of one if the conditon inside it is
satisfied, and the value of zero elsewhere. It is these investment values that fill up the ith

itecation investment matcix.

CALCULATING THE PROBABILITY OF ENTRY.

Again we let the efficiency levels of the incumbent competitors after exit
decisions are made be w’. Thus, if the element we are examining is [w,n] = [($,5,4,2,1),2],
then, if the last three firms are exiting, we would obtain w' = {$,5,0,00). A potential
entrant can then enter, if and only if m{w ') <M. In this case, m{w') = 2, and N= 5, =o
there is a possibility of entry. We let x be the N—dimensional vector of investments of the
incumbent competitors' of X_E {obtained in the same manner as the similar vector used
above). Now the value of entering to the potential entrant is simply the value of an
incumbent that; i)jrealized that there would be no entry and 1i)was constrained not to have

profits or invest in the current period. The EDY of entering is then just:
() Ve(w') = B Caleval[w '+ W_E e[m({w’)+ 1],m{w")+ 1;A=0].

Recall that by the definition of Calcval, it is understood that the Nth position of x (the
entrant's position) is =zero, and as noted, this calolation is done setting
Aw'+ W_E e[m{w)+ 1],mi{w)+ 1]=0.

A ficm would choose to enter if and only if ¥e > X_E, the random entry cost.
Recall that the random cost of entry is assumed to distcibute uniformly between X_EL
and X_EH. Consequently the probability of entcy to an incumbent with state [w.n],

incumbent competitors who remain active specified by w' and miw’) < N, i=

(9) Mw',n)= min { max lg—prr—spr 0 1 1.

wit [y the understanding that Ve=V¥e{w’) asin (8], and that if X_EL = ¥_EH, so entry is
deterministic, then A{w',n)=1 if X_ EL £ V¢, and it is zero otherwise. Note that if X_EL
< X_EH, then A{w’,n) is a continuous functional of last iteration's element s of the ¥ and

X matrices.

21

The same Calcval function that is used for the current firm we are examining is
used to calculate the EDV for the entering firm {evaluated at a different point). In order to
avoid repeating the same calculation several times in an iteration, we calculate the entry
values for all we W* at the beginning of each iteration, and store these values in a table

‘isentry’ for wse throughout the iteration.

UPDATING N. The algorithm starts with the one—firm problem, and solves for its value
function and optimal policies. The cne—firm problem is a contraction mapping and hence
our jterative procedure is guaranteed to converge [using any bounded map from W to R as
an initial condition; we usually start with ¥o=1I{k), and X%=0]. As noted above, this allows
us to set the lower and upper bounds of W (though we have toinsure that there is actually
no investment at the upper bound for higher N). We then proceed to the two—firm
problem, using as starting values for X and V the fixed point values that we solved for in

the one—firm problem. We substitute:

V"]'[l[wl,wﬂ,l] = Vm{Wﬂ, Y WWa £ W,
Vﬂ[{wl,wﬂ,Z] = VM{WE:I, Y Wi W E W,

where ¥*(k) is the fixed point for the one firm problem. Analogously, for the N > 2 firm

problem, we use as starting values:

m[{w 3oy W :I; n]g ifne< N
VO[w,0] = I IN= .
V"“[{wl,...,wN_z,wN],n—l], ifon=N

It is understood that the elements of X are updated in the same way as V, which is shown
above,

This process is then repeated until A{w",n) = 0 for all {w’,n] with m{w"jzN-1.

As in Ericson—Pakes we then know that, provided our initial industry structure has less
than N firms active, N is an upper bound to the number of firms that will ever remain

act ive.?

POSSIBILITY OF YVALUE AND POLICY ITERATION. The algorithm just described

never uses the current iteration's output to calculate the new X and V values for [w,n]
Two possible variants of the algorithm that do use this output come to mind. One variant
uses the technique of "value” iteration {see Pakes and McGuire 1993 a and b). This variant
iterates the X matrix to convergence for a fixed ¥, followed by updating the V matrix3
Similarly, another variant uses the technique of policy iterations. This variant iterates the
¥ matrix to convergence for a fixed X matrix, followed by updating the X matrix. Though
both these variants require more calculations per iteration, we would expect them to
decrease the number of iterations needed before convergence. However, neither of these
variants improved the performance of the algorithm in the examples that we computed, so
we do not discuss them further {though it is easy to add them to the algorithm if the user

wishes to do so).

Section 3: Encoding and Decoding Element s wa*

-
Recall that an element of W is a weakly descending N—tuple of integers in the

2In many of our runs we stop the algorithm after faicly lacge N, tun the output programme
{see below) that generates the ergodic class of industry structures, and then ask if there are
any pointsin the ergedic class with N firms active. If there are no {or a very small
frequency) of points in the ergodic class with N active ficms we stop the algocithm. This is
a less stringent criteria then the more formal eriteria for stopping the algorithm used
above.

3Alternatively one could use any other nonlinear equation solver that solves simultaneously
for all incumbent s investments given last iterations value function. See Judd {forthcoming)
for a discussion of the alternatives.

23

range 0,...,w. We are interested in coding elements of W* into integers, in order that we
can express ¥, X, and II by two—dimensional matrices. This will also allow us both to
avoid computing the same state two or more times, and to determine the cardinality of the
state space.

Formally what we require is an encoding function that bijectively maps onto a
subset of § {the integers) that is of the same cardinality {has the same number of element s
in it) as does W*, and a decoding function that maps from this subset of integers back into
elements of W* {by bijective we mean that the map is one to one and onto; so that each
element of the subset of ¥ can be mapped into one, and only one, element of W*]. We
accomplish this by first expressing the cardinality of W* in terms of binomial coefficients,
and then by showing how we can use the same binomial coefficients to define a coding
function.

We proceed by describing the encoding function we use. After this description
we provide simple proofs which insure that the encoding function we provide has the
properties that we claim it has. Those who are not interested in the details of the proofs
can skip them and go directly on to the next section of the paper.

A zame with fixed N, and a known w, has a set of possible industry structures
{different w's) which can be determined as a function of N and w. Let this set of possible

state vectors be W*{N, w). Throughout we will only consider cases where N £ W,
The following definitions will prove useful.

DEFINITIONS.

{1) We let ‘# [A] denote the cardinality of {the number of distinct elements in)

any set A,

AIf m = w, then we would minimize the dimension of the state space by using, as states, the
number of firms at each possible k € W, see Pakes—McGuire.

24

{2) We define a matrix Binom which contains as its elements the binomial
coefficient s {in the standard order, see below) in the last w columns, and a column of zeros

in the first column,

{100 PBinom =

LAa
3 — L —
LA Ln

- R - Ra-Ra-Ro- N ol o-Ra-
Pl O —

T b b b b = b
o] LA e L B —

MNote that each element of Binom {except for the first row) is obtained by

adding the values of the element above it, and the element above and to the left of it.

Thus,
{11y PBinoml[a,k]= Binom[a—1,k] + Binom[a—1,k—1].

Also the elements of Binom {except the first column] can be obtained as permutation

coefficient s from the well“known formula:

) !
Binom[a, k] = apk—l - l[lc—lJ!a{a—Lw nor

where P represents the number of permutations. Note that this impliesthat the elements of
Binom are increasing as we move down any superdiagonal; that is Binom[ak] £

Binom[a+ 1,k+ 1], ... etc.

THE CODING METHODS. We now provide # [TW*{N,W:I] in terms of a binomial

coefficient {again the proof of this claim is given below). This is a first step to coding

clements D‘EW*, as it allows us to see how many states there are for any problem.
Claim 1: # [W*{N,W:l] = Binom[N+w+ 1w+ Z].

Mext we define a coding function that maps W*{N,W:I into {a connected) subset
of ¥ of cardinality # [’W*{N,W:I]= Binom [N+ w+ l,w+2]. Below we will show that this
coding function is bijective. The connected subset will be all non—negative integers with
values < # ['W*{N,m], so that there will be precisely one element of the subset for each
element W*{N,W:L The coding function, which we denote by cncN,W{w]: W* —+ 7, is given

by

N
(12) ency iw) = ZBinom[wi+N—i+l,wi+l],
|

¥
where we are writing w € W in component form as w = {wl,...,wN]. MNote that we may

think of enc graphically, as being obtained by adding an element of the principal diagonal
of Binom for i=N, with an element of the second diagonal down for i=N—I1, and with an
element from the third diagonal for i=N—2 and so on. The element chosen fTom each
diagonal isthe Wt 1th element, counting from the top of the matrix.

The encoding function that we have just defined is used whenever we are
referring to any element of the matrices ¥, X, and II, all of which have dimensionality
[‘N*{N,m] by M. The deceding function is the inverse of the encoding function {which
exists by virtwe of the fact that the encoding function is a bijection). To decode z € Z into
w EW*, the program starts with the Nth horizontal diagonal, and finds the largest element
that is no greater than z we let Wy be this element number. The program then takes the

remainder, and repeat the process with the N—lth horizontal diagonal; this provides a Wao.

Repeating this process N times yields w, which satisfles w = enc {z).

In order to lower computation time, the computer performs this decoding
process only once for each N (for every z€8 st. O0<z< # ['W*{rn,m]], and then uses a
table lookup to reduce computation time. The decoded values are stored in a matrix
Drtable, of dimensionality N by # [W{N,w)]. To find the stored decoding of z € Z, noting
that ﬂnc_ll[z:l = Dtable[- ,z], we simply look at the zth column of the matrix Drable.
There are other, less intuitive schemes, to store the encoded values in a table, though they

tend use more memory than the basic method from {12).

THEOREMS AND PROOES. We now come back to the proofs of the claims that we used

in building our coding function. Again we have
Claim 1: # [W*{N,W:l] = Binom[N+w+ 1w+ Z].

Proof of Claim 1: We use induction to prove this theorem. We start with a vector of initial

conditions; in particular we show directly that the theorem is true for the second column of
Binom and for its dominant diagonal elements. We will then use an inductive step which
will prove that given this vector of initial conditions, the theorem holds true for every
element below the dominant diagonal. {Note that by our claim, any value of Binom that is
referenced will be a superdiagonal or diagonal element.)

For the initial condition, suppose that w = 0. Then, no matter what N is,

W*{N,ﬂ] bhas only one element, namely, {{0,...0)}. Thus, no matter N, provided w=0,
[W*{N,ﬂ]] = 1= Binom [N+ 1,2] = Binom[N+ w+ 1,w+ 2],

_ 2 —
Now suppose that N = 1. Then, no matter what w is, W {1,w) has w+ 1| elements,

namely {{0},{1},....iw)}. Thus provided N=1, we have, no matter w,

27

W (Lw)]= wt 1 = Binom[w+2,w+2] = Binom [N+ wr 1w+ 2]

That gives us the vector of initial conditions for the inductive argument. To
complete the proof of the theorem it will suffice to show that if the theorem holds for the
element directly above the one we are examining, and for the one directly above and to the
left, it holds also for the element we are examining {a guick look at the matrix will suffice
to convince the reader that this is the required inductive step for the theorem). For thisto
be true all we need is to show that # [W*(N,w)] follows a recursion analogousto that given

for binomial coefficeints above, i.e that:

W NWI= # W (Nw=1)]+ # [W (N=1,w)]

To see this, we note that an element in W*{N,W:l can either have its first component be w
of not. The number of element s which do not have a first element of w is # [W'*I[N,W—l:l],
by definition. The number of elements which do have a first element of w is simply the
number of weakly descending N—I dimensional tuples, where each element ranges between
wand O; or # W*(N=1,w). That completes the induct ive argument, and hence the proof of

the theorem. *

¥
We now show that ency provides a bijective map from W (N,w) to

0, # [W'*I[N,W:l—l]. We start with definitions and a lemma.

Definitions:
(1) Let D{N,w) = {ze8lz=0,z<# [W*{N,W:l]—l].
{2) We say that our function €Nty o maps surjectively ffom W* to D{N,w), if

for every z£ D(N,w), d w EW* sach that €Nty W{WJ = z{that is the map is "onto").

Lemma: If cncN’W maps sarjectively from W* to DiN,w), then, GDCN,W {-) is bijective

wit [1 domain W*{N, w) and range D{N,w).

Proof of Lemma: This follows directly from the fact that the cardinality of W*{N,W:I

equals the cardinality of D{N,w) and is finite. {If the claim were not true then there exists
w
a z€ D(N,w) that maps into two points in W (N,w): which, given that the map is

surjective, impliesthat # W*{N,W:I] —1<# [D{N,w)] a contradiction). *

It follows that to show that our function is bijective we need only show that it

is surjective onto D{N,w]).

Claim 2: ency o is a bijective function, with range D{N,w).

Proof of Claim 2: We prove the theorem by induction on N for all finite values of w.

For the initial condition of the inductive arguoment assume N = 1. Then, for
any w, enclgwn{w] = Binom[w+ l,w+ 1] = w. Thus, in this case the encoding is simply the
identity map, which is clearly a bijection from W*{I,W} = {0,...,w], onto tself

Our inductive assumption is that for any m and for all W, cncm—l,ﬁ is a
bijection with range D{m—1,w). For the inductive step what we need to show isthat this
inductive assumption implies that for any zeg Dim,w), 3 wEt W*{m,ﬁj sach that
encmgw{w] = z {that is, that enc is surjective). To do this we will take an arbitrary =
and construct a w* EW*{m,W] sach that encmgw{ w¥ = z,

We start by finding the largest element of the mth horizontal diagenal of Binom

such that this element is no greater than z. Formally, let:

Wy = the largest x € §, such that Binom[x+m,x+ 1] € 2.

29

Note that the encoding function implies that when we encode w, Wy will add

Binom[a+m,a+ 1] to the encoded value. Now, let
¥ = z—Bian[w1+ W+ 1].

Subclaim: ¥ ED{m—l,wl:l.
Proof of subclaim: Clearly, ¥ 2 0. So all we have to show is that y < # [’W*{m—l,wl:l].

But,

¥ < Binom[m+ wit 1,w1+2] — Binom[m+ Wiwt 17,

{by the fact Binom increases as we move down any diagonal),

= Binom[m+wl,wl+2],

{by definition of the binomial coefficient s),

= # W (m—Lw))]
{by Clalm 1).
End of Subclaim.

w
Using this claim and our inductive step then, JveW I[m—l,wl:l such that

enc {v] = y. Let Wo = Vi Wa = Vo, v W_ = Vg MNote that w £ W*, as

rn—l,w1 m
w22 e 2 w_,as this holds from v, and Wy = Wo a5 ¥ E W*{m—l,wlj.
Taking this value of w as w* we have enc_ G{W*J = z. To seethis note that the

coding of the last m—1 digits are the same in both W*{m,ﬁj, and W*{m—l,ﬁj:

en Cm,ﬁ{ w) =

il
Bin DI.T.l[Wi-i- m—i+ l,wi+ 1]

i=1

il
= Binom[wl+ (m, W+ 1]+ 2 Binom[wi+ m—i+ l,wi+ 1]

=2
n—

= Binnm[wl+ m, W+ 1+ 2 Binom[wj+ 1t m—{j+ 1)+ l,wj+ 1 1]

j=1
on—l

= Binom[wl+ m, W+ 1]+ 2 Binom [\fj+{m—1]—j+ l,\fj+ 1]

j=1
{¥)

= Binnm[wl+ (m, Wt 1]+ encm—l,wl

= Binnm[wl+m,wl+ Thy==z

Thus, we have shown that enc _ - maps surjectively from W* to D{m,w), for all m. This
then completes the proof that ency is a bijection with range D(N,w) for all finite {N,w)

couples. #
® Section 4: Some Profit Functions

We noted in Section 2 that one can input any one—shot profit function into the
program that satisfies our regularity conditions. This section shows how to construct and
compute two one—shot profit functions that have appeared repeatedly in the theoretical
literature. It is easy to {and we have in the past) construct alternative profit functions and
substitute them into the algorithm instead. The one—shot profit functions that we provide
here are:

i) a homogeneous products Nash in gquantities (Coucrnot] market where efficiency
differences among firms are interpreted as differences in marginal costs; and

ii) a differentiated products Nash in prices (Bertrand) market where efficiency differences
are interpreted as differences in the mean of the distribution of utilities assigned to the

product by different consumers.

31

We briefly discuss the features of t he variants of these algorithms that we used

in order to generate the one—shot profits necessary for input into the algorithm.

DIEFERENTIATED PRODUCTS, NASH IN PRICES PROEITS MODEL. For a more

detailed discussion of differentiated product models like the one we use here see Anderson
De Palma and Thisse (1991), Berry Levinsohn and Pakes { 1992), and the literatuce cited in
these articles.

In this model, good "0" is the outside good, and goods 1,...,N are the goods
produced by the ficms competing in the industry. Each consumer purchases at most one
good from the industcy. The utility consamer "i" derives from purchasing and consuming

good "n" is given by

Ufi,n) = v,—p*, + €fi,n),

where v, is the quality or efficiency index, and p*, is the price, of the good, and =1,.,M.

"
1

Consumer chooses good "n" if and only if she prefers it over all the alternatives, that is,

if for all j=0,1,...,N,

g{i,n) —€{l,]) = [\fj—\-'n] + [F"*n_)’-"'*j]
=[v;j—=vpl— [vn —vol + [F*n — 7%l — [#* | — 7%

= glwil—glwn]+ pn =2

where gf -) is increasing and concave, efficiency level w, = gl[v, — vyl and p, = g%, — 7%
Thus, g is the fanction that maps a firm efficiency level toa product quality level. All we

need for the regularity conditions is for gf-) to have an upper bound, as this will generate

32

the needed upper bound to the profit function. The function g thar we provide makes use

of a constant w*, and then sets:

exp{wy], it w, = w*

(13) explgiwn)]=

exp{wy)[Z—exp{w*—w,]], otherwise.

Mote that this implies that consumer choices are determined entirely by the
quality and prices of the goods marketed in this industry relative to the guality and price
of the outside alternative {only relative gualities and prices count, and we have chosen the
outside alternative as our "numéraire”). Therefore when we refer to an increase in the
quality of the product marketed by the firm we will mean an increase relative to the
outside alternative, and we will say quality decreases only when the improvements to the
firm's own product are not as great as the improvements in the outside alternative. Note
also that movements in v (the outside alternative change] will cause synchronized
movements in the relative efficiencies {in the w,'s) of all ficms in the industcy, which in
turn will generate a positive correlation in their profits. Since movements in the v; will tend
to generate negative correlations in the profits of the firm's in an industry, dealing
explicitly with the outside alternative allows us to rationalize the positive correlations in
the profits of firms within an industry that we ofien observe in the data.

Let the set € [w,nyr], where w is a set of w,'s (efficlency levels) and p is the
price vector, be the set of €'s that satisfy the set of inequalities above, and hence which
induce the choice of good n. Assume that the distribution of € is multivariate extreme

value {logit), and denote that distribution function by G{-]). Then, the probability that a

3g generates decreasing marginal utility to increments In the relative guality of the goods
macketed in this industry, and this, in turn, generates an uppert bound to profits. A more
detailed model of consumers would E}Lp]]C]t]jf incorporate a distcibution of income
constraints and decreasing marginal utility of income (see, for example, Berry, Levinsohn
and Pakes {1992)), and this would have similar effects on demand patterns {though it
would also be computationally more burdensome;. '

33

random consumer will choose good "n" is
(1) olwnip oy op) 99@)=explgtwn) oY {1+ L explgtw) s 1}

If there are N firms in the market, no fixed costs of production and constant
marginal costs equal to mec, then it can be shown that if firms choose prices to maximize
profits a unique Nash equilibrium exists (see Caplin and Nalebuff {19%1)) and satisfies the

vector of first order conditions

{15) —pp—mclo,[l-c,]+ o, =0
for n = 1,...,N. Profits are given by

(16) nw,nl= {p[w,n]-mc}Mc]w,n],

where it is understood that the price and share vectors are calculated from the spot market
eguilibrivm conditions, and M is the number {or measare) of consumers.

We are also interested in analyzing how a single—agent actor in this induastry
would set prices, and what market shares and profits would accrue fom this choice. This
will allow us to discuss the perfect colluder and social planner's solutions, which are
discussed in Section 5.

Let us first consider a social planner. A social planper seeks to maximize the
sum of producer and consumer surplus; hence she would set p= mc, for all firms. As
demand remains unchanged, we could use {14) to determine the demand shares that would
result from this choice of price. Note that total firm profits are zero for the social planner

problem.

Let us now consider a perfect cartel. A perfect cartel sets prices so as to
maximize joint profits. The cartel calculates demand for each product exactly as in { 14).
The cartel would then look at joint profits, and find the vector of prices that maximizes

them. Profits, for any price vector, are given by
(17) mlwl= Lna {p[wn}-mc}Maofw,n]

Hence the price vector that maximizes profits must satisfy the vector of first order

conditions

(18) —[pn—mclo,[l—oy] + @, + L 0,0p;—mc) = 0,
J#0

for n = l,...,N. This characterizes both single agent problems in which we are interested.
In order to provide descriptive statistics, which we will discuss in Section 6, we
will be interested in calculating the consumer surplus results from any choice prices. As

discussed in Pakes—McGuire, consumer surplus for this model has an analytic form of

In { En exp{giwn) —pn) 1.,

where w is again a vector of efficlency levels, so giw,) is a guality level. Note that this

formula will apply regardless of the structure of the industry.

Takbkle 2:

Const. Use Typical Value
c Marginal cost to production for firm 5

M Market size; meausure of consumers in market 5

o MNumber of ficms <f

35

w¥ Constant used to determine quality of goodsé 12

We provide a program which calculates the Nash prices and then profits,
consamer surplus and other statistics for every industry structure (for alternative sets of
parameter values), and other programs that calculate the analogous variables for the
single—agent problems. These solutions are obtained using a non—linear search method on
{15) for the Nash case, a non—linear search on (18] for the perfect cartel case, and through
simple analytic substitution for the social planner case. The parameters we set in the
calculation are listed in Table 2. Note that when we calculate profits we must calculate the
profits of each industry structure separately. Thus, we perform the static equilibrivm
computation W*I{N,W} times, and fill in a row of the matrix I with each such computation.

Mote that the measure of consumers is in the same units as marginal cost. That
is if M were thousands of consumers, then c is the marginal cost of producing an additional

thousand units.

HOMOGENEOQUS PRODUCTS, NASH IN QUANTITIES PROFITS MODEL. The

homogeneous product Cournot models has producers with different, but constant, macginal
costs. Marginal costs, given by &w,), are determined by the multiple of a firm specific
efficiency index and a common factor price index. That is if st and sv are the
logarithms of the factor price index and of the firm's efficiency index respectively, then
wyp =5T—sv and #{w,) = yexp{—w,). Firms' R&D investments are directed at improving
their efficiency of production {increasing their st). Factor prices {sv) are a nondecreasing
stochastic process generating a correlated negative drift in the state of the firms in the

industry.

8In computing the static profit functions, we have not let we {0,...,w}. We found that these
parameters worked properly for another set of w, so we used these, and then translated into
the above scale. The set of w's be have used is w e {—=7,—4,—1,...,51}. We then translated
these for use in the equilibrium generation program, by mapping—7/to @, <4to 1, =1to 0,
2to 3, etc.

36

The spot market equilibrium in this market is assumed to be Nash in quantities.
Consequently market shares and profits {gross of fixed costs) are inversely related to
marginal cost, and will be increasing in efficiency k. More formally, letting q, be firm o's
output, Q = Eqn, and f be the fixed cost of production, the profits of our classic Cournot

oligopolist s are given by

n= piQlg —tw)q -1
where piQ) =D -=Q.

It is straightforward to show that the unique Nash equilibrium for this problem

gives quantities and price as

*
¥ 1
q,, = max {Op*—8;}, and p*= n_*Tl_[D-'_ z B(wj]]

n

where n* is the number of firms with q* > 0. Current profits can therefore be written as

niw,a) = max £ [p*Hw,n) — 8w,)P — 1,

N
where p*{w,n) = H*%T[D +jzl B{wj]].

As in the Bertrand case, we are interested in the single agent solutions for the
social planner and perfect cartel. The social planner will again set p= mc for that firm
with the lowest marginal cost {highest efficiency level), and produce until supply equals
demand. The perfect cartel solution is similar: it will choose to produce only at the the
lowest marginal cost firm. However, it will then act like a simple monopolist, and set

mr = mc. To find the consumer sarplus from any outcome, we need only take the area

37

under the demand curve; this can be found easily, as the demand curve is linear.

In order touse this model for a one—shot game, we proceed as follows. As noted
above, the marginal cost for each firm is specified by 8{w,) = 7 exp{—w,), where w, is its
efficiency level; efficiency is exactly marginal cost. Similarly, we set the probabilities of st
and sv advancing to be the same as the probabilities of T and v advancing in our general
model. Just as in the Bertrand case, we provide a program that calculate the profits,
consamer surplus, and other statistics for the competitive model, as well as programs that
calculate the analogous variables for the single—agent models. The parameter values that

we set in calculation are described in Table 3.

Table 3:

Const. Use Typical Value
D Vertical intercept ofthe demand curve 5

f Fixed cost of production to all firms P

Y Capital—o—cost constant scale parameter 1

We note that this current profit fanction is, In many senses, an extreme
alternative to the profit function used in the differentiated product model. In that case all
firms have the same marginal costs but are differentiated by the quality of the product
they produce; a quality which increases with successful research activity, and equilibrium is

Mash in prices.

® Section 5: Perfect Cartel and Social Planner Problems

In order to characterize the eguilibrium levels that we solve for in the

38

algorithm, it is usefal to compare the decisions that result in the equilibrium with the
decisions that would result in a similar industry controlled by perfectly collusive firms
{sach as one that might arise from a cartel with perfect monitoring), or alternatively, by a
benevolent social planner. In both these cases, we are interested in finding out how the
appropriate single agent would react when the technology is exactly the same as that faced
by the MPN competitors, i.e., when the single agent faces exactly the same random entry
costs, the same family of distcibutions for increments from investment, and the same scrap
values for selling off plants. This will allow us to characterize the values of various
variables, such as price—cost margins, consumer surplus, etc., under the single agent
industry setups, and to compare these tothe MPN case.

As discussed in Pakes—McGuire, both the cartel and the social planner problems
are similar in the solution methodelogy used to find their equilibria. In both cases, we may
think of the agent as maximizing a stochastic "profit” function. We define their profit
goals as follows: the cartel seeks to maximize the EDVY of producer surplus, while the
planner seeks to maximize the EDV of social {producer and consumer) sucplus. Thus, for
both problems, we may define a static "profit” function B[w], where w & W*{N,W:l iz an
industcy structure, and then write down the value function in 2 manner similar to {2). The
function B[w] should represent the maximized static gain to surplus for any state; thus for
the perfect cartel case, B[w] is the one—shot industry profits, while for the social planner
case, B[w] isthe one—shot consumer surplus. Recall that in Section 4, we described how to
compute planer and cartel industcy profits and consumer surplus for both of the static
games that we discussed. Thus, we have already shown how to compute Bw] for both of

these one—shot games.

DIEFFERENCES BETWEEN MPN AND SINGLE-AGENT SOLUTIONS.

We may now look at the computation of both single agent problems together, as

39

the equilibria can be computed with the same program, afier substituting in different
one—period return functions. There are three major computational differences between the
single—agent equilibria and the MPN equilibria. These are: we have a different state space,
we must look at exit and entcy differently, and {since we do not need to form conditional
probabilities of other people's behavior based on perceptions that are correct in
equilibrium] the single agent computation can be set up asa contraction with modulus el
fand hence must converge to a unique fixed point)

First of all, we note that in the MPN models, the state space was W* * N, as
we were looking at each possible firm in each industry structure. In the single—agent
models, the state space is W*, as the agent controls the entire industry, so any industry
structure (any w € W*) results in only one state, not in N states. However, in the
single—agent models, any state results in an N—vector of investments and entry/exit
decisions.

Secondly, we look at entry and exit. In the single—agent models, the agent
chooses which ficms it wants to have enter or exit and thus does not need to form
perceptions about entry or exit, but rather controls these decisions herself, paying the entry
fees and receiving the scrap value ¢. In programming the MPN equilibria, we have used
efficiency level 0 to represent both a firm that is at the lowest efficiency and an empty slot
with no firm. For the single—agent problems, we cannot do this, because the agent receives
scrap value ¢ for any active firm {even one at the lowest efficiency level) but net for an
empty space with no firm. (In the MPN model, we did not care which of the O's received
scrap values, as they were going to be inactive from that point on.] Thus, we must code
the lowest efficiency level for an active ficm as efficlency level 1. This results in w for the
single—agent case being one higher than w for the MPN case.

Thirdly, in the single—agent problem, we do not need to look at perceptions of
the behavior of cohorts, asthe agent controls all active firms at any time. As illustrated in

Pakes—McGuire the value function for the planner and the cartel are calculated from the

following recursion. Consider any industry structure w, and suppose that firms Wy t hrough
w are active. If ¥ 1{w,...,w,) isthe i—1th jteration of this function, and we have ordered

the @ so that w;Sw,,), then we calculate the ith jteration value function as

{19) Vilw),...,w,) = mall{liqﬂn)?i{w"“"wqj
where
Vil W, ws) = Bi{w),..,wg) + {n—q)¢+ max
{supim,mlq] —cLixj + Ej'r"i—h[wi,...,wé)p{wi|w1,11,x’]...p{wé|w X VIpiv):

9 9

supl[m,...,lq:l - I::Ej?i.j — %+

Ej'r’i—ll[wi,...,wé,w_ E]p{wi|wi,xl,\.’]...p{wé|wq,1q,x’]p{wc|\.’]pw) 1.

Ifthe first max over g for ge{1,...,n} 15 g%, then {n—g*) ofthe incumbents exit. The second
max operator determines whether or not there is entry. That is the agent must decide
which of the currently active firms to keep active and whether to allow entry, as a function
of the random entry cost. Through the use of g, we are, in effect, forcing the agent to keep
a higher efficiency firm active if it is keeping a lower efficiency firm active. The reader can
verify that the operator defined in (1%) iz a contraction mapping with contraction medulus
B (< 1).

The problem with applying standard recursive methods to solve for the fixed
point of the operator in {1%), is that at any iteration the solution is a complicated function
of g, X pslge One can attempt to apply a non—linear search method, but note that by the
nature of the problem the boundary constraints [}'Li = 0] will be binding for some variables.
While elaborate non—linear search methods can be used to solve systems of equations with
ineguality constraints, they are very time—consuming and cumbersome to use. Thus, we
modify the recursive method implicit in { 1% to actually solve for our fixed point.

In order to avoid the above problem of having to solve a non—linear system of

equations with binding boundary conditions, we proceed to solve this system in a similar

4]

fashion tothe solution for the MPN case. Recall the Caleval{-) function from {3). For any
state w, and any given choice of g (the number of active firms) and given choice of entry,

one can define w’ for that choice as

w' o= [w[l:q],{ﬂ[q+ 1:NJor [W_ E]]] .

where O[-] represents a vector of zeros. Then, one can define an analogous function
Caleval{w’,n}, which again measures ficm n's EDVY for each of the two possible realizations
of the firm's investment process, using last iteration's values for the other actors
investments.

One can vecify that for any [w',n), the ficst order conditions for the single agent
are the same as for the MPN case, given the different definitions of Caleval. Thus, we can

write the optimal x[w’,n], using the ficst ocder conditions similar to (4], as

a[w’,n]= argmax,zy [—cx +

Blax/{l+ax)Calcval{w '+ e{n),n) + B[1/{ 1+ ax)Calcvaliw’,n}],

assuming that the max exists by compactness and continuity. Thus, we can solve for the
optimal %, using exactly equations {5) and (6). Recall that this x is optimal conditional on
the choice of g {or eguivalently, of w’). The agent will then find the optimum of these
solations over all possible g and entry rules. The g and entry rule that are optimal will
then define the optimal policy at this state. Thus, we have implicitly defined a mapping T,
which maps investment, entry and exit decisions and a value function, into new values of
each of these variables.

Mote that, by wsing this sclution methodology, by have re=introduced into the
problem the conditional distributions of other firms states, which is dependent on

perceptions of their investment. Thus, T need not be a contraction mapping, unlike the

12

mapping defined in {1%). However, a fixed point of T will maximize the EDV of future
profit s and thus be the choice of the single agent. One can verify this property by noting
that because at a fixed point, perceptions and hence conditional distributions are realized, a
fixed—point to T will also be a fixed—point to {19). However, since T isnot a contraction
mapping, there is no guarantee that it will converge to a fixed—point. For the values we
have tried, T has converged. Note that if T fails to converge, the user may always return
to using a contraction mapping technigque such as (1%9), which will probably take a lot

longer to solve each iteration, but which is guaranteed to converge

® Section 6 Descriptive Statistics Qutput Programs

Once we have solved an industry for MPN and single—agent equilibria, we are
interested in characterizing the equilibria, in order to examine how the industry is
characterized for different parameter values. We have examined several statistics that are
typically considered important determinants of an industry in the industrial organization
literature. We can separate these statistics into three categories. The categories and

statistics ace:

INDIVIDUAL PERIOD STATISTICS.

® Number of periods with n ficms active, n=0,1,2,...;

® number of periods with exit;

® number of periods with entry;

® number of periods with both entry and exit;

® average percentage job creation {average over periods);

® average percentage job destruction {average over periods);
® average total investment{average over periods);

® average price/ marginal cost margin{average over periods); and

43

* gverage one—frm concentration ratio {average over periods).

EFIRM LEVEL STATISTICS.

Lifet ime of each ficm; and

discounted returns earned by each ficm.

AGGREGATE STATISTICS.

* Dizscounted consumer surplus {mean and variance);
Discounted producer surplus {mean and variance); and

® Discounted total surplus {mean and variance;.

We compute all of these statistics by simulating the industcy from a
user—specified starting industry structure. In order to find the decisions at each point, we
use the eguilibrium value functions, investment levels and entry/exit decisions to evaluate
the optimal policies at the states resulting at any time period. The industry structure is
updated from its user—specified initial value, depending on the realization of random
variables whose distributions are conditional on the chosen equilibrium policies. We have
separate {though similar) programs that evaluate these statistics for the MPN equilibrium
and for the single—agent problems.

We calculate the first and second set of statistics in one program. We simulate
the industcy for a large number of periods {we typically use 10,000; but the user can specify
the lengrl desired). For many of the statistics, such as one—firm concentration ratios, we
need to make use of the value of variables from the static game. Thus, in our static profit
programs, we also compute the one—firm concentration ratios, consumer sacplus,
price/ marginal cost margins. Except for consumer sucplus {which we discussed in Section
4], these variables are all easy to compute, so we will not discuss how to compute them any

further. For the firm—level statistics, we must keep track of each firm's position in the

current industry structure, and update these when firms exit or enter the market. Firms'
total profits are calculated in discounted value form, counting period O for any firm as the
period when it entered the market. Firms' positions are also needed to calculate job
creation and dest ruction.

The third set of statistics differs from the first two sets in that it attempts to
measure variables that are discounted sums over all periods. Since we are interested in the
distributions of these surpluses, we repeatedly simulate the industry from the
user—specified starting condition. Furthermore, because the surpluses are measured in
aggregate discounted form, we do not simulate as many periods in any given run. Thus, we
typically simulate the industry for 100 periods, and repeat the simulation process 200 times
restacting it with the initial conditions each time. These welfare statistics are computed in
separate programs from the other statistics because of the different nature of the

simualation.

® Section 7: Computer Implementation of the Algorithm

The algorithm that we have presented in Section 2 is implemented directly in
the Gauss computer programs we have developed; recall that users can access these
programs by ftp, see the Overview at the beginning of the paper for details on accessing the
program. In order to understand the program, though, we list which Gauss functions
perform which of the operations described in the algorithm, as well as the Gauss variable
names that correspond to the variables described in the algorithm. In this section, we only

describe the main multi—agent equilibrium generation program, markov.eqm.

EUNCTIONS USED IN PROGRAM. The body of the main program cycles through, and

solves the iterative problem for the different number of firms, starting with ‘stfirm' firms,

and going up to N firms. The user may specify how many firms to start with by changing

45

the variable ‘stfirm' at the beginning of the program. If the user wishes to start with 2 or
more firms, the data needed for the initial condition of the algorithm is taken from the file
"markov.7ot” where ? is set equal to stfirm. The program automatically stores the last
solved equilibirium for each ‘rinfirms'. Note if you run two programs with different
parameter values but the same ‘tlnfirm' the programme will only keep the last one. It is
up tothe user to rename the first program and store it elsewhere if she wishes.

The iterative problem is solved by repeatedly calling the function comzract.
Contract cycles through every possible state (w,n) EW* »N, and calls optimize once for
each state, in order to find the optimal invest ment level and associated value function for
that state. Before calling oprimize though, comtract calls chkentry, which specifies the
probability of a potential entrant wanting to enter, for any given competitors' efficiency
levels w E W*. The reader may recall, from Section 2, that the values computed by
chkentry are then used to calculate the optimal investment level, instead of recalculating
these values for each element of a permutation cycle {indsutcy structure). The actual
calculation of the optimal investment level done in opfimize is performed using the
formulas that are derived in Section 2. The function calcval described in Section 2 is
actually programmed into the Gauss function eafevaf, which calculates the same sum of
value functions indicated in the algorithm description; cafevaf is performed separately for
the cases of entry and no entry.

The coding function enc . W is programmed in the function encode; while the
basic decoding function is programmed in decode. The table Jookup decoding and encoding
that are actvally used to increase computational efficiency are programmed in gdecode and
gencode. The tables used by gdecode and gencode are constructed in the main program,
once for every n {number of firms) value. Because Gauss does not allow for arrays to begin
with element 0, we must always add 1 when encoding N—uples, in order that the encoded
values can be used as indices for the X and ¥ matrices. Correspondingly, in the function

decode we first sabtract | from the coded value before wsing the decoding algerithm that

we have proposed.

We have, thus far, left out one function fom our discussion. This function,
update is used to copy the value function and investment for the solution to the n firms
problem for use as the starting values of the coresponding elements in the n+1 firms
problem. This is used if the user specifies a starting firm size {("stficm"”) smaller than N, in

which case the program will have to compute equilibria for n < N ficms.

VARIABLES USED IN PROGRAM. Most of the variables used in the Gauss program

correspond closely to the variables discussed in the algorithm description. We store most
of the big variables we use as globals, because of the inefficiency of passing parameters in
Gauss. In Table 4, we list the major variables used, along with the corresponding variable
and constant in the algorithm, and a '*' if furt her explanation is required. We note that all
of the variables below the second bar are parameters of the problem. These variables can be
changed by the user, in order to test the effect of different parameter values. In order that
they are easily accessible, these variables are all assigned their values at the top of the
program, and can thus be accessed easily. In addition, the matrix II can be changed by

changing the parameters of the underlying static profit functions.

Takble 4:
Gauss Variable Algorithm Var. or Const. Explanation
binom Binom
offvafue / newvafue vV ¥
ofdx [newx X ¥
profit I1
(RERTFY Afw 0]
sk ¥
drable Drable
etable Etable

w
W X # W]
entry_k W E
stficm / nfirms [rinfirms N ¥
kmax w
x_eniryl ¥X_EL

17

x_ entryh X_EH
betadefra,phi,ae B. B, ¢, &, ©

We now provide the explanations of the names t hat may be unclear. First of all,
we note that we require ‘offvafue’ and ‘mewsafue' instead of just “wafue' and similacly for
‘ofdx' and mewx' because the old values of these variables are used to determine theic new
values at any stage; this is the basis of the recursion routine. Thus, the new values are
copied back into the old values after each iteration. The variable ‘mask’ stores the list of
possible increases in competitors' efficiency levels that can happen, conditioning on the
outside alternative. So, if o = 3, for instance, mask= [00,01, 10, 11]. Finally, we note
that ‘rfmfirms' indicates the actual number of firms that we are solving for, while ‘nfirms
shows the number that we are solving for in this round, and ‘stfirm' shows the number that
we are solving for in the first round. Recall that the algerithm starts by solving the
"stfirm” problem, and then using this solution to solve for the "stficm + 1" ficm problem,
etc. 8o, ‘rinfirms' would be the same throughout the program, while ‘nfirms' starts out

egual to ‘stfirm’, and increases by | each round.

Bibliography

Anderson,S., de Palma,A., and J. Thisse (1991); Discrete Choice Theory of Product

Differentiation, M.LT. Press, Cambridge, Mass.

Berry, 5. and A.Pakes (1993); "Some Applications and Limitations of
Recent Advances in Empirical Industrial Qrganization: Merger Analysis”,

A E.R., papers and proceedings.

Bercy, 5., Levinsohn, J., and A. Pakes (1992); "Automobile Prices in Market
Equilibrium,” N.B.E.R. discussion paper no. 4264,

Caplin, A. and B. Nalebuff {1931); " Aggregation and Imperfect Competition: the Existence

of Equilibrium” Econometrica, ¥ol. 5%, pp. 25-5%.

Ericson, R. and A. Pakes (1993); "An Alernative Theory of Firm and Industry
Dynamics,” Discussion Paper No. 1041 Cowles Foundation. Revision of
Columbia University Discussion Paper 445 {1989).

Judd, K.{forthcoming); Numerical Methods in Economics, mimeo, the Hoover Institution.

Maskin, E. and J. Tirole (1%Ba) "A Theory of Dynamic Oligopoly,
I: Overview and Quantity Competition with Large Fixed Costs,” Econometrica

Yol. 56, pp. 549-569.

Maskin, E. and J. Tirole (1988b); "A Theory of Dynamic Oligopoly,
II. Price Competition, Kinked Demand Curves, and Edgeworth Cycles,”

Econometrica, Yol. 56, pp. 571-599.

Pakes, A. {forthcoming); "The Estimation of Dynamic Structuwal
Model Problems and Prospects Part II: Mixed Continuous—Discrete Control

Models and Market Interactions.” In Advances in Econometrics (110 page

typescript) proceedings of the 6th World Congress of the Econometric Society,
edited by J. J. Laffont and C. Sims.

Pakes, A. and P. McGuire {19%a); "Computing Markov Perfect Nash
Equilibria: Numerical Implications of a Dynamic Differentiated Product

Model," mimeo, Yale University.

Pakes, A. and P. McGuire (1993b); "Computing Markov Perfect Nash Equilibria II:

Approximations,” mimeo, Yale University.

"Gauss” is a registered trademark of Aptech Systems Inc.

"SPARCStation 1" is a registered trademark of Sun Microsystems Inc.

