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Fairness in Repeated Games

Abstract

In addition to pursuing their material self-interest, people are motivated to help those who are kind
to them, and to hurt those who are mean to them. Such social preferences influence behavior most
when material stakes are small. Rabin (1993) defines an outcome reflecting such preferences as
Jairness equilibrium. This paper applies a version of faimness equilibrium to repeated games. Some
fairmess-equilibrium outcomes in small-stakes, one-shot games are shown to be faimess-equilibrium
outcomes every period in incremental games, which are finitely repeated games of large overall
material stakes but very small per-period stakes. For instance, it is a fairmess equilibrium for
players to cooperate in every period of the finitely repeated Prisoners’ Dilemma with arbitrarily
high total payoffs, so long as the per-period material payoffs are small. I consider more generally
whether fairmess equilibria in small-stakes, one shot games can be the stationary fairness-
equilibrium outcomes in incremental games, providing sufficient and (approximately equivalent)
necessary conditions for this result to hold for all faimess preferences meeting my general
assumptions. I also show that outcomes that yield either player below her minmax payoffs (which
is often true of fairness equilibria in small-stakes, one-shot games) cannot be stationary fairness-
equilibrium outcomes for any fairness preferences meeting the general assumptions in incremental
games of sufficiently large overall payoffs.



1. Introduction

In Rabin (1993}, 1 develop a game-theoretic model of some soclial
components of preferences which have conventionally been ignered by
economists. The solution concept fairness equilibrium assumes that people may
prefer to sacrifice their material well-being both to help those who are belng
kind to them and to punish those who are being unkind.1 Of course, people are
also self-interested. Fairness equilibrium therefore assumes that players are
also motivated by material self-interest, and that socially-oriented goals
affects behavior less as the marginal cost of sacrificing becomes larger.

This paper explores the implications of fairness equilibrium In finitely
repeated games, comparing the predicted behavior to both fairness equilibria
in one-shot games and to classical predictions in finitely repeated games. I
show that fairness equilibrium predicts that reciprocally-altruistic
outcomes--such as cooperation in the Prisoners’' Dilemma--can occur in every
period of incremental games, which are finitely repeated games with
arbitrarily large total payoffs, so long as per-period payoffs are negligible.
More generally, 1 provide some conditions for' fairness equilibria In
small-stakes, one-shot games to be the stationary fairness-equilibrium
outcomes in incremental games, providing sufficient and (approximately
equivalent} necessary conditions for this result to hold for all fairness
preferences meeting my general assumptions. I alse show that outcomes that
yield either player below her minmax payoffs (which fairness equilibria often
do in small-stakes, one-shot games) cannot be stationary fairness-equilibrium
outcomes for any fairness preferences meeting the general assumptions in
incremental games of sufficiently large overall payoffs,

I begin in Section 2 by presenting the model and basic results from Rabin
(1993). Two types of outcomes play a special rele in the results: "mutual-max"
outcomes--in which, given the other player's behavior, each player maximizes
the other's material payoffs——and "mutual-min" outcomes--in which, given the
other player’s behavior, each player minimizes the other’'s material payoffs.
Rabin (1993) shows that, when material payoffs are arbitrarily small, then,

roughly, an outcome is a fairness equilibrium in a one-shot game if and only

1 I will not here outline the evidence that these motivations are

important. For introductions to these principles, see Dawes and Thaler (1988),
Kahneman, Knetsch, and Thaler (1886a, 1986b), Rabin {1993}, and Thaler (1988).



if it is a mutual-max or a mutual-min outcome.
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Prisoner’'s’ Dilemma Chicken Gift Game
Figure 1A Figure 1B Figure 1C
Figure 1 -- In each game, payoffs are scaled by X > O

To illustrate these ideas, consider Figure 1. If it is common knowledge
to the players that they are playing the mutual -max outcome
(Cooperate, Cooperate) in the Prisoners’ Dilemma, for Iinstance, then each
player knows that the other is sacrificing his own material well-being in
order to be nice. Because each player is being nice to the other, each will
want to be nice to the other. If X is small enough, so that defecting is not
too tempting, (Cooperate,Cooperate) is a fairness equilibrium. The mutual-max
outcomes (Chicken,Chicken) in Chicken and (Gift,Gift) in Gift will likewise be
equilibria for small enough stakes. The outcomes (Defect,Defect) in Prisoners’
Dilemma, (Dare,Dare) in Chicken, and (No Gift,No Gift) in Gift are all
mutual-min outcomes, in which each player is being mean to the other. Because
these outcomes generate hostility and the desire to hurt each other, they will
also be fairness equilibria if the stakes are small.

By making some additional assumptions about preferences, I examine in
Sections 3 and 4 the implications of fairness equilibrium in repeated games.
In Section 3, I consider the implications of my model for incremental games,
which are finitely repeated games with arbitrarily many repetitions and
negligible per-period payoffs. The results largely pertain to stationary

incremental fairness equilibria (SIFEs), which are outcomes that are played

2 The outcomes (Defect,Defect) and (No Gift,No Gift) are fairness
equilibria independent of scale; because they are both Nash equilibria and
mutual-min outcomes, both material self-interest and desire for revenge lead
the players to behave as they are. By contrast, the stakes must be low enough
to make {Dare,Dare) a fairness equilibrium, because a player will be tempted
by material self-interest to deviate from this outcome.

2



every period in some fairness equilibrium of the incremental game.

I show that every fairness equilibrium of any one-shot game is a SIFE of
the corresponding incremental game whose total payoffs are the same as the
one-shot game. That is, allowing players to make decisions incrementally never
eliminates outcomes that are possible when players make once-and-for-all
decisions. Additional outcomes may also be SIFEs in incremental games,
however. I show that a class of mutual-max outcomes will be SIFEs whenever
each player has some repeated-game strategy that guarantees both players get
per-period payoffs below the mutual-max outcome. The argument relies on
punishments hurting both players because if the non-deviating player would get
a higher payoff by punishing the other player than in the mutual-max outcome,
she may resent the other player for not deviating, and thus be unwilling to
cooperate.

As applied to the repeated Prisoner’s Dilemma, this result implies that
no matter how large the total stakes, and no matter how small a component of
overall preferences is fairness, there is a fairness equilibrium in which the
players cooperate each period of a finitely repeated Prisconer’s Dilemma, so
long as the per-period payoffs are allowed to be arbitrarily small.
Intuitively, punishment strategies that hurt a player induce him to cooperate
out of self-interest through most of the game. But when per-period payoffs are
negligible, even minimally fair players will be willing to reciprocally
cooperate in the last few periods of the game. Even a little bit of concern
for fairness means that the standard backwards-induction, "unraveling” problem
(whereby players can never plan to reward cooperation with cooperation in the
final periods) does not arise.

In games such the Prisoner’s Dilemma, therefore, fairness equillbrium
predicts that players might, in incremental games of arbitrarily large total
material payoffs, behave the same way as they do in small-scale, one-shot
games. This resemblance of behavior very much depends on the strategic
structure of the game being considered, however. I show, in fact, that the
condition that players have mutually harmful punishment strategies Iis
necessary for such a resemblance, in the following sense: If there are no such
"supporting strategies" for an outcome, there exists some fairness preferences
meeting the general assumptions of my model such that the outcome will not be
a SIFE. Moreover, I show that when an outcome yields either player below her
minmax payoff, then the outcome cannot occur all or even close to all of the
time in any fairness equilibrium of incremental games with sufficiently high

overall payoffs. For instance, the mutual-max outcome (Gift,Gift) in Gift and



the mutual-min outcome (Dare,Dare} in Chicken will not be SIFEs for
sufficiently large overall stakes for any fairness preferences meeting the
basic assumptions of the model.

In Section 4, I consider the role of fairness in replicated games, which
are repeated games with arbitrarily many periods whose per—-period payoffs are
non-negligible. I show that every fairness equilibrium in such games yields
each player at least his minmax payoff, and give conditions (somewhat more
restrictive than in the Nash folk theorem) under which all outcomes ylelding
more than minmax payoffs are fairness equilibria. I also argue that
replication may eliminate some cooperative outcomes that one can get in
one~shot games. Even if a preference for fairness induces players to cooperate
in a one-shot Prisoners’ Dilemma, for instance, they may be unwilling to
cooperate in either period when that game is played twice. While Section 3
indicates that "incrementalizing" a game can help players cooperate, Section
4 illustrates that there is no presumption that repetition per se will help
fairness-oriented players cooperate, any more than it helps self-interested
people cooperate for standard folk-theorem reasons.

The analysis of this paper is complicated by some issues that are likely
to arise more generally in the application of psychology to repeated games.
First, when players’ well-being reflects both material payoffs and emotional
payoffs, the scale of payoffs in a game may be important, so that we must
analyze repeated games separately depending on both the per-period and the
overall scale of material payoffs. A second complication arises in considering
rewards and punishments in repeated games. Classical folk theorems rely {more
or less) solely on punishments involving stationary behavior, where a player
is deterred from deviating with the threat that other players will play the
same minmax stage-game strategies forever following a deviation. In the model
presented below, the punishments needed to deter deviations ffom an
equilibrium may require non-stationary strategies. Cooperation in the repeated
Prisoner’'s Dilemma, for instance, is sustainable only with strategies such as
tit-for-tat, and could not be sustained with an stationary punishment

strategies such as "Defect fOPEVEP".3

3 Such non-stationary strategies are needed because the model does not
suppose that players’ overall utilities are quasi-concave in their material
payoffs. If the utility functions were quasi-concave, then anything that could
be detered by a non-stationary strategies could also be detered by players
threatening to punish deviations with a stationary strategy that "minmaxes"
the other player’s utility defined in terms of some function of the material

q



The final complication reflects the fact that players’ utillties may
depend in my model not Just on strategies played but directly on their
expectations.4 This can mean that the unpleasantness of a punishment depends
on what equilibrium is being played, so we cannot necessarily find a
universally "worst” punishment that will deter a player from deviating from
all putative equilibria. Punishment A may deter a player from deviating from
equilibrium X, and punishment B may deter him from deviating from equilibrium
Y, even though neither works as a punishment for deviations from the other
equilibrium.

1 use these complications as a partial excuse for two big shortcomings of
the model presented in this paper. First, |1 incorporate no notion of
sequential rationality, applying only the normal-form solution concept
developed in Rabin (1993}. In lieu of a satisfactory model of segquential
rationality applied to fairness issues, some of my results must therefore be
treated as tentative.5 A second shortcoming is that I do not provide a full
characterization of the set of fairness equilibria in repeated games; rather,
I concentrate one which outcomes that are fairness equilibria in small-stakes,
oﬁe—shot games are also fairness-equilibrium outcomes in repeated games.

I conclude the paper in Section 5 with a brief discussion comparing the

predictions of my model to the experimental evidence on repeated games, and to

payoffs to the players.

1 believe that an assumption of quasi-concavity would not be a natural
restriction in this context. Consider the "fairness payoffs” that a player
gets from sharing a pie with the other player if she feels positively towards
that other player. Quasi-concavity would imply that the player gets more
marginal satisfaction from giving the other player 20% rather than 10% of the
pie than she would get from giving the player 50% rather than 40% of the pie.
The opposite is likely to be the case in most situations--giving only 20% of
the pie to somebody who is being kind to you will be unlikely to make you feel
very good.

4 Formally, my model uses the framework of psychological games developed by
Geanokoplos, Pearce, and Stacchetti (1889).

5 While Geanokoplos, Pearce, and Stacchetti (19839} develop definitions of
sequential rationality in psychological games, the solutlon concepts they
develop in essence require that players must maintain the same emotional
disposition at all contingencies in the game. This seems inappropriate when
applied to my model. In a repeated prisoners’ dilemma, for instance, the GPS
approach would require that players invelved in a cooperative equilibrium
ought maintain a friendly disposition following deviaticns to non-cooperatlive
behavior. 1 am currently working (with Jim Fearon) on an extensive-form
version of fairness equilibrium which tries to capture sequential rationality,
allowing unexpected moves by one player to change the emotional disposition of
the other.



incomplete-information models of cocoperation such as that presented in Kreps

et al (1982).

2. Fairness Equilibrium

Consider a two-player, normal-form game with (mixed) strategy sets S1 and
52 for players 1 and 2, derived from finite pure-strategy sets A1 and Az.
Throughout the paper I shall consider only games G whose material payoffs are
generic--for each player, I assume that his material payoffs from any two
outcomes is not the same., Let ni:slxsz —3 R be player i's material payoffs. To
formalize fairness, I adopt the framework developed by Geanakoplos, Pearce,
and Stacchetti (1989) (hereafter, GPS) who modify conventicnal game theory by
allowing payoffs to depend on players’ beliefs as well as on their actions. I
assume that each player’'s subjective expected utility depends on three
factors: 1) his strategy, 2) his beliefs about the other player’s strategy
choice, and 3) his beliefs about the other player's beliefs about his

strategy. Throughout, I shall use the following notation: a, € S1 and a, € 5

represent the strategies chosen by the two players; b1 é S1 and b22 € Sz
represent, respectively, player 2’'s beliefs about what strategy player 1 is
choosing, and player 1’'s beliefs about what strategy player 2 is choosing; ¢y
€ S1 and <, € 82 represent player 1's beliefs about what player 2 belleves
player 1's strategy is, and player 2's beliefs about what player 1 believes
player 2's strategy is.6

I begin the specification of fairness equilibria by defining a kindness
function, fi(ai,bj), which measures how kind player i is being to player J.
This function will be positive when player i believes he is treating player }
kindly and negative when player i believes he is being mean to player .
Likewise, I define ?d(bj,ci), which represents player i's beliefs about how
kindly player j is treating him; this function is positive when he believes
player j is trying to treat him kindly and negative when he believes that
player j is trying to treat him meanly.

How kind is player i being to player j if he chooses strategy ay in

response to his beliefs that player § is choosing strategy bj? To consider

5 It is because a player’'s wutility depends in this model on his
second-order beliefs that we require the apparatus of psychological games.



this, note that player 1 believes that he is choosing some payoff pair from

the set ﬂ{bj) = {{1t.l(zl,b‘j 5

player J is to choose a strategy that yields player j his highest payoff among

the set M(b,): nh(ij = Max {n (a,bj)}. The meanest that player i could be

J J a€S1 min
to player J is to choose player j's lowest payqff in H(bj): nJ (bj) =
MlnaeS1{“j(a'bj]}'
Note that even selfish behavior by player i may often involve giving

player j a payoff higher than ngin(b ), because a strategy by player 1 that

J
?in(bj) may also in fact hurt player §i. We may consider

player i’'s most relevant distributional choice to be his choice among payoff

), m (bj,a))laeSi}. The nicest player 1 can be to

yields player j =w

pairs on the Pareto frontier, and we may consider it relatively mean for
player 1 to grab his best payoff on the Pareto frontier. We thus define the
payoff n;(bj) as player j’s lowest payoff among points that are strictly

Pareto-efficient in T(b,). Formally, u{(b.) = Max {n,(a.b
J JJ aeS1 ]
n. (a,b )}

J

Rather than using the specific form of kindness functions used In the

Jla € argmax

J

test of Rabin (1983), I shall in this paper work directly with the more
general class of kindness functions introduced in the Appendix of that paper,
adding some additional properties needed for the results of this paper.
Assumption 1 requires that 1) how kind player i is belng to player J is
an increasing function of how high a material payoff player i is glving player

J, and 2) the utility and marginal utility derived from fairness is bounded.7

Assumption 1:
The kindness functions are Bounded and Increasing. For every game,
1) f.{a,,b.) > £ (a!,b.} iff w (b,,a,}) > n_(b_,al); and
171 g A B J J'1 J g1

2} There exists a number N1 > 0 such that
a) For all a. € S, and b, € §,, f,(a,,b.}) € [-N,,N.], and
i i J J 177177 171
b) For i = 1,2 and j # i, for all a, a', «, &' € S.1 and b€ S

J
such that nj(a,b) - nj(a’,b) = uJ[a,b) - nj(a’,b) * 0,

[fi(a,b) - fi(a’,b)]/[fi(a,b) - fi(a’.b]] = Nl'

7 In the formulation of Assumption 1 in the Appendix of Rabin (1983}, I
omit the restriction on the marginal value of the kindness function here
incorporated intoc part 2b The proof of Proposition 5 (Proposition AS below)
given in that paper essentially assumes such a restriction, so that {(though it
does apply to example of kindness functions used in the text of that paper) it
is erronecus as applied to the class of kindness functions presented in the
Appendix.



Assumption 1 incorporates the idea that how kind player 1 is being to
player j is determined by the payoff he is glving to player J. With this

perspective, it 1s natural to define an “equitable payoff,” a (b ), as the

JJ
morally neutral--neither kind nor mean--level for player i1 to give to player
e

J

lower payoff than no(b,) is mean. Assumptlon 2 requires that n5(b,) be
J JJ

strictly between player j's worst and best Pareto-efficient payoff, so long as

J.- Then, giving J a higher payoff than n {bj] is nice, and giving player j a

the Pareto frontler is not a singleton.

Assumption 2:
The kindness functions are Pareto Splits. There exists some nj(b ]

J
such that:

1) "j(bj’ai) > n?(bj) implies that fi(ai’bj) > 0; and
nj(bj,ai) = nj(bj) implies that fi(ai’bj) = 0; and
m(bs,a,) < nj(bj) implies that f;(a;.b;) < 0.

2) n?(bj) 2 n (b)) = n}i(b‘j)

3) If ng{b'j) > ng(b‘j), then ng(bj) > n(b,) > n‘lj(b‘j)

Assumption 3 guarantees that notions of the fairness of particular

outcomes do not dramatically change when all payoffs are (say) doubled.8

Assumption 3:
The kindness functions are Affine. Changing all payoffs for both players

by the same positive affine transformation deoes not change the value of

f.(a.,b.).
i i

Assumption 3 is crucial to the model, because it is what guarantees that
behavior will be more influenced by material self-interest as the material
payoffs at stake increase, and more influenced by the taste for falrness as
the material payoffs at stake decrease. Finally, a continuity assumption is

needed to apply GPS’s general existence theorem to the model of this paper:

Assumption 3 does, however, allow the kindness functions to be sensitlive
to affine transformations of one player’s payoffs. If we double player 2's
payoffs, then it may be that fairness dictates that he get more--or less--than
before.



Assumption 4:
The kindness functions are continuous. For i = 1,2 and j = i, for all

a..1 € Si and bj € S fi(ai’bj) ig continuous in both a, and b,.

J’ i j

Given these kindness functions (with the functions Fj(bj,ci) assumed to
have the same properties), I represent player i°'s utility by the functlion
Ui(ai,bj,ci). which incorporates both his material utility and the players’

shared notion of fairness:

Ui(ai’bj’ci) % ni(ai.ij + f.(b

j J,ci)-fl{ai.bj].

These preferences reflect the assumptions outlined in the introduction:
If player i believes that player j is treating him badly--which will

correspond to f (-) < O--then player | wishes to treat player j badly, by

J
choosing an action a, such that fi(-) is low or negative. If player 1 belleves
that player J is treating him kindly, then F (-) will be positive, and player

J
i will wish to treat player j kindly.

While the kindness functions are insensitive to positive affine
transformations of the material payoffs, the overall utility is sensitive to
such transformations. Because the kindness functions are bounded above and
below, the bigger the material payoffs, the less the players’ behavior
reflects their concern for falrness. Thus, the behavior in these games is
sensitive to the scale of material payoffs.

Because these preferences form a psychological game, we can use the
concept psychological Nash equilibrium defined by GPS; this solution concept
is the natural analog of Nash equilibrium for psychological games, imposing
the additional condition that all higher-order beliefs match actual behavior.

1 call the solution concept thus defined fairness equilibrium.

Definition 1:
The pair of strategies (al,az) € (51,52) is a Falrness Equilibrium if,
for i =1,2, J =1,
1) c, = b =a.

2) a, € argmax
i a

S Ui(a'bj'ci)’ and

Characterizing the set of fairness equilibria in a game revolves around

two types of outcomes. A mutual-max outcome is one where players mutually



maximize each other's material payoffs; a mutual-min outcome is one where they

mutually minimize each other’s material payoffs.

Definition 2:
A strategy pair (al.az} € (51,52} is a mtual-max outcome Iif,

for i =1,2, i=#1, a n.(a,a,).

€ argmax_ o J 3

1
Definition 3:
A strategy pair (al.az) € (51,52} is a mtual-min outcome if,

n. (a,a.l.

J

for 1 = 1,2, jJ# 1, 2, € argmin_

J

In the Prisoner’s Dilemma, (Cooperate,Cocperate) is a mutual-max outcome
and (Defect,Defect) is a mutual-min outcome. In Chicken, (Chicken,Chicken) is
a mutual-max outcome and (Dare,Dare) is a mutual-min outcome.

Definition 4 provides some useful characterizations of outcomes in terms

of the level of kindness induced by each of the players.

Defipition 4:
An outcome (al,az) is strictly positive if, for i = 1,2, fi(ai.aJ) > 0.

An outcome is strictly negative if, for i = 1,2, fi{ai,aj] < 0. An outcome is

weakly negative if, for I = 1,2, fi(ai’aj) = 0.

Finally, Definition 5 characterizes those outcomes in which each player
chooses the action that maximizes his own material payoffs among those actlions
that yield the other player the same material payoff. Because players are
motivated in part by self-interest, and because each player’'s desire to reward
or punish the other is manifested only through his effect on the material

payoffs of the other, only such strategies will be played.

Definition §:
An outcome (al,az) involves No Pointless Sacrifice (NPS) if, for i = 1,2
and J #* i, there does not exist a; such that both nj(ai,aj) = nj(ai,aj) and

. (al,a,) > n.(a, ,a.).
17717 i 717

I now present Propositions A1-AS5, which reproduce (with one correction)
Propositions 1-5 from Rabin (19383). (The proofs are omitted, and can be found
in the Appendix to Rabin (1993).) Proposition Al states that any Nash

equilibrium that is also a mutual-max or a mutual-min outcome is also a

10



fairness equilibrium. Intuitively, these are outcomes in which each player is,
given the other’'s behavior, simultaneously maximizing both his material and

his fairness in payoffs.

Proposition Al:
Suppose that [al,az) is a Nash equilibrium, and is either a mutual-max or

a mutual-min outcome. Then [al,az} is a fairness equilibrium.

Proposition Al guarantees, for instance, that the outcome (Defect, Defect)
is a fairness equilibrium in the Prisoner's Dilemma. Propesition A2 states
that, in all fairness equilibria, players have the same disposition towards
each other; either they both sacrifice to help the other, or neither
sacrifices to help the other.

Proposition AZ:
Every falrness—equilibrium outcome is either strictly positive or weakly

negative.

While Propositions Al and A2 pertain to all games, additional results
pertain to the limit cases where the scale of material payoffs is made either
arbitrarily large or arbitrarily small. For every positive X, let the game

G(X) be the game G where all the material payoffs are multiplied by X. Then:

Proposition A3:
For any NPS outcome (al,az) that is either a strictly positive mutual-max
outcome or a strictly negative mutual-min outcome, there exists an X such

that, for all X e (0,%), (a,a,) is a fairness equilibrium in cex). 8

1’

While Proposition Al guarantees that (Defect,Defect) is a fairness
equilibrium in the Prisoner’'s Dilemma irrespective of the scale of material
payoffs, Proposition A3 establishes that, if material payocffs are very small,

then (Cooperate,Cooperate) is also a fairness equilibrium in the Prisoner’s

9 The statement of Proposition A3 is a slightly modified and corrected
version of Proposition 3 in Rabin (1993), adding the criterion that the
outcome must be NPS. The proof of Proposition 3 in Rabin (1993} explicitly but
incorrectly asserts that the NPS condition must hold in any strictly positive
mutual-max and strictly negative mutual-min outcomes. With the corrected form
of the Proposition, the criginal proof holds.

11



Dilemma, and that both (Chicken,Chicken) and (Dare,Dare) are fairness
equilibria in Chicken. While Proposition A3 establishes that generally
mutual-max and mutual-min outcomes are falrness equilibria when material
stakes are small, Proposition A4 establishes that typically mutual-max and
mutual-min outcomes are the only fairness equilibria when material stakes are

small.

Proposition A4:
Suppase that (al,az) € (Sl,Sz) is not a mutual-max outcome, nor a

mutual-min outcome, nor a Nash equilibrium in which either player is unable to
lower the payoffs of the other player. Then there exists an X such that, for
all X e (0,X), (al,az) is not a fairness equilibrium in G(X).

Finally, Proposition A5 shows that only Nash equilibria can be fairness

equilibria when material stakes are large:

Proposition AS:

1f (al,az) is a strict Nash equilibrium, then there exists an X such
that, for all X > X, (al.az) is a fairness equilibrium in G(X). If (al,az} is
not a Nash equilibrium, then there exists an X such that, for all X > X,

(al,az) is not a fairness equilibrium in G(X).

3. Fairness in Incremental Games

Propositions A3 and A4 of the previous section help characterize the set
of fairness equilibria in small-stakes, one-shot games. In this section, 1
consider repeated games in which the material stakes each period are
negligible, and develop some results corresponding to and contrasting with
Propositions A3 and A4. Consider a finite-strategy, one-shot game G. As in the
previous section, let G(X) be the game G where the payoffs for each player is
multiplied by X, Let GT(X) be the repeated game (without discounting)
consisting of T repetitions of G(X). To simplify analysis, I assume that even
mixed strategies are observed by players at the end of each period.

I define a class of games called incremental games, which is a
catch-phrase for finitely repeated games where the payoffs in each period are
negligible. Formally, the T-incremental game is the game GT(I/T). Note that

the T-incremental game GT iz a finitely repeated game whose total payoffs is

12



equivalent to the payoffs from the game G. Thus, when T is very large the
material payoffs each period of GT{I/T} are very small.

A couple of additional assumptions about the kindness functions are
needed to analyze incremental games. First, because I wish to compare games
with differing strategic structures (one-shot games vs. Incremental games}, I
assume the kindness function does not depend in an "ad hoc" manner on the
strategic structure of a game. Assumption 5 guarantees that if a decision by
player i involves a choice among precisely the same set of payoffs as does a
decision in the corresponding incremental game, then he should measure the
kindness of the payoffs he chooses in the two situations in the same way. This
assumption seems natural insofar as emotional implications of behavior depend
on payoff consequences and not on the precise physical actions associated with

the behavior.

Assumption S:

If the convex hull of payoffs in games G and G’ are identical, then for
any strategies bj,b3 by player j in games G and G’ such that H(bj) = H(bB},
fi(ai’bj) = fi(a;,ba) if and only if uj(ai,bj} = nj(ai,ba).

Assumption 5 (even without maintaining Assumptions 1-4) trivially implies
a simple result relating the set of fairness equilibria in one-shot games to

the falirness equilibria in the corresponding incremental games:

Proposition Bl:
Suppose the kindness functions meet Assumption 5. Let T be the strategy

in which player i plays a, in each pericd of the game GT(I/T) irrespective of
what happens in earlier periocds. Then (cl,cz) is a fairness equilibrium in

GT(l/T) if and only if (al.az} is a fairness equilibrium in the game G.

Proof':
Given that player J is playing a‘j in each period, player i's set of
payoffs he chooses from is exactly H(aj) in the original game G. Moreover, the

choice of the stationary strategy a, in the incremental game selects exactly

i
the same payoff pair in this set as does the strategy a; in the game G. By
Assumption 5, therefore, (a},az) is a fairness equilibrium in G iff (01,02) is

a fairness equilibrium in G". Q.E.D.
Proposition Bl says that we do not eliminate any fairness equilibria when
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we change a one-shot game into an incremental game. This is because if each
player j is choosing to play aL‘j every period no matter what happens in the
game, then each player i faces exactly the same choice among payoff pairs as
he does given the same strategy in the one-shot game. This result is simllar
to the fact that any Nash equilibrium of a game can also be the outcome each
period in a Nash equilibrium of the finite repetition of that game. But the
analogy breaks down for two reasons. First, Proposition Bl very much depends
on incremental games having the same total payoffs as the one-shot game, and
does not extend to repeated games where the one-shot game is repeated without
reducing the scale each period.10 Second, while it is always a Nash equilibrium
of a repeated game to play a different stage-game Nash equilibrium each
period, the analog here 1is not true: Playing one stage-game fairness
equilibrium in period 1 and a different stage-game fairness equilibrium in
period 2 typically will not constitute a fairness equilibrium in a two-period
game.11

Proposition Bl identifies all fairness equilibria consisting of
stationary, history-independent strategies in incremental games. But there may
of course be other fairness equilibria. In considering what these additional
equilibria might be, I specify a further assumption about kindness functions.
Assumption 3 of the previous section says that if we make the material stakes
of a given game negligible, behavior will typically be determined by fairness
considerations. Assumption B is a generalization of Assumption 3: It says,
roughly, that when a player is choosing among a very small set of efficient
outcomes, concerns for fairness will typically determine his behavior.
Assumption 6 requires this in a brute-force way: I assume that, for any
sequence of Pareto-frontiers which converge to zero in total size, the limit

of potential kindness payoffs for the players are infinitely greater than the

10 For instance, for a given pair of Kkindness functions and scale of
payoffs, the outcome (Dare,Dare) may be a fairness equilibrium in the one-shot
game of Chicken. Yet I will show in Section 4 that if per-period payoffs are
non-negligible, the outcome (Dare,Dare) cannot be a frequent outcome in any
fairness equilibrium of repeated Chicken with enough repetitions.

11 For instance, the strategies of playing a strictly positive stage-game
fairness equilibrium in period 1 and, irrespective of first-period play,
playing a strictly negative, non-Nash stage-game fairness equilibrium 1in
period 2 will never be a fairness equilibrium to a two-period game. If the
emotions generated by these strategies are positive or neutral, they will
generate a period 2 deviation; if they are negative, they will generate a
period 1 deviation.
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size of the Pareto frontiers.12 Formally, for any payoff set ﬂ[bJ), let HP(bJ)

be defined as the set of points that are not Pareto dominated by other points

in H(bJ) Let f (b.) be the nicest player i can be to player j, and let = (bj)

J
and L (b ) be player i’s highest and lowest payoff among points in HP(bJ)

Assumption B:

Consider any sequence of games, {G } e’ and any ¢ > 0. Let
(bi(Gn)'bj(Gn)) be strategies such that (bJ{G )) and HP(b (G )} each
converge to a single point, but for all n < o, HP(bJ(Gn)) and HP(b (G ]J) are a
non-singleton locus of points such that the slope (dnJ/dn.) and inverse slope
(dn /dnJ) at all po1nts igs less than —c Then for 1 = 1,2 and j # i,

Limit 1) (b )- f (b, )/[n (b y-rt (bj)] — w,

Assumption 6 directly implies that the limit of a sequence of mutual-max
strategies which inveolve almost no scope for material gains from deviating
will be a fairness equilibrium. This provides one key to the next proposition.
This and other propositions will refer to fairness equilibria where behavior
on the equilibrium path is the same each period. For ease of reference, I
define such equilibria for incremental games in the limit case as the number

of periods, T, becomes arbitrarily large:

Definiticn 6:

An outcome (al,az) in the game G is a stationary incremental fairness
equilibrium (SIFE) if there exists a T such that for all T = T there exists a
fairness equilibrium in the game GT(I/T) that involves the players playing

(al,az} in every period.

Translating into the language of this section, I argued in the
Introduction that (Cocperate,Cooperate) in the incremental Priscners’ Dilemma
is a SIFE. I also noted that this result relied on the existence of punishment
strategies that gave both players lower payoffs than in the Cooperative
outcome. Definition 7 lists variants of the condition that such supporting

strategies exist:

12 I do not require this property when the Pareto frontiers are arbitrarily
close to horizontal or wvertical, where the costs of kindness are elither
trivial or exorbitant. :
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Definition 7:
The supergame strategies (Ul,oé) support the payeff pair (&1'&2) if, for

i = 1,2, 3 = 1, and every strategy 7J € ZJ, (vi.wjl yields a path of
(expected) payoffs (nl.nz] such that: a) for all T > 0O, §g=1 n:/t = LI and
(vi) i1s bounded in

k) Lim 0 Et 1 n /T = nJ and for i = 1, 2, the slope of
the sense of Assumptlon 6.

i) An outcome (al,az) in the one-shot game is supported if there exist
supergame strategies (v T, } that support the payoffs (nl(al,az) nz(az,a 1.

ii) An outcome (al.a ) in the one-shot game is strictly supported if
there exists € > 0 and supergame strategies (al,wz) such that (ai.aé) support
the payoffs (nl(al,az)-e, 2(a2 a, -},

iii) An outcome (al,az} is strlctly not supported if, for either i = 1 or
i = 2, there exists ¢ > 0 such that for all o0 does not support
(m (al,a J+e, "2(a1'a2)+€)'

An outcaome (al.az) is supported if each player has a repeated-game
strategy that both guarantees that the other player gets a worse average
payoff than she gets in the outcome (al,az), and thaf he himself will never be
forced, even in the short run, to get a higher average payoff than he gets
from (al,az). The outcome {Cooperate,Cooperate) in the Prisoner’'s Dilemma is
supported by each player by the strategy tit-for-tat; any response by the
other player to this strategy will yield each player less than or equal to the
payoffs from cooperation. Note that the grim strategies “Defect forever" do
not support the cooperative payoffs. If player 1 played Defect forever, then
player 2 could respond by playing Cooperate forever, which gives player 1 a
payoff higher than he gets from (Cooperate,Cooperate]).

Proposition BZ establishes that almost all supported mutual-max outcomes

are SIFEs:

Proposition B2:
Suppose the kindness functions meet Assumptions 1-6. Then every

supported, strictly positive, NPS mutual-max outcome (al,az) is a SIFE.

Proof':

Let o, be some supergame strategy by player i that supports the cutcome
(al,az). Then in a T-incremental game, consider the strategies {11 72) which
are defined as follows. Each player 1 plays ai in period 1, and plays ai in

period t if player j has player a, in each period 1,...,t-1. If in any period

J
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t player J deviates from aj. then player i responds by playing the supergame
strategy Ui from period.t+£ to T.

The strategies (71,72) constitute a strictly positive NPS mutual-max
outcome in the repeated game: it is mutual-max because any deviatlon by player
2 (say) will ylield player 1 no higher payoff than if they play (7;.7;); it is
strictly positive because they are playing the strictly positive outcome
(al,az) in the flnal period; it 1s NPS because (al.az) is NPS, and no
deviation by a player can give that player a higher payoff.

It remains to show that, as T — w®, the set Hp{wg) for each J becomes
arbitrarily small, with its slope bounded. It's slope is bounded by the
assumption on HP(VJ) for § = 1,2. HP(wg) becomes arbitrarily small, because
for any supporting strategy o, it is the case that for all u > 0, there

J
exists N > 0 such that playing the first N periods of Uj guarantees that

player i’s average per-period payoff will be less than or equal to
(1+u)-ni(a1,a2). As T — ®, this implies that the highest payoff that player i
can get from deviating becomes arbitrarily small. Assumption 6 therefore
implies that there exists a T such that, for all T = T, these strategies

constitute a fairness equilibrium to the game GT(1/T}. Q.E.D.

The intuition for Proposition B2 resembles that presented in the
Introduction: If players threaten to punish deviations from an outcome with
supporting strategies, then the potential payoff gains to a player from
deviating are minimal. If the stage-game outcome is a mutual-max outcome, and
deviations from this outcome are punished by supporting strategies, then the
overall strategies alsec form a mutual-max outcome.13 Moreover, the Pareto
frontier of each player’s choice set will be small, because the fact that
deviations are punished by supporting strategies means that the Pareto

frontier for each player given the overall strategies is simply her Pareto

13 It is here that we need for punishments that are guaranteed to hurt both
players. Suppose a deviation by player 1 (say)} leads to a punishment strategy
by player 2 in which player 1 could respond with a strategy that ylelds player
2 a higher payoff than does the putative equilibrium. Then player 2 may
consider it unkind of player 1 not to "deviate"” and then choose a strategy to
help player 2 after the deviation. For instance, the "grim" strategies of
playing Defect forever following a deviation do not support the cooperative
outcome in repeated Prisoners’ Dilemma, because either player could help the
other by Defecting once and Cooperating from then on. Indeed, when overall
payoffs are small enough, we know from Proposition A4 that cooperation via the
grim strategies will not constitute a fairness equilibrium to the incremental
game.
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frontier of the ({scaled-down) stage-game paycff set. The fact that the
mutual-max outcome is strictly positive means that the Pareto frontier is not
a singleton. All this implies that the overall strategies constitute a
strictly positive mutual-max outcome where the material benefits of deviating
are small; thus, they constitute a fairness equilibrium.

Proposition B2 is usefully contrasted with Proposition AS, which states
that if a mutual-max outcome is not a Nash equilibrium then it is not a
fairness equilibrium in a game with very large material stakes. Proposition B2
shows that, if the mutual-max outcome is supported, then it can happen in
every period as part of a fairness equilibrium of the incremental version of
the game with arbitrarily large overall payoffs.

Because Propositions Al and Bl together imply that all mutual-max Nash
equilibria are SIFEs, Proposition B2 implies that that only 1f exactly one
player is maximizing his own material payoffs might a supported mutual-max NPS
outcome not be a SIFE. Thus, "typically" a supported mutual-max NPS outcome is
a SIFE. Proposition B2 can be usefully applied, for instance, to games with
the strategic structure of the Prisoners’ Dilemma or Chicken, because
tit-for-tat strategies (where players start out playing C, and play C in
period t+1 if and only if the other player played C in period t} support the
cooperative outcome in each game if the cooperative outcome is efficient.
Proposition B2 implies therefore that (Cocperate,Cooperate} in Prisoners’
Dilemma and (Chicken,Chicken) in Chicken are SIFEs.

Proposition B2 says that the "supportability" of a mutual-max outcome is
sufficient for it toc be a SIFE. Is it necessary? The answer to this appears to
be no; there exist kindness functions meeting all the general assumptions such
that unsupported mutual-max outcomes can be SIFEs. Propesition B3 indicates,
however, that supportability is (nearly) necessary to establish that a NPS
strictly positive mutual-max outcome is a SIFE for all kindness functions

meeting the general assumptions:

Proposition B3:
If a strictly positive mutual-max outcome (al,az) is strictly not

supported, then there exist kindness functions meeting Assumptions 1-6 such

that (al,az) is not a SIFE.
Proef:
By Proposition B6 below, we know that there are Kkindness f{functions

meeting Assumptions 1-6 such that, for all T, there is no strictly positive
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fairness equilibrium yielding payoffs (nl(al,az).nz(al.az)). But a strictly

positive outcome {(a ,aa) can occur in the last period of a repeated game only

as part of a strictly positive falrness equilibrium, because an outcome 1is
strictly positive only if each player has the potential of increasing his own
material payoffs while hurting the other player; if fi = for either player,
the other player would therefore deviate in the last period. This proves that

(al.az) cannot be a SIFE. Q.E.D.

Whereas Proposition B2 shows that a class of supported mutual-max
outcomes can be SIFEs for all kindness functions, Proposition B3 shows that
strictly unsupported outcomes will not be SIFEs for some kindness functions.
The kindness functions for which unsupported outcomes are not SIFEs do not
appear to be particularly exotic or extreme. The proof merely invoked the
possibility that the kindness functions were such that each player 1) would
not be willing to sacrifice too much of their own payoffs to help the other
player, even if positively disposed to the other player, and 2} would not be
willing to sacrifice at all unless the other player sacrifices some minimal
amount for her. Such kindness functions can rule out cooperation for strictly
unsupported outcomes, because such outcomes invoelve at least one player either
sacrificing a non-trivial amount to help the other player, or refusing to
"deviate" to increase the other player’s material payoff by a non-trivial
mount.

Propositions B1-B3 pertain to those outcomes that can possibly occur
every period of a fairness equilibrium in an incremental game. Further results
can be developed if we consider the set of near SIFEs. An outcome is a near
SIFE if it occurs an arbitrarily large percentage of the time in some fairness

equilibrium of the T-incremental game as T becomes large.

Definition 8:

An outcome (a .aZ] is a Near SIFE if, for all a« € (0,1}, there exists T

1
such that, fer all T =z T, there exists a fairness equilibrium in the game

GT(l/T) in which (al,az) occurs for more than aT periods.

Proposition B4 characterizes a class of non-mutual-max outcomes that can

be near SIFEs:

Proposition B4:
Suppose that there exist supergame strategies (wl.az) that strictly
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support both the NPS outcome (al,az) and some strictly positive, mutual-max

NPS outcome (dl,dzl Then for all kindness functions meeting Assumptions 1-8,
. 14

(al,az) is a near SIFE.

Proof:

let o be scme supergame stirategy by player i that supports the outcome

(a a, ) and the outcome (d d ). Then in a T-incremental game, consider the

1!
strategies (71, ) defined as follows Each player 1 plays 3, in periocd 1, and

plays a1 in period t < t if player j has player a, in each peried 1,...,t-1.

J
From periods t to T, each player i plays d in period t if player j has

3 in each period 1,...,t -1 and has played ci‘j in each peried

t,..., t-1. If in any period t player j deviates from aj or dj (whichever is

player a
=

relevant), then player i responds by playing o forever.

Claim: There exists a positive integer 7 such that the above strategiles
are a NPS, strictly positive mutual-max outcome to the game GT(l/T) for all T
and t‘ such that T - t. =z J. This is because, so long as T - t‘ is made large
encugh, any deviation by player j in periods 1,...t*—1 will induce the
strategy such that player i1 will be hurt relative to the non-deviation
outcome. Player J cannot improve player i’'s payoff in any period t*,...,T
because (dl'd ) is a mutual-max outcome. These strategles are strictly
positive in G (1/T}) because (dx’dz) is assumed to be strictly positive, seo
that player Jj playing dj in period I b¥ definition involves sacrifice. .

Now consider.the strategies (?1'72) defined for each T with respect to t
such that T - t = J. Then as T — ®, wWe can see that these strategies

constitute a fairness equilibrium using the same arguments as in the proof of

Proposition B2. Moreover, as T — ©, the strategies yield the outcome (al.azl
all but J/T proportion of the time, so that these strategies yield a near
SIFE. Q.E.D.

The outcomes identified by Proposition B4 as near SIFEs are those that
are supported by some pair of strategies that support some mutual-max outcome.
Players can then play such cutcomes most of the game, and then in the last few

pericds play the mutual-max outcomes. Just as in Proposition B2, the resulting

14 Although my emphasis here has been on particular outcomes in the stage
game G, Proposition B3 straightforwardly generalizes to any feasible payoff
pair that is strictly supported, whether or not that payoff pair corresponds
to particular strategies iIn the one-shot game.
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overall strategies constitute a mutual-max outcome in the overall game. Nofe
that Proposition B4 requires the stronger criterion of strict support, because
deviations from non mutual-max outcomes can strictly improve both players’
payoffs.

I have not shown that only outcomes with the payoffs described 1in
Proposition B4 are near SIFEs. I have no complete characterization theorems
along these lines. Proposition BS indicates, however, that there exist no
fairness equilibria ylelding either player below his minmax payoffs 1n
incremental games if the scale of the overall game is made arbitrarily large.
With the natural additional assumption, Proposition B5 is a trivial analog of
Proposition AS, because any Nash equilibrium in any repeated game must yield a
player at least his minmax payoff. As we assume that the total material stakes
of the repeated game become arbitrarily large, this means that every fairness
equilibrium should yield the player at least (arbitrarily close to) his minmax

* *
payoff.ls Let (ni,nzl be the players’ minmax payoffs.

Proposition BS:
Suppose that the kindness functions meet Assumption 7. Then for all
outcomes (al,az) that yield at least one of the players less than his minmax

payoff there exists an X such that for all X > X, (al,az) iz not a near SIFE
in G(X).

Proof':

L]
Assume ({(without 1loss of generality) that nl{al,a:) < m. Then there
. 2

1,a2) = m - ok As the scale, X, of the game

becomes arbitrarily large, then player 1 can improve his material payoff by

exists x > 0 such that nl(a

arbitrarily much. Assumption 7 tells us that there exists some X such that for
all X > X, for all T, no fairness equilibrium to the game GT(X/T) can yield
player 1 the payoff nl(al.az}. Q.E.D.

Proposition BS tells us that certain outcomes, including those that are

fairness equilibria for small-payoff, one-shot games, are not fairness

15 The Proposition invokes Assumption 7 presented in the next section,
because neither Assumption 3 nor Assumption 5 imply that one cannot make the
scale of the kindness functions themselves arbitrarily large as we increase
the number of periods T. Using overkill, part 1 of Assumption 7 places a
universal bound on the value of the kindness functions.
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equilibria in incremental games if overall stakes are large. Consider, for
instance, the outcome (Dare,Dare) in Chicken. For small encugh X, we know that
this 1s a fairness equilibrium in the one-shot game. (Dare,Dare) cannot too
often occur as part of any fairness equilibrium in incremental Chicken,
however, when total stakes are very high. Because (Dare,Daré) yields each
player below his minmax payoff, players cannot punish deviations, so that a
player could gain each period by deviating from this outcome. The cumulative
benefit of deviating will therefore be substantial so long as the overall
material payoffs are large, so that a (bounded) taste for revenge won’'t induce
a player to keep playing Dare.

While Propositions Al and Bl combine to mean that all mutual-min Nash
equilibria (such as (Defect,Defect) in the Prisoners’ Dilemma)) are SIFEs. The
following lemma establishes that any non-Nash mutual-min outcome in which
neither player plays all of his actions with positive probability yields at
least one player below his minmax payoff. Thus, Proposition B4 implies that
almost all non-Nash mutual-min outcomes will not be SIFEs for large enough

material payoffs.

Lemma 1:
Suppose that (al,az) is a mutual-min outcome in which neither player
plays all his actions with positive probability is yielding payoffs (ﬂT.ng).
*

If player i is not maximizing his own payoffs given aJ, then n? < ui.

Proof':
Suppose player 1 is not maximizing his own payoffs in a mutual-min

m i
1 1 Let nl

= nl(dl,azl. Also, because we are considering only generic games, and (al,az)

outcome. Then player 1 has some strategy d. such that nl(dl,az) >n

is a mutual-min outcome, then for every pure strategy d2 that is not played

with positive probability in the strtegy a, by player 2, nl(al,dz) > nT. But
[ m
L mindzeAz,dztaznl(al'dz] > .
e = : Iy m
Let ) LER I nl(dl.a}. T may be less than . But because
player 1 has the option of mixing between strategiles a, and dl’ for any

strategy a € S, that puts probability weight 1-8 on the strategy a player

2 2

1's best response will yield him payoff

> ...m .yt _Y. .’ ! Py
nl(B) =z Max([[(1-8) LA 3 nl}.[(l 3) LA S ) 11.

Then, beciyse the game is finite, Min&e[o,l] nl(a) > mn

however, nl = M1n5€[0'1]

By definition,
*

m
m v
nl(a), so that this proves that n, < w Q.E.D.

1 1
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Lemma 1 establishes that "typically" mutual-min outcomes are not near
SIFEs when material payoffs are large. But some mutual-max outcomes are also
not near SIFEs when material stakes are high, because nothing guarantees that
a mutual-max outcome does not yield players less than their minmax payoffs. -
Such is the case in Gift (see Figure 1C). The outcome (Gift,Gift) is a
mutual-max outcome, and is a fairness equilibrium in the one-shot game 1f the
payoffs are small enough. Although it is inefficient in material terms, it is
a pretty natural outcome in one-shot games: if players come to belleve in the
outcome with common knowledge, then it is unambiguously nice to play Gift
rather than No Gift, so that for precisely the same reasons that players won’t
deviate from the (Cooperate,Cooperate) outcome in the Prisoners’ Dilemma, they
won't do so here.16

Proposition BS states that this outcome is not sustainable in incremental
games if the overall payoffs are high. As with (Dare,Dare) in Chicken, a
deviation from the (Gift,Gift) outcome cannot be punished by the other player.
Thus, when overall material payoffs are high, the material benefits of
deviating may outweigh the fairness benefits from not deviating.

In comparing the class of outcomes considered in Propesition B4 to those
outcomes considered in Proposition B5, it is clear that not all outcomes are
included. In particular, I have not provided a result about whether
non-supported outcomes with payoffs above the minmax levels can be near SIFEs.
While indeed some non-supported outcomes c¢an be near SIFEs, Proposition BB
establishes that for any strictly non-supported cutcome of a game, there exist
some kindness functions meeting Assumptions 1-6 such that the payoffs from
this outcome are not approximated by any strictly positive fairness

equilibrium of the incremental version of the game.

Proposition B6:

Suppose the outcome (a ,az) is strictly not supported. Then there exlsts

1
kindness functions meeting Assumptions 1 - 7 such that (al.az) is not a

strictly pesitive near SIFE.

16 Pre-game communication would perhaps be 1likely to lead players to
coordinate on the materially efficient outcome. But while the outcome
(Gift,Gift) is inefficient in material terms, it may be the players’ best
putcome in terms of their overall utility; it is unclear what is the most
behaviorally realistic assumption in such a situation.
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Proef':
Suppose (without loss of generality) that there exists x > 0 such that
for all strategles o

2
that the average per-pericd payoffs from (wl,aé} yields a payoff of L z

of the infinitely repeated games, there exists oy such

ni(al,az) + kK for either i = 1 or 1 = 2. Note that if there does not exist any
strategy to the infinitely repeated game that guarantees payoffs less than
this, then there will not be any such strategy for any finite T either
(otherwise player 2 could simply repeat that finite strategy infinitely
often).

Simply choose a kindness function f1 independent of the strategic
structure of the game for which, given the payoff scale of payoff set H(cé)
implied by the payoff scale of the game (and thus of all the incremental
versions of that game}, the following two conditions hold:

a) player 1 would be unwilling to choose a payoff of nl{al,az) over a
payoff of nltal,az] + k for any value of fz, and

b} fl < 0 for every choice of payoff T, < né(al.az) + k/2 for any
payoff set T that includes the payoff nz(al,az) + K.

With such a kindness function, Player 1 would deviate from 2y if player 2
was playing a punishment strategy o, such that H(az) includes a payoff %, >
nltal,az) + k. If H(az) included a payoff T, > nz[al,az) + kK, the fl < 0. By
Proposition A2, it must be that f, = 0, so that these cannot be a strictly

2
positive fairness equilibrium to the overall game. Q.E.D.

Some unsupported outcomes could be positive fairness equilibria in
incremental games, of course, depending on the kindness functions. But
Proposition B6 establishes that no such outcome is a SIFE or near SIFE for all
kindness functions meeting the general assumptions. [ remind the reader that
this contrasts with Proposition B2, where it was shown that for any kindness
function meeting the general assumptions, supported mutual-max outcomes such

as cooperation in the Prisoner’s Dilemma are SIFEs.
4. Fairness in Replicated Games
In this section I present some results regarding fairness equilibria in
replicated games, which are what I call repeated games whose scale each period

replicates a given one-shot game. Formally, I say that the game GT(I)
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constructed from the one-shot game G is a T-replicated game.

Proposition Bl of the previous section states that for every
fairness-equilibrium outcome in a game, there exists a fairness equillbrium in
the incremental version of that game which yields that outcome each period.
The same result does not hold for replicated games. At the end of this
section, I return to formalizing the very strong additional assumptions thatv
guarantee that an analog of Proposition Bl holds for replicated games. But no
plausible assumptions will imply that the analogs of Propesitions B2 and B3
will hold for replicated games; there may not exist any fairness equilibria in
replicated games where a supported mutual-max outcome happens most periods.
The cooperative outcome in the Prisoners’ Dilemma, for instance, need not be a
part of fairness equilibrium in a replicated game.

This section will focus instead on results emphasizing that, as the
number of periods becomes arbitrarily large, the set of fairness equilibria in
replicated games will look much like the set of Nash equilibria. I begin with
the result that, in replicated games, there will be no fairness equilibria in
which players get much below their minmax payoffs. This result merely
reproduces Proposition B4 of the previous section.

To obtain this result, I need to assume that fairness payoffs do not
increase as much as material payoffs as we replicate a game. Like Assumption
3, this captures the idea that for very large marginal material stakes,
players’ behavior is dominated by material self-interest. Assumption 3 is not
sufficient here because replication changes the strategic structure of the
game. With some overkill, I strengthen Assumption 3 by assuming a universal
bound for =all games on the values of the kindness functions as well as the
relative slope of kindness functions along the Pareto-frontier of players’

payoff opportunity sets.l7

17 This last component, as formalized by part 2 of Assumption 7, limits the
proportion of the range of kindness values consistent with Pareto efficlency
that can come from a small change sacrifice by player 1 in his material
well-being. As such, it is similar in spirit to Assumption 1, Part Z2b.
Assumption 7 says roughly that changes in fairness payoffs arising from
changes along the Pareto-frontier must be approximately proportional to the
material sacrifice made; Assumption 6 specifically insists, by contrast, that
if the Pareto-frontier is negligible relative to the entire payoff-opportunity
set, changes in the fairness payoffs can be much greater for material
sacrifices along the Pareto-frontier than for comparable material sacrifices
in choices among inefficient outcomes.
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Assumption 7:

There exists N7 > 0 and positive-valued function k(c) such that for all

games and for each § = 1, 2,
1}  For all a., bj' fi(ai,bj) € [-N7,N7]; and

2) For all a, a’, «, o' € Si and b e SJ such that

P . 1 h
a) nJ(ai,bj). "j(ai’bj)‘ nj(ai'bj)’ uJ{ai,bj) € [uJ(bJ).uj(bJ)]. and
b) uJ(a.b) - nJ(a’,b) = uJ(a.b) - nj(a’,b),

[fi(a,b) - fi(a ,b}]/[fi(a.b) - fi(a ,b)] = NT'

Proposition C1 shows that, with this bound on fairness payoffs, in
replicated games with an arbitrarily large number of periods, self interest
will guarantee that neither player gets a per-period payoff (much} less than

his minmax payoff:

Proposition C1:
Suppose the kindness functions meets Assumptions 1-7. Then for all € > O,

* =
there exists T such that for all T > T, every FE of the game GT(l) is such

»
that each player i is getting average per-period payoff greater than ni - £.

Proof:

Given the bound on the fairness payoffs, this result is a trivial
extension of the proof of Propositions B4 and BS, because such an equilibrium
must involve a player doing arbitrarily worse materially than his minmax

payoff. Q.E.D.

Proposition C1 indicates that many outcomes that are possible in one-shot
games will be ruled out in replicated games. Recalling Lemma 1, it implies,
for instance, that most non-Nash mutual-min outcome cannot occur nearly all of
the time in replicated games.

The converse of Proposition C1 does not hold true--there may be payoffs
above the minmax payoffs that deo not result from any falrness equilibrium of a
replicated game. But Proposition CZ2 establishes that a slightly modified
version of the Nash folk thecrem for finitely repeated games holds for

fairness equilibrium in replicated games.18 In particular, so long as there

18 See Benolt and Krishna (1987) for the statement of the Nash folk theorem

for finitely repeated games.
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exists a strict and strictly negatlve Nash equilibrium that ylelds all players
above their minmax payoffs, all outcomes that are above the minmax payoffs can

be part of a fairness equilibrium in replicated games:

Proposition C2:
Suppose that there exists a strict and strictly negative Nash equilibrium

(dl’dz) with payoffs that exceeds the minmax payoffs for each player. Then for
any kindness functions meeting Assumptions 1 - 7, for every € > 0, and for

*
every outcome (a az) yielding per-period payoffs ni(al,az) > w, for each
= »

1’ i
player, there exists T such that for all T > T , there exists a fairness
equilibrium of the game GT(I) where Ini(rl,az] - nital,az}l < ¢ for each

player 1i.

Proof:
K>
Consider the game G (1), and the strategies (al,a ) as defined as

follows. Player 1 plays ai in each period t from 1 to K'-K iff the other
player j has played a'j 2? periods 1 to t-1. If player j does not play aj in
any period t from 1 to K -K, then player i minmaxes j from periods t+1 to Kz.
If player j plays a..j in all periods from 1 to K2-K, then player i plays di in
the last K periods.

Claim 1: For K large enough, this constitutes a Nash equilibrium. This is
because, since (dl,dz) is z; Nash equ;librium, clearly neither play;r galns
from deviating in periods K -K+1 to K°. A deviation before period K -K from
(a a, ) may lead to a one-shot gain. But for K large encugh, and given the
fact that L (d d ] > ni

Claim 2. For i=1,2 Lim Mln[n (¢J) n (vj) HJ(UJ) -T, (6 }1 = ». That

is, the Pareto frontiers of H(wz) and H(vl) become arb1trar11y large as K

this is clearly a Nash equilibrium

becomes arbitrarily large. This is so because, given that (d1'd2) is a
strictly negative Nash equilibrium, there must be a deviation by each player i
that helps the other player. Because the Nash equilibrium is strict, this
deviation must hurt player 1. Therefore, there exists a deviation by player i
in each of the last K periocds that would give him a lower payoff and player j
a higher payoff. As K becomes large, the Pareto-frontier must therefore become
infinite.

Claim 3: LimK_%mMaxal, [fi(wi’.wjll/ni(ci’.cj) = 0. This is because as
the Pareto frontier becomes larger and larger, Assumption 7 says that the

maximal fairness gains of a deviation are bounded, and, because the slopes for
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these Pareto-frontiers are bounded for all K, Assumption 7 says that the
player cannot get a significant percentage of that falrness benefit without
sacrificing a significant percentage of the available material costs.
Claim 3 implles that there exists T such that for all T > T,
Max , If. (e.',0c.}l/n.(e,’,00.) < 1/N,, where N_ is the bound on f_, from
01 ii J i i J 7 7 2
Assumption 7. For all such T, (o ,02) is therefore a fairness equilibrium.

Q.E.D.

1

The proof of Proposition C2 is much like the proof of the Nash folk
theorem for finitely repeated games. Players support any feasible outcome for
most of the game by threatening minmax punishments for deviation. At the end
they play a Nash equilibrium; to make sure that they don’t deviate earlier, it
must be that the payoffs from this Nash equilibrium exceed the minmax payoffs.
The only additional step in applying this to fairness equilibrium is to show
that neither player’s fairness payoffs are great enough to induce a deviatlion.
But since the Pareto-frontiers are becoming very large, Assumption 7
establishes that this 1s the case.

None of the results above guarantee that, if the cocperative outcome is a
fairness equilibrium in the one-shot Prisoners’ Dilemma of a given scale, it
is a fairness equilibrium in the replicated Priscners’ Dilemma. This turns out
not to be true except for a restricted class of mutual-max outcomes, and then
only if one makes substantially stronger assumptions about the kindness

functions. I provide conditions for such a result in the Appendix.

5. Conclusion

Some experiments on repeated games exhibit a pattern of decline in levels
of cooperation from the first to the last period, with levels of cooperation
in the final period being low but not zero.19 Among the interpretations for the
observed decay in cooperation in the repeated Prisoners’ Dilemma or repeated

public~goods games are twe that are manifestly inconsistent with the

19 Confusing the interpretation of these experiments somewhat Is the fact
that the patterns do not as much as we might expect differ from experiments
with non-strategic repeated play, where players should not logically
anticipate that their behavior in early periocds will much affect their
environment in later periods. For a good survey of some of the literature on
one-shot and repeated-game cooperation, see Dawes and Thaler (1988).
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assumptions of my model. First, I have ignored strategic uncertainty: It may
be that players are uncertain whether they are playing the "nice" or the
"mean" equilibrium. While my discussion of the repeated Prisoners’ Dilemma
concentrated on the issue of whether full cooperation was possible, the fully
non—-cooperative outcome will always also be a fairness equilibrium, and
players may be uncertain which equilibrium they are playing. By focusing only
on equilibrium rather than non-equilibrium analysis, my model misses out on
the dynamics of strategic uncertainty and learning over time.

A second possibility omitted from my model is incomplete information. I
have assumed that the existence and precise form of fairness preferences are
common knowledge to the players. One Interpretation of the experimental
evidence is that each player may be nervous that she is not playing with other
fair players. This nervousness 1is well |Jjustified by the experiments
themselves, in the sense that many players in one-shot Prisconers’ Dilemmas do
not behave cooperatively, and some of these seem to be doing so desplte
believing others will cooperate.

Uncertainty over players’ true preferences is reminiscent of the model in
Kreps et al (1882), whose results seem to match the experimentally observed
decay in cooperation. They show that substantial cooperation is possible in
the repeated Prisoners’ Dilemma if one assumes that players perceive that
there is a small probability that one of them is a "“crazy" type. My model is
analogous to theirs insofar as it shows that a small departure from standard
assumptions can lead to cooperation. The models differ in the end play:
because Kreps et al posit only a small likelihood that players aren’t purely
self-interested, play in the final periods of the game will be predominantly
non—cooperative.20

Obviously, the two models are complementary. Indeed, the naturalness of
positing that the most likely “crazy" types are tit-for-tatters seems to
derive in part from the same assumptions incorporated into my model--that

pecple tend to be "reciprocal altruists" whe reward good behavior and punish

20 A second potential difference is that my results only heold with small
per-period payoffs. The incomplete-information explanation does not per se
depend on the per-period payoffs. Of course, if the "crazy types" have
preferences similar tc those I assume, there will be scale effects In
incomplete-information models as well. Moreover, 1if one interprets the
existence of crazy types as boundedly rational, the hypothesis that people are
more rational in decisions that have larger stakes will alsc indicate greater
cooperation under the incomplete-information model of repeated games.
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bad behavior by others. Combining the models would seem to explain the
experimental evidence best--the decay of cooperation over time seems to
suggest an incomplete-information, reputations model, but the relatively high
levels of cooperation (in both one-shot and repeated-game settings) seems to
require the existence of fairness-oriented types with significantly higher
than zero probability.

Outside experimental settings, I suspect that my model’s assumption of
near certainty about the preferences and behavior of other people is more
realistic. In real-world relationships, such as interaction among co-workers,
behavior may well settle down on {(either friendly or unfriendly) outcomes in
which players have clear expectations about, and attitudes towards, those

around them.

Appendix

In this Appendix, I provide a further restriction on the kindness
function, and a sufficient condition on the strategic structure of the game,
such that a fairness-equilibrium outcome in a one-shot game can be supported
each period in a fairness equilibrium to the replicated game. In order to
establish this result, we need to first assume that the measure of how nice or
mean a player is being depends only on the size and shape of the Pareto

frontier of his payoff opportunity set. Assumption 8 formallizes this:

Assumption 8:
Suppose that the Pareto frontier of H(b.} in game G is an arithmetic

transformation (ni,nj) = (n +m, nJ+m) of the Pareto frontier of H(bJ) in the
game G’. Then for all a‘,bj’ such that nj(a b '} e [n (b ), m (b )1, fi(a’bj)
= f (a',b.') iff n (a,b,) = n (a’,b"} + m.

1 J J J J J

Assumption B8 is somewhat restrictive because it requires that the measure
of player’s kindness on the Pareto-frontier be independent of the rest of the

player’s payoff opportunity set.21 Even with this assumption, however, we

2l This means, for instance, that players cannot be more forgiving of
"merely selfish" behavior in situations where players have the opportunity to
be very nasty than in situations where the meanest a player can do 1s to be
selfish.
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cannot reproduce Proposition Bl for replicated games. We need additionally to
assume that the outcome is supported in a stronger way than we had In the
previous section. In particular, it must be that each player has not simply a

repeated-game strategy but a stage-game strategy that supports the outcome:

Definition 9:
An outcome (al,az) in G is one-shot supported if there exists an outcome

{bl'bz) such that, for i = 1,2, ni(bl,bz) < ni(al.az).

With Assumption 8 and Definition 9, we can state a final result:

Proposition C3:
Suppose that the kindness functions meet Assumptions 1-8. If the

mutual-max outcome (al,az) is a fairness equilibrium in the game G, and is
one-shot supported, then there exists a fairness equilibrium in the

T-replicated game in which (al,az) is played every period.

Proof':

If the strategies b1 and b2 support the outcome (al,aZ], then let the
repeated-game strategy Ui be such that player 1 starts out playing ai, and
continues playing it each period so long as player J plays aj. If player J
deviates, player 1 plays bi from then on.

Under Assumptions 1-B, the strategies (al,aé) constitute a fairness
equilibrium in GT(I) for any T, because, given the b1 and b2 one-shot support
{al,az), the setskﬂ(aa) and H(al) have the same Pareto frontiers as do the

sets H(az) and H(al) in G. Q.E.D.

Proposition C3 does not even assure that Cooperation is possible in the
replicated Prisoners’ Dilemma if it is a fairness equilibrium in the one-shot
Prisoners’ Dilemma, because (Cooperate,Cooperate) is not one-shot supported.
However, Proposition C3 does imply that if cooperating each period is a
fairness equilibrium in the thrice-replicated Prisconers’ Dilemma, then it is a
fairness equilibrium in any replicated Priscners’ Dilemma of four or more
periods, because there does exist a two-period strategy by the players that

supports cooperation.

22 The difference in the supportability of cooperation between the two- and
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Even when it holds in some form, Proposition C3 addresses only the issue
of whether a cooperative outcome in a one-shot situation can be replicated in
a multi-period play of the game; it does not indicate that cooperation can be
more easily supported in replicated games than in one-shot. While Proposition
C2 shows that repetition can help achieve cooperation in most of the cases
where it helps when players do not care about fairness, replication does not
seem to greatly assist fairness-oriented players to cooperate. Also note that
Proposition C1 implies that replication destroys many of the falirness
equilibria in one-shot games. While mostly replication seems to rule out
negative fairness equilibria, it can also render cooperative-but-inefficient
outcomes such as (Gift,Gift) in Gift impossible even when they are fairness

equilibria in the one-shot game.
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