Partitioned Low Rank Compression of Absorbing Boundary Conditions for the Helmholtz equation

Rosalie Bélanger-Rioux, Harvard University

Laurent Demanet, Massachusetts Institute of Technology
Imaging and Computing Group

CSE 15
March 15, 2015
Helmholtz equation in unbounded domain

2D Helmholtz equation

$$\Delta u(x) + \frac{\omega^2}{c^2(x)} u(x) = f(x), \quad x = (x_1, x_2) \in \mathbb{R}^2.$$

Solution u, frequency ω, medium $c(x)$, source $f(x)$.

Many sources!

Select **outgoing waves** using the Sommerfeld Radiation Condition

$$\lim_{r \to \infty} r^{1/2} \left(\frac{\partial u}{\partial r} - iku \right) = 0, \quad k = \frac{\omega}{c},$$

where r is the radial coordinate.
Applications

- Wave-based imaging, an inverse problem.
 - Seismic imaging: for rock formations.
 - Ultrasonic testing: non-destructive testing of objects for defects.
 - Ultrasonic imaging: visualizing a fetus, muscle, tendon or organ.
 - Synthetic-aperture radar imaging: visualizing a scene or detecting the presence of an object far away or through clouds, foliage.

- Photonics: studying the optical properties of crystals.

- Speeding up Domain Decomposition Methods.
Absorbing Boundary Conditions (ABCs) and Layers (ALs)

\[\Delta u(x) + \frac{\omega^2}{c^2(x)} u(x) = f(x), \quad k = \frac{\omega}{c(x)}, \quad x \in \Omega. \]

- Close system using Absorbing Boundary Condition (ABC) or Absorbing Layer (AL).
- \(N \) pts per dimension, \(h = 1/N \).

Issue: absorbing layers tend to get thick in heterogeneous media.
Absorbing Layers in heterogeneous media

Physical width $L > 1$ or width in number of points $w > N$.

\[\begin{align*}
\Omega & \quad \text{\large \text{f.}} \\
\end{align*} \]
Our numerical scheme

Goal: Compress costly ABC or AL to speed up Helmholtz solver

Step 1: Obtain the exterior Dirichlet-to-Neumann (DtN) map D
- Matrix probing with solves of exterior problem

Step 2: Obtain a fast algorithm for matrix-vector products of D
- Partitioned low-rank (PLR) matrices, compress off-diagonal blocks

\[
D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}
\]
Step 1: Obtain the exterior DtN map D

\[
D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D}
\]
The exterior problem to obtain the exterior DtN map

\[\Delta u(x) + \frac{\omega^2}{c^2(x)} u(x) = f(x), \quad x \in \mathbb{R}^2 \setminus \Omega \]

- \(u(x) = g(x), \quad x \in \partial \Omega. \)
- Use ABC or AL.
- Solution \(u_1 \) on 1\(^{st} \) layer outside \(\Omega. \)
- Obtain product of \(D \) with \(g \):

\[Dg = \frac{u_1 - g}{h}. \]

- Use \(D \) in a Helmholtz solver instead of ABC or AL.
Matrix probing

\[M \in \mathbb{C}^{N \times N}, \quad \text{single random vector } z \]

- **Given:** \(z \) and \(Mz \)
- **Problem:** recover \(M \)
- **Model:** there exist \(B_1, \ldots, B_p \) (fixed, given) such that

\[M = \sum_{j=1}^{p} c_j B_j \]

\(\Rightarrow \) find \(c_j \).
Matrix probing questions

- How to recover \(\mathbf{c} \)?

\[
M \mathbf{z} = \sum_{j=1}^{p} c_j B_j \mathbf{z} = \Psi_{\mathbf{z}} \mathbf{c}
\]

- 1 random realization: \(\Psi_{\mathbf{z}} \) has dimension \(N \) by \(p \).
- \(q > 1 \) random realizations: \(\Psi_{\mathbf{z}} \) has dimension \(Nq \) by \(p \).

- How large can \(p \) get?

- Which \(B_j \)?

Steps of matrix probing and their complexities

Steps of matrix probing:

- Orthonormalize B_j’s (QR).
- Build Ψ_z from products B_jz.
- Obtain Mz.
- Apply pseudoinverse of Ψ_z.

Complexity:

- N^2p^2.
- N^2pq.
- q solves of exterior problem.
- Np^2q.
Media considered (plots of $c(x)$)

Figure: Uniform.

Figure: Slow disk.

Figure: Diagonal fault.

Figure: Waveguide.

Figure: Vertical fault.

Figure: Periodic.
Real part of solutions $u, \omega = 51.2, N = 1024.$

Figure: Waveguide.

Figure: Vertical, left.

Figure: Diagonal fault.

Figure: Slow disk.

Figure: Vertical, right.

Figure: Periodic.
Probing results

\[D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR}} \overline{D} \]

- Number of basis matrices \(p \sim N^{0.2} \) at worst.

- Number of exterior solves \(q \) constant as \(N \) grows.

- Probing approximation does not degrade with grazing waves.

Limitations:

- Easier for smooth media;

- Careful design of basis matrices needed.
Step 2: Obtain a fast algorithm for matrix-vector products of D

\[D \xrightarrow{\text{probing expansion}} \tilde{D} \xrightarrow{\text{PLR compression}} \overline{D} \]
Intuition: D_{half} numerically low-rank away from singularity

Kernel of the uniform half-space DtN map: $K(r) = \frac{ik^2 H_{1}^{(1)}(kr)}{2kr}$.

Theorem (RBR, Demanet)

Let $0 < \epsilon \leq 1/2$, and $0 < r_0 < 1$, $r_0 = \Theta(1/k)$. There exists an integer J, functions $\{\Phi_j, \chi_j\}_{j=1}^J$ and a number C such that we can approximate $K(|x - y|)$ for $r_0 \leq |x - y| \leq 1$:

$$K(|x - y|) = \sum_{j=1}^{J} \Phi_j(x)\chi_j(y) + E(x, y)$$

where $|E(x, y)| \leq \epsilon$, and $J \leq C (\log k \max(|\log \epsilon|, \log k))^2$ with C which does not depend on k or ϵ.
Numerically low-rank \Rightarrow low-rank matrix block

Function

$$K(|x - y|) = \sum_{j=1}^{J} \Phi_j(x) \chi_j(y),$$

$$K(|x_i - y_\ell|) = \sum_{j=1}^{J} \Phi_j(x_i) \chi_j(y_\ell).$$

Matrix $K_{i\ell} = K(|x_i - y_\ell|)$:

$$K = \sum_{j=1}^{J} \vec{\Phi}_j \vec{\chi}_j^* = \Phi \chi^*$$

with $\vec{\Phi}_j$, $\vec{\chi}_j$ the j^{th} columns of matrices Φ, χ.

This is almost the Singular Value Decomposition (SVD) of matrix $K_{i\ell}$.
Proof: D_{half} numerically low-rank away from singularity

Kernel $K(r) = \frac{ik^2 H_1^{(1)}(kr)}{2kr}$ for uniform half-space DtN map.
Proof: D_{half} numerically low-rank away from singularity

Kernel $K(r) = \frac{ik^2 H_1^{(1)}(kr)}{2kr}$ for uniform half-space DtN map.

$$
\frac{1}{kr} = \int_0^\infty e^{-krt} dt \approx \int_0^T e^{-krt} dt
$$

with error $\int_T^\infty e^{-krt} dt \leq \epsilon$ for $T = O(\lvert \log \epsilon \rvert)$.

![Graph showing exponential decay of e^{-krt}]
Proof: D_{half} numerically low-rank away from singularity

Use a Gaussian quadrature

$$\frac{1}{kr} \approx \int_0^T e^{-krt} dt \approx \sum_{j=1}^{n} w_j e^{-krt_j} = \sum_{j=1}^{n} w_j e^{-kx^j} e^{ky^j} \quad x > y$$
Proof: D_{half} numerically low-rank away from singularity

Use a Gaussian quadrature

\[
\frac{1}{kr} \approx \int_0^T e^{-krt} dt \approx \sum_{j=1}^n w_j e^{-krt_j} = \sum_{j=1}^n w_j e^{-kxt_j} e^{kyt_j} \quad x > y
\]

but need a dyadic partition of the interval for convergence.
Proof: D_{half} numerically low-rank away from singularity

- Kernel $K(r) = \frac{i k^2 H_1^{(1)}(kr)}{2kr}$ of uniform half-space DtN map.

- Use Gaussian quadratures for $1/kr$ on dyadic partition of interval:

 \[\log k \text{ subintervals, } |\log \epsilon| \text{ pts each} \]

- Treat integral form of Hankel function same way (Martinsson-Rokhlin 2007).

- Multiply $1/kr$ with $H_1^{(1)}$, total number of quad. pts:

 \[J \approx (\log k |\log \epsilon|)^2. \]
Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance ϵ.
Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance ϵ.

\[? = \text{\begin{figure} \end{figure}} \]
Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance $\epsilon \Rightarrow \text{“leaf”}$.
Partitioned low-rank (PLR) matrices

Adaptively, recursively divide blocks of matrix.

Stop when numerical rank $\leq R_{\text{max}}$, with tolerance $\epsilon \Rightarrow \text{“leaf”}$.

Figure: $\frac{N}{R_{\text{max}}} = 8$, weak hierarchical structure.

Figure: $\frac{N}{R_{\text{max}}} = 16$, strong hierarchical structure.

Figure: $\frac{N}{R_{\text{max}}} = 8$, corner PLR structure.
Complexity of compression: PLR matrices

Cost per block B dominated by (randomized) SVD: $O(N B R_{\text{max}}^2)$.

Figure: $\frac{N}{R_{\text{max}}} = 8$, weak h. structure.

Figure: $\frac{N}{R_{\text{max}}} = 16$, strong h. structure.

Figure: $\frac{N}{R_{\text{max}}} = 8$, corner PLR structure.

Total complexity:

$O(N R_{\text{max}}^2 \log \frac{N}{R_{\text{max}}})$ $O(N R_{\text{max}}^2 \log \frac{N}{R_{\text{max}}})$ $O(N R_{\text{max}}^2)$
Complexity of matrix-vector products: PLR matrices

Cost per leaf B: $O(N_B R_{\text{max}})$.

Figure: $\frac{N}{R_{\text{max}}} = 8$, weak h. structure.

Figure: $\frac{N}{R_{\text{max}}} = 16$, strong h. structure.

Figure: $\frac{N}{R_{\text{max}}} = 8$, corner PLR structure.

Total complexity:

$O(N R_{\text{max}} \log \frac{N}{R_{\text{max}}})$ $O(N R_{\text{max}} \log \frac{N}{R_{\text{max}}})$ $O(N R_{\text{max}})$
Results of PLR compression after probing

- In general, ask for PLR tolerance

\[\epsilon = \frac{1}{25} \frac{\|D - \tilde{D}\|_F}{\|D\|_F}. \]

Table: \(c \equiv 1 \)

<table>
<thead>
<tr>
<th>(R_{\text{max}})</th>
<th>(\epsilon)</th>
<th>(\frac{|D - \bar{D}|_F}{|D|_F})</th>
<th>(\frac{|u - \bar{u}|_F}{|u|_F})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.6850e − 02</td>
<td>4.2126e − 01</td>
<td>6.5938e − 01</td>
</tr>
<tr>
<td>2</td>
<td>1.6802e − 03</td>
<td>4.2004e − 02</td>
<td>7.3655e − 02</td>
</tr>
<tr>
<td>2</td>
<td>5.0068e − 05</td>
<td>1.2517e − 03</td>
<td>2.4232e − 03</td>
</tr>
<tr>
<td>4</td>
<td>4.4840e − 06</td>
<td>1.1210e − 04</td>
<td>4.0003e − 04</td>
</tr>
<tr>
<td>8</td>
<td>4.3176e − 07</td>
<td>1.0794e − 05</td>
<td>1.4305e − 05</td>
</tr>
<tr>
<td>8</td>
<td>2.6198e − 08</td>
<td>6.5496e − 07</td>
<td>2.1741e − 06</td>
</tr>
</tbody>
</table>
Results of PLR compression after probing

Table: \(c \) is the diagonal fault.

<table>
<thead>
<tr>
<th>(R_{\text{max}})</th>
<th>(\epsilon)</th>
<th>(| D - \overline{D} |_F / | D |_F)</th>
<th>(| u - \overline{u} |_F / | u |_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(5.7124e - 03)</td>
<td>(1.4281e - 01)</td>
<td>(5.3553e - 01)</td>
</tr>
<tr>
<td>2</td>
<td>(7.6432e - 04)</td>
<td>(1.9108e - 02)</td>
<td>(7.8969e - 02)</td>
</tr>
<tr>
<td>4</td>
<td>(1.0241e - 04)</td>
<td>(2.5602e - 03)</td>
<td>(8.7235e - 03)</td>
</tr>
</tbody>
</table>

Table: \(c \) is the periodic medium.

<table>
<thead>
<tr>
<th>(R_{\text{max}})</th>
<th>(\epsilon)</th>
<th>(| D - \overline{D} |_F / | D |_F)</th>
<th>(| u - \overline{u} |_F / | u |_F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(5.1868e - 03)</td>
<td>(1.2967e - 01)</td>
<td>(2.1162e - 01)</td>
</tr>
<tr>
<td>2</td>
<td>(1.2242e - 03)</td>
<td>(3.0606e - 02)</td>
<td>(5.9562e - 02)</td>
</tr>
<tr>
<td>8</td>
<td>(3.6273e - 04)</td>
<td>(9.0682e - 03)</td>
<td>(2.6485e - 02)</td>
</tr>
</tbody>
</table>
PLR compression after probing

\[D \xrightarrow{\text{probing}} \tilde{D} \xrightarrow{\text{PLR compression}} \overline{D} \]

- Small \(R_{\text{max}} \) needed in practice, \(R_{\text{max}} \leq 8 \).
- Nearly linear matrix-vector product even in heterogeneous media.
- PLR compression is very flexible, “one size fits all”.

Bélanger-Rioux (Harvard) Compressed ABC for Helmholtz

3/15/15 28 / 31
Conclusion – so far

- Insights from half-space DtN map to expand then compress exterior DtN map
- Handful of PDE solves \Rightarrow exterior DtN map to good accuracy \Rightarrow HE solution to good accuracy
- Compressed DtN map \Rightarrow fast matrix-vector products
Conclusion – complexities

Constructing D:
- Matrix probing expansion, assuming fast solver.
- PLR compression.

Complexity:
- $\sim q(N + w)^2$, $q \leq 50$.
- $\sim NR_{\text{max}}^2$, $R_{\text{max}} \leq 8$.

Applying D:
- Dense matrix-vector product.
- PLR matrix-vector product.

Complexity:
- $\sim 16N^2$.
- $\sim 4NR_{\text{max}} \log \frac{N}{R_{\text{max}}} + 12NR_{\text{max}}$.

Bélanger-Rioux (Harvard) Compressed ABC for Helmholtz 3/15/15 30 / 31
Conclusion – outlook

- 3D
- Probe (and compress) entire structure of the Green’s function?
- Integrate in Domain Decomposition Methods