
Foundations of International Macroeconomics1

Workbook2

Maurice Obstfeld, Kenneth Rogoff, and Gita Gopinath

Chapter 8 Solutions

1. First think about the continuous-time case. At time t = 0 the market

believes the government�s promise that it will peg the exchange rate at its

t = T level from time T onward. In that case, we can show that the exchange

rate is indeterminate, so that the government�s policy is not coherent (in

that it does not tie down a unique market equilibrium). Let perfect-foresight

equilibrium be described by the continuous-time Cagan model [eq. (70) on

p. 559 of the book],

mt = et − η úet.
Let eaT be an arbitrary time-T exchange rate and suppose the market Þrmly

expects that rate to prevail. Then the preceding Cagan equation, coupled

with the terminal condition eT = e
a
T , shows that the exchange rate path

et =
1

η

Z T

t
exp[(t− s)/η]msds+ exp[(t− T )/η]eaT

will equilibrate markets for t ∈ [0, T ].
Next consider the monetary authority�s position at time T when con-

fronted with this exchange rate path. The authority has no choice, in view

of its vow of a constant exchange rate from T on, but to set the fundamental

mT = e
a
T and to hold mt = e

a
T for all t > T . Why? Were the authority to

act otherwise, the exchange rate would deviate from eaT at some point in the

1By Maurice Obstfeld (University of California, Berkeley) and Kenneth Rogoff (Prince-

ton University). c°MIT Press, 1996.
2 c°MIT Press, 1998. Version 1.1, February 27, 1998. For online updates and correc-

tions, see http://www.princeton.edu/ObstfeldRogoffBook.html
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interval [T,∞), in violation of the government�s initial pledge. In short, the
authority must validate (ratify) any market expectation whatsoever. Any

initial exchange rate can be an equilibrium because each is conditioned on a

different expectation of what the (constant) money supply path will be from

date T onward.

The situation is subtly different in discrete time, in which case the model

is

mt = et − η (et+1 − et) .
The basic reason discrete time makes a difference is that now, if the market

Þrmly foresees a date T rate of eaT , there are two distinct ways the author-

ity can fulÞll its promise of a constant exchange rate from date T on (two

alternatives which collapse to one in continuous time). First, the authority

could still set mt = eaT for t = T and for t > T , as in the continuous-time

setting�in which case the exchange rate again is not uniquely determined.

Alternatively, if the authority can commit not to adjust mT fully to validate

eaT , but instead only to set mt = eaT for t strictly greater than T only, we

again get an exchange rate path constant at eaT starting on date T . In this

second case, however, the exchange rate is uniquely determined. To Þx ideas,

suppose the authority can commit to a Þxed value mT for date T . In that

case, since the date T + 1 rate will be pegged at its date T level, the Cagan

equation says that the exchange rate must satisfy

eT = mT

on date T , a well-deÞned solution.

The distinction we make here actually does arise in practice. For example,

the Maastricht Treaty on European Union (in effect) links to prior market

values the �irrevocably Þxed� bilateral currency conversion factors that will

apply to member currencies when European economic and monetary union

(EMU) starts on 4 January 1999. (EMU starts officially on Friday, 1 January

1999, but the Þrst business day for the new European System of Central
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Banks is Monday, 4 January.) Member currency bilateral rates must be

Þxed forever at their 31 December 1998 levels. This requirement need not

lead to exchange-rate indeterminacy, however, even if participating national

central banks do not intervene to set bilateral currency values on the last

day of 1998. The reason is that the national central banks that will still be

in operation through the end of 1998 have no automatic incentive to ratify

market exchange rates on the last day before EMU. For a full discussion, see

Maurice Obstfeld, �A strategy for launching the Euro,� European Economic

Review 42 (May 1998).

2. (a) Using the individual�s budget constraint to substitute for Ct in the

utility function, and taking derivatives with respect to Bs+1 and Ms, one

obtains the following Þrst-order conditions:

Bs+1: u0(Cs) = (1 + r)βu0(Cs+1),

Ms:
u0(Cs)
Ps

·
1− Y g0

µ
Ms

Ps

¶¸
=
βu0 (Cs+1)
Ps+1

.

Using the consumption Euler equation, we can rewrite the money demand

equation as

Y g0
µ
Ms

Ps

¶
=

is+1
1 + is+1

.

(b) If one assumes there are no speculative bubbles, the price level grows

at the same gross rate 1+µ as the nominal money supply. Steady-state real

money balances thus are

M

P
= g0 −1

"
1

Y

Ã
1− β

1 + µ

!#
.
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(c) With the new budget constraint, the Þrst-order conditions become:

Bs+1: u0(Cs)g
µ
Ms

Ps

¶
= (1 + r)βu0(Cs+1)g

Ã
Ms+1

Ps+1

!
,

Ms:

u0(Cs)

g µMs

Ps

¶
1

Ps
− Cs

g
³
Ms

Ps

´g0 µMs

Ps

¶
1

Ps


= βu0(Cs+1)

"
g

Ã
Ms+1

Ps+1

!
1

Ps+1

#
.

One can then rewrite the money demand equation as

Cs

g0
µ
Ms

Ps

¶
g
µ
Ms

Ps

¶2 = is+1
1 + is+1

.

(d) The analysis here parallels that in the text.

3. (a) The constraint follows by straightforward addition. Because domestic

money is a nontraded asset, the present value of private and government

spending must equal the present value of the economy�s tradable resources,

which in turn equals the sum of the present value of output and the economy�s

net foreign Þnancial wealth.

(b) The answer does not change. The variable Bt in part a, the overall

net foreign assets of the economy as a whole, equals the sum of domestic

government and private-sector net assets, Bt = B
g
t +B

p
t [recall eq. (7) from

Chapter 3]. Equation (38) in Chapter 8 would change, however, in that

(1+r)Bpt rather than (1+r)Bt would appear on its right-hand side. The last

equation in footnote 26, p. 537 (the government budget constraint) would

also differ, in that (1 + r)Bgt would be added to its right-hand side.

(c) Let us take the setup of Chapter 4, but with the services of money being

the nontraded good and with is+1/(1 + is+1) that good�s date s price in
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terms of the tradable, consumption (recall section 8.3.3). When θ = 1 (the

Cobb-Douglas case), footnote 22, Chapter 4, tells us that

Ω
µ
C,
M

P

¶
=
Cγ(M/P )1−γ

γγ(1− γ)1−γ
and that

P cs =

Ã
is+1

1 + is+1

!1−γ
.

Equation (26) of Chapter 4, translated to apply to the current setting, is the

Euler equation for real consumption,

Cγs+1

Ã
Ms+1

Ps+1

!1−γ
=

"
(1 + r)P cs
P cs+1

#σ
βσCγs

µ
Ms

Ps

¶1−γ
.

With θ = 1, we also have that

Ms

Ps
=

Ã
1− γ
γ

!
(P cs )

−1/(1−γ)Cs

[eq. (40) in Chapter 8]. Substituting this relation into the Euler equation

preceding it, we derive

Cs+1 =

Ã
P cs
P cs+1

!σ−1
(1 + r)σβσCs,

which parallels eq. (34) in Chapter 4 for the case θ = 1. If you combine this

equation with the intertemporal constraint derived in part a of this exercise,

the result is

Ct =
(1 + r)Bt +

P∞
s=t

³
1
1+r

´s−t
(Ys −Gs)P∞

s=t [(1 + r)
σ−1βσ]s−t

³
P ct
P cs

´σ−1 .

The deÞnition of the consumption-based real interest rate (section 8.3.3)

leads to the equivalent formula

Ct =
(1 + r)Bt +

P∞
s=t

³
1
1+r

´s−t
(Ys −Gs)P∞

s=t

hQs
v=t+1(1 + r

c
v )
iσ−1

βσ(s−t)
.
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When σ = 1, equilibrium consumption is simply

Ct = (1− β)
"
(1 + r)Bt +

∞X
s=t

µ
1

1 + r

¶s−t
(Ys −Gs)

#
,

as in a model with no money.

(d) In the more general case in which θ 6= 1, the consumption Euler equation
is

Ct+1 =

Ã
P ct
P ct+1

!σ−θ
(1 + r)σβσCt,

which follows directly from eq. (34) in Chapter 4. Solving as in part c leads

to

Ct =
(1 + r)Bt +

P∞
s=t

³
1
1+r

´s−t
(Ys −Gs)P∞

s=t [(1 + r)
σ−1βσ]s−t

³
P ct
P cs

´σ−θ .

4. For a time-varying real interest rate in eq. (59) of Chapter 8, the con-

sumption Euler equation is

Ps−1
Ps

u0(Cs) = (1 + rs)
Ps
Ps+1

βu0(Cs+1).

Making use of the Fisher parity equation 1+ is+1 = (1+ rs+1) (Ps+1/Ps) , we

divide both sides by 1 + rs to derive

u0(Cs)
1 + is

= (1 + rs+1)β
u0(Cs+1)
1 + is+1

.

5. Under the revised fundamentals process, we still have eq. (83), p. 571,

but now

Et {G 0(kt)dkt+h} = µhG 0(kt)

rather than 0, while it is still true that Et
n
(dkt+h)

2
o
≈ hv2 (because terms

multiplied by h2 and h3/2 disappear as h → 0, being of order greater than

h). Thus,

EtdG(kt+h) = µhG
0(kt) +

hv2

2
G 00(kt)
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in the limit as h→ 0. Plugging this result into eq. (82) on p. 571 leads to

G(k) = k+ ηµG 0(k) +
ηv2

2
G 00(k)

as the differential equation any exchange rate solution must satisfy [cf. eq.

(84), p. 572]. A general solution is of the form

G(k) = k+ α+ b1 exp(λ1k) + b2 exp(λ2k)

where the b�s are arbitrary constants. Because internal consistency requires

that

k+ α+ b1 exp(λ1k) + b2 exp(λ2k)

= k+ ηµ [1 + λ1b1 exp(λ1k) + λ2b2 exp(λ2k)]

+
ηv2

2

h
(λ1)

2 b1 exp(λ1k) + (λ2)
2 b2 exp(λ2k)

i
,

α = ηµ and λ1 and λ2 are the two roots of the quadratic equation

ηv2

2
λ2 + ηµλ− 1 = 0.

The particular target zone solution still satisÞes the �smooth pasting� con-

ditions G0(k) = 0 at the top and bottom of the band. The argument is the

same as in section 8.5.4, because at the edges of the zone Et {dkt+h} still
changes discontinuously even when µ 6= 0 (movements that would drive the
exchange rate out of the band suddenly are prohibited).

6. (a) Intuitively, spending a domestic currency unit on the least-cost con-

sumer basket such that C = Ω(C1, ..., CN) = 1 yields 1/P units of C. Alter-

natively, spending the currency unit on any individual commodity j yields

1/pj units of that good, each increasing C by Ωj ≡ ∂C/∂Cj. At an optimum
these two uses of the currency unit must have the same impact on C, so that

the equality
1

P
=
1

pj

∂C

∂Cj
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follows. Alternatively and more formally, consider the optimization problem

that deÞnes the CPI P , which is to minimize the expenditure P =
PN
j=1 pjCj

subject to Ω(C1, ..., CN) = 1. One way to solve this problem is to set up the

Lagrangian

L =
NX
j=1

pjCj − λ [Ω(C1, ..., CN)− 1] .

The Þrst-order optimality conditions are (for all j):

∂L
∂Cj

= pj − λΩj = 0.

Since Ω(C1, ..., CN) is linear homogeneous, we have

NX
j=1

ΩjCj = Ω(C1, ..., CN) = 1

at the optimum. Thus, multiplying the preceding Þrst-order condition by Cj

and summing over all j, we derive

P =
NX
j=1

pjCj = λ
NX
j=1

ΩjCj = λ.

This equality, however, allows us to write the Þrst-order condition as

Ωj =
∂C

∂Cj
=
pj
P
.

(b) The difference between the ex post real return on a nominal Home-

currency bond and that on a nominal Foreign-currency bond is

(1 + it+1)Pt
Pt+1

− (1 + i
∗
t+1)P

∗
t

P ∗t+1
,

where P and P ∗ are the consumption-based price levels measured in Home
and Foreign currency, respectively. Observe that these consumption-based

price levels will be linked by purchasing power parity (absent trade barriers),
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because they simply measure the price of a single basket of commodities in

two currencies. Thus we may write the preceding real return differential as

(1 + it+1)Pt
Pt+1

− (1 + i
∗
t+1)Pt/Et

Pt+1/Et+1 .

Equation (104) in Chapter 8 (covered interest parity) allows us to write the

foregoing difference as

(1 + it+1)Pt
Pt+1

− (1 + it+1)Pt/Ft
Pt+1/Et+1 ,

and eq. (116) therefore implies that

Et

("
(1 + it+1)Pt

Pt+1
− Et+1(1 + it+1)Pt/Ft

Pt+1

#
u0(Ct+1)
u0(Ct)

)
= 0.

Factoring out the term (1 + it+1)Pt/Ft, which is date t information, we are
left with

0 = Et

(ÃFt − Et+1
Pt+1

!
u
0
(Ct+1)

u0(Ct)

)
.

(c) Substitute Et+1P ∗t+1 = Pt+1 into the previous equation and multiply by

−1/Ft to get

0 = Et




1

Ft −
1

Et+1
P ∗t+1

 u
0
(Ct+1)

u0(Ct)

 .
Observe that this condition is perfectly symmetrical to the one derived in

part b from the Home investor�s perspective. In the risk neutral case, the

marginal utility of consumption is constant, and therefore we have that

Et


1

Ft −
1

Et+1
P ∗t+1

 = 0 = Et
(Ft − Et+1

Pt+1

)
.
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Plainly Siegel�s paradox does not apply.

(d) The result follows immediately from part a, where it was shown that

∂C/∂Cj = pj/P .

(e) The condition that consumers equate their marginal rates of substitution

to relative prices implies that

Cx,t
Cy,t

=

Ã
γ

1− γ
! Etp∗y,t
px,t

,

so that we can express the spot exchange rate as

Et =
Ã
1− γ
γ

!Ã
px,tCx,t
p∗y,tCy,t

!
.

In a perfectly pooled risk-sharing equilibrium, Cx,t = C
∗
x,t = Xt/2 and Cy,t =

C∗y,t = Yt/2. Moreover, using the (binding) cash-in-advance constraints for

the two currencies,Mt = px,tXt andM
∗
t = p

∗
y,tYt, we can express the equation

for the spot exchange rate as

Et =
Ã
1− γ
γ

!Ã
Mt

M∗
t

!
.

Using the result in part d:

Ft =
Et

(Et+1uj(Ct+1)
pj,t+1

)

Et

(
uj(Ct+1)

pj,t+1

) , j = x,y.

In combination with the cash-in-advance constraints and the preceding rela-

tionship between the spot exchange rate and money supplies, we have, for

j = x,

Ft =
Ã
1− γ
γ

! Et
(
Cx,t+1
M∗
t+1

ux(Ct+1)

)

Et

(
Cx,t+1
Mt+1

ux(Ct+1)

) .
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If money and output shocks have statistically independent distributions, how-

ever, we may factor out the terms in consumption above and write

Ft =

Ã
1− γ
γ

! Et
(

1

M∗
t+1

)
Et {Cx,t+1ux(Ct+1)}

Et

(
1

Mt+1

)
Et {Cx,t+1ux(Ct+1)}

=

Ã
1− γ
γ

! Et
(

1

M∗
t+1

)

Et

(
1

Mt+1

) .

(f) The result in part a and the cash-in-advance constraint imply that

M = pxCx = PCx
∂C

∂Cx
.

From part e we therefore obtain the �risk neutral� forward exchange rate, eq.

(107) in Chapter 8, by again using the assumption that outputs and monies

are independently distributed random variables:

Ft =

Et

(Ã
1− γ
γ

!Ã
Mt+1

M∗
t+1

!
1

Mt+1

)

Et

(
1

Mt+1

)

=

Et

(
Et+1 1

Mt+1

)
Et

(
Cx,t+1

∂Ct+1
∂Cx,t+1

)

Et

(
1

Mt+1

)
Et

(
Cx,t+1

∂Ct+1
∂Cx,t+1

)

=

Et

(
Et+1

Ã
Cx,t+1
Mt+1

!
∂Ct+1
∂Cx,t+1

)

Et

(Ã
Cx,t+1
Mt+1

!
∂Ct+1
∂Cx,t+1

)

=
Et {Et+1/Pt+1}
Et {1/Pt+1} .
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Why is there no risk premium? Here, the marginal utility of consumption is

conditionally uncorrelated with the exchange rate when output and money

shocks are independent. But if that correlation is zero, there is no foreign

exchange risk premium. The last two results asked for in this part of the

exercise follow from parts c and d above.

7. (a) The two-week average exchange rate series, sampled biweekly, does

not follow a random walk even though the weekly exchange rate does. This

can be shown very easily:

Et
n eEt+2o = Et

n
1
2
(Et+2 + Et+1)

o
= Et

n
1
2
(Et+1 + ²t+2 + Et+1)

o
= Et

n
1
2
(2Et + 2²t+1 + ²t+2)

o
= Et 6= eEt ≡ 1

2
(Et + Et−1).

(b) In this case the problem does not arise. As long as the weekly exchange

rate follows a random walk, a series formed by taking point-sample observa-

tions every other week also follows a random walk.

8. (a) The weekly series of two-week prediction errors is serially correlated.

Let us suppose that the spot rate follows a random walk, et = et−1+ηt, where
ηt is a serially uncorrelated white noise disturbance term. Then

Cov {et+2 − ft,2, et+3 − ft+1,2} = E {(et+2 − et)(et+3 − et+1)} .

The preceding equality follows from the deÞnition of covariance and the two

assumptions that ft,2 = Etet+2 and that the spot exchange rate follows a

random walk. Since et+2− et = ηt+2+ ηt+1 and et+3− et+1 = ηt+3+ ηt+2, the
preceding equality can be written as

Cov {et+2 − ft,2, et+3 − ft+1,2} = E {(ηt+2 + ηt+1)(ηt+3 + ηt+2)}
= E

n
η2t+2

o
6= 0.
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The reason for the nonzero covariance is that temporally adjacent overlapping

multiperiod forward-rate errors share common innovations. They share in-

novations because the maturity of the forward contract (two weeks) is longer

than the sampling interval (one week). We can show through similar steps

that for j > 1,

Cov {et+2 − ft,2, et+j+2 − ft+j,2} = 0.
(b) A series sampled biweekly would not be serially correlated. This result

follows easily from the argument of part a. In this case there are no overlap-

ping multiperiod forecast errors.

(c) We outline how a General Method of Moments (GMM) estimator could

be used to test the hypothesis that Et(et+2− ft,2) = 0. DeÞne the two-period-
ahead forward-rate forecast error as ²t+2,2 ≡ et+2 − ft,2. The null hypothesis
states that the forward rate is equal to the conditional expectation of the

two-period-ahead spot rate, and is therefore the best (most efficient) unbi-

ased predictor of the spot rate. This property implies that ²t+2,2 will be

uncorrelated with any information available at time t. One possible way to

test this implication is to run the following regression [which is similar to

equation (110) in the text],

et+2 − et = a0 + a1 (ft,2 − et) + ²t+2,2, (1)

where the difference ft,2− et is the forward premium on date t. The forward-
market �efficiency� test asks whether one can reject the joint null hypothesis

that a0 = 0 and a1 = 1. Under the null hypothesis, ²t+2,2 equals the forward-

rate forecast error and so the orthogonality conditions E{²t+2,2} = 0 and

E{(ft,2 − et) ²t+2,2} = 0 are satisÞed for a0 = 0 and a1 = 1. The speciÞcation
implies that the efficient GMM estimator of a0 and a1 is the same as the

ordinary least squares (OLS) estimator based on all the available (weekly)

observations of spot and two-week-ahead forward rates. However the usual

OLS standard errors would not be appropriate. When we use the weekly

series of two-week-ahead prediction errors, we face a problem of serial corre-

lation in ²t+2,2 (as discussed in part a).
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To describe the GMM estimator, deÞne the coefficient column vector

θ = [a0 a1]
0, along with the vectors

xt ≡
 1

ft,2 − et


and

wt(θ) ≡ xt · ²t+2,2(θ) =
 ²t+2,2(θ)

(ft,2 − et) ²t+2,2(θ)

 .
By eq. (1) above,

²t+2,2(θ) ≡ et+2 − et − [a0 + a1 (ft,2 − et)] .
The efficient GMM estimator (EGMM) for a sample of size T is derived as

�θEGMM(�Φ) = argminθ w̄(θ)
0�Φ−1w̄(θ),

where

w̄(θ)=
1

T

TX
t=1

wt(θ),

Φ =
∞X

j=−∞
Γj,

Γj = E {wt(θ)wt−j(θ)0} ,
and �Φ is a consistent estimate of Φ. Under standard regularity conditions,

the estimate �θEGMM is asymptotically normal with mean θ. One can estimate

the asymptotic covariance matrix of �θEGMM by

T

Ã
TX
t=1

xtx
0
t

!−1
�Φ

Ã
TX
t=1

xtx
0
t

!−1
.

Under the null hypothesis the coefficient vector is θ0 = [0, 1]
0. One can per-

form a Wald/Likelihood Ratio/Lagrange Multiplier test of the joint null hy-

pothesis. (For details on GMM estimation and hypothesis testing, see R.

Davidson and J. G. Mackinnon, Estimation and Inference in Econometrics,

Oxford, 1993.)
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