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Abstract

We �nd strong evidence for changes in real oil price persistence and volatility across three well

de�ned periods since 1861. We argue that historically, the real price of oil has tended to be

highly persistent and volatile whenever rapid industrialization has coincided with uncertainty

regarding access to supply. We extend the commodity storage model to incorporate both

transitory and permanent demand shocks. When demand is subject to persistent growth

shocks and supply is restricted, the role of storage is shown to be speculative, instead of its

classic mitigating role. This is consistent with price persistence and volatility co-moving, as

observed.
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1 Introduction

Much has been written on the oil shocks of the 1970�s as watershed events that have trans-

formed the energy market; that, together with the lack of high frequency data from earlier

periods, have led to an almost complete concentration on the post oil shock period among

economists1. However, much can be learned about oil price behavior from the less recent

past. The crude oil price time series illustrated in Figure 1 goes back to 18612; even a cursory

look reveals stark di¤erences in the behavior of the series at di¤erent periods. First, from

1861 until about 1878, there was a period of extremely high volatility and generally high

prices. Then came a much less volatile period, approximately between 1878-1973, in which

prices were also generally lower. Finally, from 1973 onwards, we see a second period of high

volatility accompanied again by higher prices.

Our �rst task in this paper is to document these di¤erences and formally test for changes

in behavior. We run two such tests, for changes in persistence and for changes in volatility.

We �nd striking empirical similarities between the periods 1861-1878 and 1973-2009, in that

oil prices were both signi�cantly more persistent and signi�cantly more volatile in these

periods, both relative to the long period that separates them, i.e. 1878-1973. We also

estimate that a further break in oil price volatility, but not in persistence, occurred around

1933, so that oil price in the period 1878-1933, while much less volatile than in 1861-1878,

was still signi�cantly more volatile than in the period 1933-19733.

What can explain the concurrence of price persistence and price volatility? We o¤er an

informal, historical narrative, as well as a formal model. Our approach in this paper is to

look for a unifying framework which is �exible enough to allow for the very di¤erent price

behavior across periods that we observe. We �nd striking historical similarities between

the two end-periods mentioned, 1861-1878 and 1973-2009, in terms of supply and demand

factors a¤ecting the market for oil. On the demand side, as we explain in greater detail in

Section 5, both periods were years of intense industrialization in what was then becoming

a major engine of the global economy: the U.S. in 1861-1878, and East Asia in 1973-2009.

We see these as periods in which the demand side was characterized by persistent growth

shocks. On the supply side, meanwhile, both periods featured uncertainty regarding the

1Pindyck (1999) is a notable exception.
2The series used in this paper is taken from British Petroleum�s "Statistical Review of World Energy",

revised annually and available at www.bp.com/statisticalreview. Prices are in 2009 $US per barrel. The
series is comprised of three consecutive price series: US average price in 1861-1944, Arabian Light in 1945-
1983, and Brent dated in 1984-2009.

3All of our tests reject the null of no break with very high levels of con�dence. However, the con�dence
intervals around the exact break dates are large enough to suggest caution regarding the interpretation of
individual historical events. Our emphasis will therefore be on the broad characteristics of the periods in
question, rather than on the exact date of change from one period to the next.
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continued access of consumer markets to oil. This was due to the monopoly of railroads

on transportation in the former period, and to OPEC�s ability to restrict access to easily

exploitable reserves in the latter period (see Section 5 for details). The change-points we

�nd in the data correspond to major changes in the oil industry�s structure: 1878-9 saw the

opening of the �rst long-distance pipeline, ending the railroads�monopoly over transport;

1933-4 saw the vast discoveries of East Texas oil bring government control to the industry;

and 1972-3 saw the peak of U.S. oil production and the resulting rise to prominence of OPEC.

We further argue in this paper that this con�uence of supply and demand factors can

explain why we observe large and concurrent changes in both oil price persistence and oil

price volatility over the years. We present a model, an extension of the canonical commodity

storage model à la Deaton and Laroque (1992, 1996), in which we introduce growth dynamics

to their well-known framework. This results in a model that can accommodate both I(0)

and I(1) stochastic processes, so that periods of stable and stochastic trends can both be

considered. The model can explain our main empirical �ndings: it predicts that in the

presence of uncertainty regarding the trend, i.e. persistent growth shocks, rational storage

behavior may act to enhance volatility. In the standard commodity storage framework,

where uncertainty is in regard to deviations from trend only, storage always acts to reduce

volatility. This feature of the storage model is in itself novel, as well as potentially useful in

accounting, qualitatively, for observed patterns in the data. We present simulations in which

this behavior can increase price volatility following persistent growth shocks when supply is

restricted.

The large literature on commodity price behavior falls broadly into two major strands,

depending on whether the commodity in question is perceived to be renewable. On the one

hand, models of storage have been used mostly to study renewable commodities such as corn

and wheat; see Wright (2001) and references therein for a survey of theory and evidence.

Notable exceptions are papers which in the context of oil extend the storage model in various

ways: Alquist and Kilian (2010), Ng and Ruge-Murcia (2000), and Routlege et al. (2000).

These papers however do not seek to explain the di¤erent behavior of oil prices across

historical periods as we do here, nor do they incorporate growth shocks explicitly into the

framework. Apart from these exceptions, the study of non-renewable commodities, as oil

is traditionally classi�ed, has followed an altogether di¤erent path, strongly in�uenced by

the seminal contribution of Hotelling (1931). Krautkraemer (1998) surveys the theory and

evidence, which shows quite clearly that �nite availability of oil - a separate issue from that

of free access to currently available supplies - is not of �rst order signi�cance in explaining

oil price behavior. As a particularly striking example, note that proven world oil reserves
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have been increasing in recent decades, in spite of ever increasing production4. As a result,

it may well be that technological advances in oil exploration and utilization will be enough

to satisfy demand in the foreseeable future. That is the assumption that we make in this

paper.

Our work is also related to the ongoing debate on oil and the macroeconomy (see the

two recent surveys by Hamilton, 2008 and Kilian, 2008a, and references therein. Hamilton

(2009a) provides an account of oil�s contribution to the 2007-8 recession). This literature

focuses on correctly identifying the sources of shocks to oil prices , usually utilizing post-

1973, higher-requency data. We argue in this paper that a long-term view of the oil market

should serve to complement and enrich this debate, since shocks to the oil market may have

remarkably di¤erent e¤ects on the real price of oil across historical periods, not only due

to their origin on the supply or the demand side, but also because of the ability (or lack

thereof) of key players in the market to restrict access to supplies. In particular, in periods

when the ability to restrict access to supplies was lacking, the oil market showed remarkable

�exibility and relative price stability, even in the face of massive disturbances in both supply

and demand.

The paper proceeds as follows: section 2 presents our empirical �ndings on oil price

behavior over time. Section 3 introduces the model, and Section 4 examines the model

behavior under both transitory and permanent shocks. Section 5 puts our empirical �ndings

in the context of the history of supply and demand for oil. Section 6 concludes.

2 Behavior of the Real Oil Price: Then and Now

Table 1 presents some sample statistics regarding each of the three periods delineated in

the introduction, as well as the entire series. The di¤erences between the sub-samples are

quite clear: the mean price between the years 1861-1877, at $50.9 (measured in 2007 U.S.

dollars), was almost triple the mean price between 1878-1972, at $17.2 . In contrast, there

is only a 13% di¤erence (again in 2007 U.S. dollars) between the mean price between the

�rst period, 1861-1877, and the third, 1973-2009, at $44.7 . A similar pattern holds for

di¤erences in the unconditional standard deviation of annual prices across these periods:

at $25.3, the standard deviation of price in the period 1861-1877 is �ve times higher than

that of the period 1878-1972 ($5.1), but only 12% higher than the standard deviation of

price in the years 1973-2009 ($22.2). The next lines of the table compare the rates of change

across periods. Note in particular that the unconditional standard deviation of absolute price

4See the BP Statistical Review, published annually at www.bp.com/statisticalreview, for proven reserves
and production data from 1980.

3



change (a common measure of volatility) behaves in an analogous manner: it is quite similar

in the �rst and third periods (27.5% between 1861-1877 compared with 22.8% between 1973-

2009), but remarkably lower in the intervening period. In sum, Table 1 shows that there

seems to be much in common in terms of the behavior of real oil prices between the periods

1861-1877 and 1973-2009, while both periods look markedly di¤erent in most respects from

the intervening period of 1878-1972.

2.1 Testing for Change in Persistence

Studies of the time series properties of real oil prices have taken one of the following ap-

proaches in the face of these clear non-linearities in the series: either analyzing the series as

a whole, or, much more commonly, treating the series as composed of separate series "pasted

together", and proceeding to analyze them in isolation. In one important category, that of

determining whether or not oil prices exhibit a unit root, these di¤erent approaches have

led to opposite conclusions. Pindyck (1999), an example of the former approach, ignores the

aforementioned di¤erences, and judges the entire series to be mean-reverting to a moving

quadratic trend. A recent example of the latter approach, Hamilton (2009b) focuses his

analysis on the third period only (with quarterly data). His conclusion that the real price of

oil follows a random walk with no drift applies therefore by construction only to the period

since the early 1970s5.

In what follows we will treat both the assumption of a pure I(0) process and the assump-

tion of a pure I(1) process as our null hypotheses, and test whether the series exhibits a shift

from I(0) to I(1) (or vice versa) against both of these assumptions. In other words, instead

of trying to decide whether the series as a whole or in part exhibits a unit root, we aim to

determine whether it shows clear transitions from a stochastic trend to a deterministic one,

and vice versa. In order to do that, we employ a series of tests proposed by Harvey, Ley-

bourne, and Taylor (2006, HLT henceforth). This series of tests is a modi�ed version of tests

for change in persistence proposed earlier by Kim (2000), Kim et al. (2002), and Busetti

and Taylor (2004), all of whom build on the unit root testing method of Kwiatkowski et al.

(1992). What makes the HLT test of change in persistence appealing in our context is that

it maintains its properties of consistency and appropriate size both under the I(0) null and

under the I(1) null. This allows us to test for structural change without taking an a-priori

stand regarding the null hypothesis. A disadvantage of the HLT modi�ed test is that it does

not take account of possible heteroskedasticity of the stochastic process. This is important,

since oil price volatility does in fact exhibit structural breaks, as we shall see later in this

5Studies of higher frequency data from the 1990s (daily, weekly) do �nd a mean-reverting factor as well
as a permanent factor. See for example Routledge et al. (2000), Schwartz and Smith (2000).
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section. However, applying a bootstrap method to the tests can correct this issue: following

Cavaliere and Taylor (2008), we use a wild bootstrap to arrive at heteroskedasticity - robust

bootstrap p-values for our test statistics6.

Table 2 presents the results of the HLT change of persistence test, using the real oil price

series. Since the test is designed to �nd a single change-point, whereas the series exhibits

two obvious break candidates, we conducted the test separately for periods 1 and 2, and

for periods 2 and 3. The exact end points shown in the table (1881 and 1965) were chosen

arbitrarily; the qualitative results are robust to small changes in these end points7. The table

reports three sets of test statistics, all functions of Kim�s (2000) ratio-based test statistic

K. The null hypothesis in each test is that there is no change in persistence present; the

alternative is that a single change in persistence occurs. The testing procedure �rst computes

the value of K for each potential break-point. As the true break-point is unknown, the

procedure then computes the mean value (MS), the mean-exponential value (ME), and

the maximum value (MX) taken over all these values of the test statistic. To test the

alternative hypothesis of a change in persistence from I(1) to I(0), the same procedure it

performed, with the statisticsMSR,MER, andMXR computed in the same way, taken over

the reciprocal values of K. A third set of statistics -MSMAX , MEMAX , andMXMAX - test

the alternative hypothesis that a change in persistence has occurred, regardless of direction,

against either null. As is common in this literature, we test for a change in persistence from

a trend - stationary process to a di¤erence - stationary process (and vice - versa). It should

be noted that by construction, the tests can be performed regardless of the type or order of

time-dependence in the stationary process, as long as some regularity conditions hold (see

Kwiatkowsky et al., 1992 for original proofs). Estimates for the break-points follow Kim

(2000). In parentheses are the bootstrap p-values8.

Testing for change in persistence in the years 1861-1965, then, we �nd very strong ev-

idence for a signi�cant change from a high-persistence, local to I(1) process, to a low-

persistence I(0) process, where the point of change is estimated at 1877. This is shown by

6The wild bootstrap was introduced by Hansen (2000). Rather than re-sampling, it generates a bootstrap
sample by multiplying the residuals from regressing the series on the exogenous variables, with random
numbers from a normal distribution. In this way the pattern of volatility present in the original shocks can
be replicated in the bootstrap sample. Appendix A provides a detailed walk-through of the exact testing
procedure we use.

7As a ratio-based test, the HLT change in persistence test is designed to reject the null if a point can
be found after which the behavior of the series is statistically di¤erent than its behavior before that point.
When two such points exist, and moreover the behavior of the series before the �rst point is similar to
behavior after the second point, the test will lose power.

8Note that for our test to reject either null, price persistence on one side of a tentative break should be
statistically di¤erent from price persistence on the other side of the break, but need not meet any particular
critical value. Because of this, Caner and Kilian�s (2001) criticism of KPSS tests, namely, that they may
su¤er from size distortions and therefore produce spurious rejections, does not apply to our paper.
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the very high values of the relevant test statistics, MSR, MER, and MXR, which are all

signi�cant at the 1% level. Note the the statistics testing for any change, regardless of direc-

tion (MSMAX , MEMAX , andMXMAX) are just slightly smaller, and still highly signi�cant,

implying that our rejection of both null hypotheses is quite clear. The statistics testing for a

change from a low-persistence I(0) to a local to I(1) high-persistence process (MS,ME, and

MX) are all very small and insigni�cant. In the period 1881-2009, we �nd strong evidence

for a change in persistence from a low-persistence I (0) process to a high-persistence, local

to I(1) process, with the point of change estimated at 1973. All three of the relevant test

statistics,MS,ME, andMX, point to the same conclusion, and all are signi�cant at the 5%

level. Again we see that the statistics testing for any change are very similar in magnitude

and signi�cance, implying a clear rejection of both nulls. The statistics testing for change in

the opposite direction are small and insigni�cant.

We use simulation results from Kim (2000) to calculate the 95% con�dence interval

around our change-points. As can be seen from Table 2, these are estimated somewhat

imprecisely, with con�dence intervals of 8 and 10 years for the �rst and second change-

points respectively9. However the rejection of both the null of a pure I(0) process and the

null of a pure I(1) process is quite clear. The series of real oil prices should not be seen as

high- or low-persistence, but rather as having switched from one regime to another.

2.2 Testing for Change in Volatility

Apart from the rate of persistence, another time series aspect of real oil prices that has

attracted much attention in the literature is their volatility. As already mentioned, volatility

(as measured by the standard deviation of absolute rates of growth) was high before 1878,

low from around that time until the early 1970s, then high again until the end of our sample

in 2009. We therefore conducted a test for multiple breaks in oil price volatility, using

the methods of Bai and Perron (1998, 2003). We de�ne volatility as the mean absolute

residual from a regression of oil price growth on its lagged value. The null hypothesis is

that volatility is constant throughout. The test results are shown in Table 3, and illustrated

in Figure 2. We identify three potential breakpoints: 1878, 1933, and 1972. All three test

statistics against the null of no break are highly signi�cant, implying that the series contains

at least one breakpoint. However, in deciding how many breakpoints there are, the various

criteria explored by Bai and Perron do not agree: their sequential procedure selects only

9Kim (2000) �nds in simulations that for change-points that occur at the 25th or the 75th percentile of
a given series, his procedure for estimating the change-point location has a maximum standard deviation of
1.6893 for T=100. We accordingly use this value, scaled to our sample length, to calculate our 95% CIs.
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one breakpoint, in 1878, whereas the Bayesian Information Criterion selects all three10. A

look at the coe¢ cients denoting mean volatility in the di¤erent periods can explain this

discrepancy. We see that the coe¢ cients of Periods II (1879-1933) and IV (1974-2009) are

very similar, and both are quite di¤erent from the coe¢ cient for Period III (1934-1973). As

Bai and Perron recognize (2003, pp. 15-16), in these cases the sequential procedure can be

improved upon: the number of breaks should be chosen according to the last signi�cant test

statistic, instead of the usual practice of choosing according to the �rst insigni�cant test

statistic. In the current case, as seen in Table 3, this improved sequential procedure puts

the number of breaks at three, similarly to the BIC. Oil price volatility then has gone down

by about half sometime in the last quarter of the nineteenth century (with 1878 as our best

estimate), then gone down again by about two thirds around 1933. When it increased again,

according to our estimate in 1972, it regained its level of the early twentieth century, but did

not reach the heights set by oil prices before 1878. Note that 95% con�dence intervals for

the change-points are quite large; as in the change in persistence test, our con�dence in the

occurrence of breaks in the series�behavior is far stronger than our con�dence in the exact

dates of these breaks. Nevertheless, these years will be useful as anchors in our historical

narrative in Section 5.

We can sum up our empirical �ndings as follows: real oil price from 1861-1877 (or 1878)

was highly persistent and volatile, from 1878-1933 was not as persistent and less volatile,

from 1934-1972 (or 1973) it was still not very persistent and displayed even lower volatility.

Finally, from 1973 on the real price of oil returned to being highly persistent and volatile,

though not as volatile as in the pre-1878 period. In Section 3 we present a model of the oil

market that ties together these patterns of price behavior in a single framework.

3 An Extended Commodity Storage Model

Our model is an extension of the classic commodity storage framework. Chambers and Bailey

(1996) and Deaton and Laroque (1996) extend the model to allow for autoregressive shocks.

We extend it further to explicitly incorporate demand, and to allow for growth shocks.

3.1 Availability and Storage

Time is discrete, indexed by t. The market for oil consists of consumers, producers, and

risk neutral arbitrageurs. The latter have at their disposal a costly storage technology which

10The LWZ information criterion also chooses 1878 as the only break; however, this criterion is known to
perform badly when breaks are present (i.e. the alternative is true).
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may be used to transfer any positive amount of oil from period t � 1 to period t. Storage
technology is limited by a non-negativity constraint, i.e. the amount stored at any period

cannot drop below zero. This implies that intertemporal arbitrage, although potentially

pro�table, cannot always be achieved. In these cases the market is "stocked out". Let At
denote oil availability, as the amount of oil that can potentially be consumed at time t, since

it has already been extracted from the ground, either in period t or at some point in the

past, and has not been consumed before period t. It is given by

At = Xt�1 + Zt; (1)

where Xt�1 denotes the stock of oil transferred from period t � 1 to t, and Zt denotes the
amount of oil that is produced at time t. For simplicity, we assume that no oil is lost due to

storage11. Decisions concerning both variables - how much to store, how much to produce

- are assumed to have been made before period t began. In period t agents decide how

to divide At between current consumption Qt and future consumption, so that demand -

the sum of current consumption and the amount stored for the future - must always equal

current availability:

At = Qt +Xt: (2)

3.2 Demand for Oil

Let Yt denote an income parameter, which can be thought of as some function of world GDP.

We can then write an inverse demand function for oil as follows:

Pt = P (Qt; Yt); (3)

which is decreasing in its �rst argument, and increasing in its second. This inverse demand

function constitutes a departure from the canonical model, where demand for the commodity

is a function of its price alone, e¤ectively assuming no income e¤ects. This departure is a

natural one to make, however, in the context of oil, as oil consumption and income are

very highly correlated (see references in Section 5). We posit an inverse demand function in

which only the ratio of consumption to income matters, i.e. invere deamnd is homogeneous

of degree zero:

Pt = P (Qt; Yt) = P (
Qt
Yt
; 1) = p(qt); (4)

11Alternatively, we could have speci�ed storage costs by a given loss percentage, as in Deaton and Laroque
(1996).
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where lowercase letters denote variables normalized by Yt. We think of the normalized

variables as "e¤ective" amounts, in the sense that a growing income leads to higher energy

needs, spreading any given amount of oil more thinly12.

We will use a CES inverse demand function:

Pt = q�t = (at � xt)
�; (5)

where  > 1 is the inverse elasticity of demand, and at, xt denote e¤ective availability and

storage in period t, respectively. It is natural to assume that the e¤ective demand for oil is

inelastic with respect to price. As equation (5) makes clear, for a given supply of oil, price

is a function of the competing demands of current and future consumption. If the desire to

consume more in the future grows (driven by expectations of future conditions), more oil is

stored rather than consumed today, resulting in a price rise today even though supply has

not changed.

Let Y t denote trend income, i.e. the level of income that would prevail at time t in a

world without income shocks. Y t, which we think of as a measure of current production

technology, is assumed to increase over time at a constant rate � > 0. We now consider

two alternative stochastic processes for Yt: one where income moves around a deterministic

trend, and another where the trend itself is stochastic. The former is a simple AR(1) process,

analogous to the stochastic process that Deaton and Laroque (1996) consider for supply.

Under this assumption we have:

Yt+1

Y t+1

=

�
Yt

Y t

��
e"t+1 ; (6)

where � 2 (0; 1) and "t+1 � N(0; �2") is an iid shock. We think of this case as more closely

relevant to income shocks in developed economies, where the economy exhibits business

cycles around a stable trend. In the latter case, we assume instead:

Yt+1 = e�t+1Yt; (7)

such that

�t+1 = (1� �)�+ ��t + �t+1; (8)

where � 2 (0; 1) and �t+1 � N(0; �2�) is an iid shock. Dividing both sides of (7) by Y t+1 we

12A disadvantage of using normalized quantities is the di¢ culty in directly calibrating the model to actual
observable quantities. This would be an important issue if we had the ability to perform such calibration.
Unfortunately, quantity data for the oil industry - production, consumption, stocks - are not readily available
for the full period (1861-2008). Our model is highly stylized as a result.
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get:
Yt+1

Y t+1

= e�t+1��
Yt

Y t

: (9)

We think of this case as more relevant to income shocks in some developing countries, in

particular quickly industrializing economies where very high growth rates can be persistent.

In principle the world demand for oil should be a¤ected by developments in both types of

economies, developed and developing, depending on the relative intensity of oil use. Specif-

ically, a positive income shock in an advanced economy such as the twentieth century U.S.,

where the trend is stable, is expected to disappear over time. In contrast, a positive income

shock in an emerging economy such as the late twentieth century China is perceived to have

a more lasting e¤ect on global demand, especially given its relatively high oil intensity.

3.3 Supply of Oil

In the canonical commodity storage model, supply Zt varies according to some stochastic

process  t around a predetermined mean eZt, and it is this variability in supply that creates
an incentive for inter-temporal smoothing by the large pool of risk neutral arbitrageurs. As

the literature has long recognized, demand and supply shocks in the canonical model are

isomorphic: one can think of a negative realization of  t as representing an especially cold

winter (demand) or a breakdown in a major pipe (supply). For this reason, since we model

demand shocks explicitly, it would be redundant to model supply shocks separately. Our

choice has to do, of course, with the argument of Section 5, but it is important to recognize

that theoretically speaking we could just as well have modeled supply shocks.

We do model supply choices, however. In particular, we assume that either of the fol-

lowing two regimes holds: a regime where oil supply does not react at all to income shocks

due to capacity constraints (such as railroad infrastructure or number of operational wells),

and a regime in which oil supply fully accommodates any shock to demand (for example,

when potential production is much higher than current production). We think of the for-

mer regime as describing supply behavior when access to excess supply sources is restricted,

so that suppliers are constrained to produce at their installed capacity13. Under the latter

regime, suppliers seek to stabilize prices by varying quantities as needed. We think of this

regime as representing either perfectly competitive supply, where producers will o¤er any

amount at a given price, or else the e¤ect of purposeful government intervention, seeking to

control market prices by adjusting supply.

13Naturally, capacity constraints can be relaxed in the medium run. However, as long as capacity does
not fully accommodate all demand shocks, dynamic behavior will be qualitatively similar to the case where
it does not react at all. A similar point has been made by Williams and Wright (1991).
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Formally, in the former regime we assume that supply grows at the trend income rate �,

so that

Zt+1 = eZY t; (10)

where eZ is a supply parameter. Next period�s oil supply depends then on current technology,
since overall technological progress, which drives global GDP growth, applies to the oil

extraction and exploration sectors as well, and therefore determines overall capacity.

This assumption deserves some comment. Of course, the total amount of oil existing in

the earth�s crust is �nite. However technological progress is key to exploiting an increasing

fraction of it over time. The global ratio of oil production to known oil reserves is slightly

less than 2.5% , and has been quite steady at that level since 1985 (BP Statistical Review),

even though global production has increased by about 39% from 1985 to 2009. The world

economy is no closer to running out of oil now than it was in 1985 due to the rate at which

new reserves are discovered and known reserves become exploitable due to better technology.

This is the context which drives our modeling choice.

Note that in this regime oil supply depends on the technology driving income growth, but

not on income growth itself. Therefore shocks to demand will drive a wedge between supply

and demand, causing a shift in equilibrium price. In contrast, under the alternative supply

regime oil suppliers will accommodate all income shocks, i.e. oil supply will be perfectly

elastic. Next period�s supply then will also depend on current income level (and growth rate

if appropriate). Supply is then given by:

Zt+1 = eZY t

�
Yt

Y t

��
; (11)

for the AR(1) case or by:

Zt+1 = eZe(1��)�+��tYt; (12)

for the stochastic trend case.

3.4 Storage of Oil

The de�ning characteristic of the canonical model is the availability of storage technology.

Here we follow the literature closely. We assume free entry into the storage sector as well as

risk neutrality, implying that the actions of arbitrageurs will raise or lower the current price

until it is at a level which renders the strategy unpro�table in expectation, unless that would

require holding negative stocks, at which case inter-temporal arbitrage will be incomplete.

In all other cases, i.e. when equilibrium at time t is fully optimal, the price of oil must obey
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the following arbitrage condition:

Pt = �Et[Pt+1]� C; (13)

where � = 1= (1 + r) is the discount factor, and r > 0 is the exogenously given interest rate.

The parameter C > 0 denotes the per barrel cost of storage14. Equilibrium price Pt must be

such that there is no incentive to increase or decrease Xt, the amount stored.

The inter-temporal price condition (13) does not hold in the case of a stockout, i.e. the

case where Xt = 0 because the storage non-negativity constraint is binding. In this case

arbitrageurs expect the future price of oil to be su¢ ciently lower than the current price that

they would sell any amount of oil they had, except that they have nothing left to sell; every

barrel of extracted oil is being used for consumption. As a result, current price is above its

unconstrained level:

Pt > �Et[Pt+1]� C: (14)

Note that storage involves an intertemporal choice, whereas in our model the production

decision does not. This is worth mentioning since models of the oil market which emphasize

non-renewability imply that producers must decide whether to extract a barrel of oil today

or tomorrow, which leads to a con�ation of supply and storage decisions. In our model these

decisions are completely separate.

3.5 The Rational Expectations Equilibrium

The canonical commodity storage model is a rational expectations model with one state

variable - availability of oil At - and one choice variables - storage of oil Xt. A solution of

the model - the rational expectations equilibrium - consists of a storage rule, which speci�es

the level of storage for every possible value of the state variable. Determination of price and

consumption follows immediately from this rule. In our extended version of the model the

rule retains its salient characteristics, well known from the literature (see below). But in the

extended version, similarly to the AR(1) case considered by Chambers and Bailey (1996),

storage is also the function of one (or two) exogenous variables, depending on assumptions

regarding the income process. Relative income Yt=Y t - how far above or below its mean is

the current level of income - serves as the second state variable of the model when we assume

that income follows a stable trend. For the case where income is subject to growth shocks,

we need a third state variable: the current growth rate of income, denoted by �t.

14The cost of storing a barrel of oil have most likely decreased over time. We ignore this for simplicity, since
accounting for a downward trend in storage cost cannot explain the observed changes in price persistence or
volatility.
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In order to solve the model we express all quantity variables in their normalized forms.

The model can be then be summarized by two (or three) transition functions (for the state

variables) and one response equation (for the decision variable). We therefore arrive at a

2 � 2 framework: two alternatives for the demand process and two for the supply regime.
Agents in the model observe all the state variables every period, and decide on storage

accordingly, taking into consideration expectations regarding the next period�s price, and

implicitly producers�behavior.

The transition functions for the stable trend case are:

at+1 =
xt + zt+1

(Yt=Y t)��1e�+"t+1
; (15)

Yt+1

Y t+1

=

�
Yt

Y t

��
e"t+1 ; (16)

where equation (15) is derived by normalizing equation (1) by Yt+1 and using (6). E¤ective

supply zt+1 is arrived at by dividing either equation (10) or (11) through by Yt, depending

on the supply regime in e¤ect.

For the stochastic trend case, there are three transition functions:

at+1 = (xt + zt+1)=e
�t+1 ; (17)

Yt+1

Y t+1

= e�t+1��
Yt

Y t

; (18)

�t+1 = (1� ')�+ '�t + �t; (19)

where the transition function (17) is derived by normalizing equation (1) by Yt+1 and using

(7) instead. Here as well, the supply regime in e¤ect determines how we arrive at zt+1:

dividing either equation (10) or (12), as appropriate, by Yt.

The response equation for both cases is:

(at � xt)
� = �Et[Pt+1]� C: (20)

Note importantly that equation (20), which determines optimal storage, holds only when

the state variables are such that the optimal storage is non-negative. If the state variables

dictate negative storage, this response condition breaks down and we have simply Pt = a�t .

The existence and uniqueness (under certain general conditions) of the rational expecta-

tions equilibrium, as well as its important properties, have been proven in the literature. In

particular, Chambers and Bailey (1996) prove these properties for the case of auto-correlated

supply shocks. However, commodity storage models generally cannot be solved analytically

13



even in their most simple form, due to the non-negativity constraint. We therefore follow

the literature since Gustafson�s (1958) original contribution and proceed to solve the model

numerically. This can be done using a variety of methods15. For computational reasons, we

choose to use the spline collocation method (see Judd, 1998, and Miranda and Fackler, 2002

for a discussion, and appendix B for more details).

The storage rules in our extended model are identical in form to the ones that result from

the canonical model. The di¤erence is that in the extended model these rules hold for the

normalized variables instead of the original quantities. In other words, e¤ective storage has a

relationship with e¤ective availability in the extended model, under both sets of assumptions

regarding demand, and both supply regimes, that is qualitatively similar to the relationship

between actual storage and actual availability in the canonical model.

This last point is clearly shown in Figure 3, which exhibits the optimal storage rule as well

as the corresponding equilibrium price, both as functions of e¤ective oil availability at (on the

horizontal axis), with the other state variable(s) held constant16. The �gure is qualitatively

similar regardless of our assumption on income�s stochastic process or the supply regime.

Figure 3 Here.

In the �gure, points on the curves that correspond to a particular level of e¤ective avail-

ability represent the rational expectations equilibrium - e¤ective storage and the resulting

equilibrium price - that would prevail if e¤ective oil availability were indeed at that level. As

illustrated in the �gure, e¤ective storage is zero when the e¤ective amount of oil available

is low, then after a kink at a it rises monotonically17. The marginal propensity to store is

always less than one; that is because a rise in storage must lower the expected future price,

as it raises future availability of oil. The kink in the storage rule occurs when an additional

barrel of stored oil will generate an expected pro�t of zero:

a� = �E[z�]� C; (21)

15Williams and Wright (1991), Chap. 3, survey the numeric methods applied to commodity storage models
in the literature.
16Certain assumptions need to be made regarding the model�s parameters in order to solve the model

numerically. Demand elasticity �1= is set at -0.2. The cost of storage C is 0.02 per barrel. The discount
factor � is set at 0.97. The trend income growth rate � is set at 0.02, the income persistence parameter � is
set at 0.6, and the growth persistence parameter � is set at 0.45. E¤ective supply capacity eZ is set at e�.
Lastly, the income shock�s standard deviation � is set at 0.1, and the growth shock�s standard deviation �
is set at 0.02.
17See Deaton and Laroque (1992), Theorem 1. When availability is relatively low (oil is temporarily

scarce), agents will sell o¤ all existing inventories of oil while the equilibrium price is high, expecting it to
fall in the following period. Storage will be therefore zero, and indeed would have been negative had it been
possible - agents would want to hold a short position.
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where z, recall, is normalized production (which is a function of current and trend income;

see below). The kink at a is also seen in the equilibrium price function p: when oil is

relatively abundant, i.e. a > a, the price function is more elastic. That is because once

storage kicks in, a rise in oil availability causes a less than proportionate rise in the amount

available for consumption, since there is now competing demand from arbitrageurs who are

keen to increase their stocks.

4 Dynamic Behavior of Storage and Price in the Ex-

tended Model

We can now examine the dynamic behavior of the model following shocks to the income

process. We �rst examine the dynamic behavior of our extended model under the assumption

that shocks to income are AR(1), and show that our extended model behaves very similarly

to the model analyzed and estimated by Deaton and Laroque (1996). In particular, storage

in these conditions serves its classic purpose, to mitigate shocks: arbitrageurs transfer stocks

from times of plenty to times of want. This is true under both supply regimes. Therefore

storage cannot explain price volatility when shocks follow an AR(1) process in levels, a well

known result. We then proceed to show that the model�s dynamic behavior is quite di¤erent

when we assume that demand is subject to growth shocks and supply is inelastic. Storage

will then act to magnify shocks in the model, thereby increasing price volatility18.

4.1 AR(1) Shocks to Income

Consider �rst a positive and persistent shock to income, when the stochastic process is

AR(1). The shock�s e¤ects on e¤ective availability, e¤ective storage and equilibrium price

are depicted in Figure 4. The �gure exhibits the results of the following simulation: we

let the system run for 15 periods, where each period a new value of "t is drawn from the

appropriate distribution. We perform 10,000 repetitions of this simulation, with the �gure

showing mean values for each period. This produces the baseline case. We then repeat this

exercise with one change, namely that in period 2 there occurs a three standard deviation

positive shock to "t. The mean results of 10,000 repetitions of this simulation are shown in

dashed lines. Lastly, we repeat the simulation while restricting storage to zero at all times.

This allows us to highlight its role in dynamic behavior. All of the above simulations were

18Kilian (2008c) argues that oil price movements that cannot be explained by either supply or industrial
demand shocks should be thought of as shocks to precautionary demand. The endogenous storage response
in our model is also separate from the direct e¤ects of the shock, however it responds to the expected mean
price, rather than to its expected volatility as is the case with precautionary demand.
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done under the restrictive supply regime. Results of the same simulations done under the

�exible supply regime are shown in Figure 5.

The shock to income results in e¤ective availability dropping sharply, leading therefore

to an immediate rise in current equilibrium price, as a �xed amount of oil must satisfy a

larger thirst for it. These twin e¤ects on e¤ective availability and price subside gradually

over time, as the income shock dissipates, and the system returns to its steady state.

The shock�s e¤ects on storage are more complex. Arbitrageurs are caught between two

contradictory forces following this type of shock: on the one hand, the rise in current prices

and drop in current e¤ective availability dictate a drop in optimal e¤ective storage according

to the storage rule (see Figure 3). On the other hand, due to the shock�s persistence future

income is also expected to be higher than average, implying higher expected future prices

and therefore an increased incentive to store at any level of e¤ective availability. However,

the former e¤ect must dominate the latter in the case of an AR(1) income process, as future

relative income is expected to be less than current relative income, implying that future

e¤ective availability is expected to be higher than its current value, and accordingly that the

future price is expected to be lower than its current, post-shock level. As a result, the e¤ect

of a positive shock to income would be to reduce storage until the system reverts back to its

steady state.

Figure 4 Here.

We see in the system�s response to a temporary and persistent demand shock the un-

derlying reason for the disappointment expressed by Deaton and Laroque (1996) regarding

the storage model�s inability to account for the auto-correlation seen in commodity prices.

When shocks are transitory, i.e. when the system is stationary, storage acts as a counter-

vailing force: in Figure 4, when the equilibrium price is above its steady state level, storage

is smaller than its own steady state level, in a partial compensation for the shock. This

in itself does contribute to a higher equilibrium price in the next period, as observed in

the data. However, persistence of the shock only serves to reduce the magnitude of this

response, since the connection between current and future conditions formed by the shock�s

persistence substitutes in part for the inter-temporal connection that is due to arbitrage.

Therefore an AR(1) shock does not deliver the added persistence that Deaton and Laroque

(1996) are looking for. We can see this clearly when we compare the system�s response with

and without storage. Where storage is not possible, availability must drop by more, and

equilibrium price rises by more, relative to the case where storage is possible.

Figure 5, where supply is �exible, shows a very similar pattern. Since suppliers react to

the shock, storage is less important, and the di¤erence between the cases with and without
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storage are smaller. It is still the case however that storage serves as a countervailing force,

i.e. it mitigates the e¤ects of the demand shock.

Figure 5 Here.

4.2 Growth Shocks to Income

Our extended model allows us, as we have seen, to incorporate growth shocks into the stor-

age framework. In this case, storage does not act as a countervailing force anymore; indeed,

immediately following the shock storage tends to magnify the shock�s e¤ect on equilibrium

price. Figure 6 demonstrates the e¤ects of a positive and persistent shock to income growth,

in this case a three standard deviation positive shock to �t. Here again supply is restricted.

As in the AR(1) case, a positive demand shock lowers e¤ective availability and raises the

equilibrium price. However, in this case the shock brings about a transition to a new steady

state in which e¤ective availability is expected to be at a lower level permanently, accom-

panied by a permanently higher price level. Importantly, due to positive auto-correlation

in the stochastic process, this transition is spread over several periods, providing a role for

storage.

As in the AR(1) case, arbitrageurs are subject to contradictory forces: the current rise

in price induces a corresponding drop in storage, while the prospect of higher prices in the

future induces a storage increase. However, the crucial di¤erence between the two cases

is that here, due to the shock�s persistence, equilibrium price in the future is expected to

increase relative to the current, post-shock price. As a result, in the stochastic trend case

the storage-increasing e¤ect of future prices is stronger than the storage-decreasing e¤ect of

the current price. Storage in the transition period is therefore higher in expectation relative

to the expected path it would follow had the shock not occurred. In the stochastic trend

case, the shock�s persistence magni�es the storage response instead of diluting it as in the

stable trend case19.

Figure 6 Here.

It is revealing to compare our simulated response to the case where storage is not allowed.

Due to the shock to income growth, storage rises sharply upwards, leading to a slightly

higher equilibrium price relative to the no-storage case. E¤ective availability in the periods

of transition to the new steady state is high relative to the no-storage case, since storage

19The same logic applies to the opposite case, where income growth su¤ers a negative shock, but with a
caveat. Storage response, in this case a decrease, is stronger the more persistent the growth shock. However,
since storage cannot be non-negative, this e¤ect is bounded in the negative growth shock case.
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remains positive throughout the transition (in expectation of higher prices in the future).

Therefore we see a slower expected convergence to steady state price relative to the no-storage

case.

In Figure 7 we see the same shock a¤ecting a system in which supply is �exible. The

magnifying e¤ect of storage is completely absent: since suppliers will react to the shock by

increasing supply, price is expected to return to its baseline level, and the role of storage in

dynamic behavior is quite small.

Figure 7 Here.

We see then that in the presence of growth shocks and restricted supply, a rise in current

price will be associated with an increase in optimal storage, rather than a decrease as would

always be the case in the canonical model. Storage in this case does not "lean against

the wind", as is its customary role; it actually magni�es the shock somewhat, by increasing

demand exactly when it is already high, in preparation for even higher demand in the future.

This behavior then provides the link between price persistence and price volatility. We saw

that when prices are not persistent, either because demand is stationary or because supply

is �exible, storage can only serve to reduce the e¤ects of shocks. Only when prices are

persistent, due to the presence of growth shocks as well as restrictions on access to supplies,

could storage act to increase the e¤ect of shocks, and therefore increase price volatility

immediately after the shock, above and beyond what it would otherwise be without storage.

This result accords well with our empirical �ndings: periods in which persistent growth

shocks are dominant should be periods in which price exhibits extra volatility, relative to

periods in which AR(1) shocks are more prevalent and / or supply is �exible. At this point we

must be cautious not to read too much into this result, as we o¤er no calibration to the data.

Our contribution is to show that the oil market can only behave in a speculative way under

certain conditions. In the next section, we provide more detail on the historical contexts in

which the oil market operated, in particular the interaction between industrialization and

the structure of the oil industry.

5 Industrialization and Market Structure: Transition

Points in Context

In Section 2 we identify three points of transition. In 1877-8 and again in 1972-3, oil price

persistence and volatility both changed, while in 1934 we �nd a change in volatility, but

no change in persistence. Of these three points, only 1934 can be linked to a major oil
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discovery, that of the East Texas Oil Field a few years earlier. All three points of transition,

we will argue, had to do with changes in market structure. In 1878 began the construction of

Tidewater, the �rst long-distance pipeline, which eventually ended railroad monopoly over

the transportation of oil. In 1934 the Federal government gained virtual control over U.S.

oil production. In 1970 the East Texas Oil Field peaked, ending U.S. control over excess

exploitable reserves, and signalling the rise to prominence of OPEC20.

These three points also show striking similarities and di¤erences from a demand point of

view as well. Of these three points, 1934 is special also in that it occurs in the midst of a

worldwide recession. Both 1877-8 and 1972-3 were years in which the global economy, and

with it demand for oil, were booming, driven by the large-scale industrialization of the United

States and of East Asia, respectively. Rapid industrialization is by de�nition a transitional

stage, and as such it features growth rates that are on the one hand unsustainably high and

on the other hand quite persistent, since the process of industrialization often stretches over

decades.

We will argue that the two observed periods in which oil prices were both highly persistent

and highly volatile occurred because two conditions were simultaneously met in each of

these periods: access to supplies was restricted and demand was unsustainably high. It is

important to note that U.S. industrialization was far from over when the �rst such period

ended in 1878, and that post-war industrialization in East Asia was well underway by 1973,

our estimate of the beginning of the second period of high persistence and high volatility.

These years were not turning points in oil demand, rather they signi�ed major structural

changes in the petroleum industry, in which key players with the ability to restrict access to

supplies either emerged or declined in importance. When only one of the conditions was met,

as for example happened during both World Wars (when demand was unsustainably high

but supply was unrestricted), the market was signi�cantly less persistent and less volatile.

This necessary con�uence of demand and supply factors has been relatively rare looking back

all the way to 1860, but of course has been the reality in the oil market in recent decades21.

It is worth emphasizing that we do not focus on the source of shocks to the oil market,

nor do we attempt to identify these shocks. Our main objective is to account for the radically

20The oil industry was, of course, much bigger in the late 20th century compared to its size a hundred
years earlier; oil is also no longer used mainly for illumination as it did at �rst. It is notable however that
prominent features of the industry remain relatively unchanged: oil was internationally traded from the very
beginning, demand for it being global. Moreover, its e¢ ciency as a source of energy made it indispensable
to consumers from the earliest stages, a feature of the industry that remains crucial to this day.
21We stress supply restrictions rather than reserve depletion since there is no evidence that "running out

of oil" was ever a real danger. Oil security, the danger of not having access to existing oil, was on the other
hand very real. In this regard, "capacity constraints" must be viewed as mechanisms to restrict supply, since
by their nature these constraints - derricks, strorage tanks - can be loosened in the medium run, whereas
the amount of extractable oil in any given �eld cannot be increased beyond a certain point.
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di¤erent behavior of oil prices across di¤erent regimes, rather than determining the genesis

of shocks to oil prices within a given regime. Studies such as Hamilton (2009b) and Kilian

(2008b, 2009) exclude this type of analysis due to their intentional focus on the experience

of recent decades.

5.1 From Rail to Pipe: Explaining the 1877-8 Change-Point

By 1865, the Oil Regions in northwestern Pennsylvania, where all commercial oil produc-

tion was located, were well served by three di¤erent railroads22. These �rms enjoyed an

oligopolistic position, as both production and re�ning were highly competitive. For illustra-

tion purposes, in 1877, the year before Standard Oil consolidated its control of re�ning, the

"open fare" for rail transport of crude oil from the Oil Regions to New York was $1.40 per

barrel (Bentley, 1979, page 28); this amounted to 58% of the average price of a barrel of crude

oil in that year according to our data. Williamson and Daum (1959, Chap. 17) estimate the

per barrel cost of carriage by rail at no more than $0.40 around that time, giving us an idea

of the margins involved. Rockefeller�s vision was a large re�ning concern that could bargain

e¤ectively with the railroads; Standard�s business advantage was well understood at the time

to consist of the special "rebates" that it was in a position to demand from the railroads23.

In 1878, oil producers who were trying to break the joint monopoly of transportation and

re�ning started construction on the world�s �rst long-distance pipeline, the Tidewater. It

was completed in May of 1879, and was intended to bypass both the railroads and Standard

Oil�s re�neries. In the face of this technological breakthrough, Rockefeller proceeded to con-

struct Standard�s own long-distance pipelines, choosing to destroy the railroads�monopoly on

transportation in order to strengthen Standard�s monopoly on re�ning. This spelled the end

of attempts to increase pro�tability by restricting access to oil. Having invested in his own

infrastructure, and given the very low transportation costs it a¤orded him24, Rockefeller�s

strategy now was to sell as much oil as possible.

These events occurred against a backdrop of ever rising demand, both domestic and

foreign. The United States was going through rapid industrialization at the time, eventually

overtaking Britain as the world�s leading center of manufacturing. During the period, the

share of world industrial output made in the U.S. rose spectacularly, from 7.2% in 1860, to

14.7% in 1880, to 23.6% in 1900. In absolute numbers, U.S. manufacturing production rose

by a factor of three in the two decades between 1860 and 1880, and by a factor of eight

22Yergin (1991) is the source for all historical facts, unless noted otherwise.
23Standard�s business advantage over independent re�ners as a result of its strong bargaining position is

estimated by Bentley (1979) to have been $1.00 per barrel of re�ned oil.
24Williamson and Daum (1959, p. 458) estimate that per barrel transportation costs in Standard Oil�s

own pipelines were between $0.12 - $0.20, less than half the rail cost of carriage.
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between 1860 and 190025. U.S. population more than doubled from 1860-1900, rising from

31.8 million to 76.4 million, while GDP per capita rose almost as fast, from $2,445 in 1860 to

$4,091 in 1900 (constant 1990 dollars)26. As a result domestic consumption of illuminating

oil rose from 1.6 million barrels (mb) in 1873-75 to 12.7 mb in 1899, while that of machine

lubricating oil rose even more, from 0.2 mb in 1873-75 to 2.4 mb in 1899 (Williamson and

Daum [1959], pp. 489, 678). Even as urban communities in the United States and Europe

shifted to gas or electric lighting, kerosene remained in high demand in other parts of the

world. By the turn of the twentieth century, there was increasing demand for gasoline, from

the burgeoning auto industry.

The transition point we identify in 1877-8 was therefore the starting point of sweeping

changes in market structure, brought about in an environment of rapidly growing demand.

Before 1878 the railroads were using their monopolistic position to limit the supply of crude

to the markets in the interest of rent extraction. After 1878 that power was slipping away

from them at a fast clip; by 1884 Rockefeller�s network of long-distance pipelines was essen-

tially complete, and the railroads were sidelined. Moreover, since Standard Oil owned the

vast majority of long-distance pipelines, and with demand expected to continue unabated,

there was no player in the market who had both the interest and the capability of limiting

supplies27.

5.2 Oil Glut and Government Control: Explaining the 1933-4

Change-Point

This state of a¤airs continued until the early 1930�s, when the discovery of the East Texas

Oil Field created an oil glut of proportions heretofore unknown. Against the backdrop of

Depression, the result was a slump in price that threatened the entire industry, eventually

leading to Federal regulation. The U.S. government came to e¤ectively control supplies:

since East Texas production was far below its potential, and given the authority to raise and

lower production quotas as circumstances required, the U.S. government (both Federal and

state, in particular the Texas Railroad Commission) had the power to increase or decrease

oil supply almost at will. Over the decades since, while it still had that power, the U.S. gov-

ernment would use it to stabilize the market on numerous occasions. It increased production

enormously during World War II, as well as during supply crises involving the Middle East,

25Bairoch (1982) is the source for the U.S. absolute and relative industrial output numbers.
26Figures for U.S. population and GDP per capita are from Maddison (2003).
27The producers in the Oil Regions were relatively small-scale, and had repeatedly failed in their attemps

to control production. There was one exception: in 1887-8, there was a willingness to cooperate on the part
of Standard Oil, and production reduction was achieved for a short while.
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in 1953 (Iran), 1956 (Suez), and 1967 (Six-Day War). When the surge of oil was no longer

needed, it had the power to reduce production once more. U.S. regulation thus acted as an

automatic stabilizer (Yergin, 1991, page 259). This had the e¤ect of reducing the standard

deviation of supply and demand shocks, and accords well with the observed reduction in

volatility that we date to 1934, around the time that this mechanism went into e¤ect. Quite

the opposite from the railroads�rent extraction strategy before 1878, U.S. government agen-

cies aimed to stabilize price by adjusting quantity as needed. The supply of oil, far from

limited, was in e¤ect quite �exible.

5.3 U.S. Oil Peak and OPEC: Explaining the 1972-3 Change-Point

Our third transition point is 1973, where we �nd that oil price persistence and volatility both

increased. In 1970 U.S. oil production reached its peak. In March 1971 the Texas Railroad

Commission, for the �rst time since World War II, allowed production at 100% capacity; the

ability of U.S. government agencies to increase production in times of need was gone (Yergin,

1991, pp. 567-8). Excess capacity existed now only in the Middle East, giving the rulers

of these countries the same kind of market power enjoyed by the railroads almost a century

earlier: the ability to extract large rents from consumers by limiting access to oil supplies.

In the Gulf, 1972 saw an agreement of "participation" of oil producers, i.e. the transfer of

some ownership rights of the oil resources located on their land from the international oil

companies to the governments. These developments changed fundamentally the nature of

the market: the oil producing countries were now owners (whole or part) of their reserves,

the only easily-exploitable oil reserves left in the world. In November 1973, of course, OPEC

member states acted to dramatically restrict the West�s access to oil supplies28.

As in the early years of the oil industry, these events were occurring in a period of

increasing demand. The demand for oil is driven, �rst and foremost, by income. In recent

decades, world GDP and global oil production have moved in lockstep; the International

Energy Agency estimates long-run income elasticity of world oil demand at about 0.5, i.e.

each percentage point increase in world GDP is accompanied by a 0.5% increase in the

global demand for oil (IEA [2006,2007]). This may in fact be an underestimate: Gately and

Huntington (2002) �nd that income elasticity of oil demand in OECD countries is 0.55, but

for non-OECD countries the income elasticity may be as high as 1. The IEA estimates that

in 2001-2005, China�s higher-than-average propensity to consume oil may have raised the

28There is a debate in the literature on whether OPEC can be shown to have acted collusively to withhold
supplies from the market. Clearly OPEC�s degree of control over prices has been inconsistent over the years,
however that in itself does not settle the issue: Smith (2005, 2008) and Almoguera and Herrera (2007) are
recent references. In our context, what matters is only OPEC�s ability to restrict access to the world�s only
easily exploitable reserves of oil. This ability is undisputed (Smith, 2008).
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global income elasticity to 0.8 (IEA [2007]).

This time it was East Asia that was industrializing fast: �rst Japan, then Taiwan and

South Korea, and �nally China. Japan�s GDP per capita, for example, more than tripled in

two decades, rising from $3,986 in 1960 to $13,428 in 1980. Japanese GDP by itself already

equaled 37% of U.S. GDP by 1980 (all comparisons in 1990 international dollars, Maddison

[2003]). China industrialized slightly later, but the pace of its industrialization in the �nal

decades of the twentieth century was as rapid as that of the U.S. a century earlier, if not

more: between 1980 and 2000, Chinese industrial production rose by a factor of 9; between

1970 and 2000, it grew by a factor of 21. In relative terms, the Chinese share of world

industrial output was only 0.7% 1970; it has increased to 6.3% in 200029. The IMF�s World

Economic Outlook (2008) projects that Asia�s share of global trade and manufacturing will

continue to soar in the coming decades, despite the short term dislocations caused by the

current �nancial crisis. Overall, the average growth rate in Asia (excluding Japan) between

1973-2001 was 5.4%, compared with 2.1% for Western Europe, 3.0% for the United States,

and 2.7% for Japan during the same years (Maddison [2003]). It seems clear that Asia,

outside of Japan, was still very much in the midst of an era of industrialization at the onset

of the present century, with no end in sight. This is similar to the situation of the U.S.

economy about a hundred years earlier.

We see therefore a repeat, on a much broader scale, of important features from the

market environment that prevailed before 1878: a combination of supply limits and ever

rising demand30. As in the earlier period, with supply limited in this fashion, shocks to

demand would be fully incorporated into the price. Since these shocks are very persistent,

in an era where the trend in demand is uncertain, we would expect the price of oil to be

more persistent, relative to a period where these limits on supply are not binding. This

persistence in the price of oil can be reasonably expected to continue as long as demand

shocks are persistent, or until the ability of OPEC to e¤ectively limit access to supplies no

longer exists, either due to an independent source of oil, or to an alternative source of energy.

6 Conclusion

We argue in this paper that a long-term view is essential to understanding the dynamic

behavior of oil prices. We show that shocks to the oil market can have remarkably di¤erent

e¤ects on the real price of oil across historical periods, not because of their origin on the

29Statistics for China are from the World Bank�s World Development Indicators database.
30OECD growth was also high at various points during this time period, a fact that no doubt has been

important in the timing of the �rst and second oil shocks (see Barsky and Kilian [2002, 2004]). However this
fact cannot account for the very high price persistence that we observe in this period.
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supply or the demand side, but rather due of the ability (or lack thereof) of key players

in the market to restrict access to supplies. With e¤ective restrictions on access to excess

supplies, growth shocks can generate oil prices that are both highly persistent and, through

an endogenous storage response, highly volatile. On the other hand, without these restric-

tions, the same growth shocks will be quickly accommodated, and will not lead to increased

persistence or volatility. In this regard, it is immaterial whether the growth shocks originate

on the demand or the supply side.

The literature, for obvious reasons, has focused on the extremely persistent and volatile

post-1973 period. Given the geo-political realities, this period is unlikely to end in the

foreseeable future. However, it is useful to recognize that throughout most of the history of

oil, the ability to restrict access to supplies was actually sorely lacking, with the oil market

showing remarkable �exibility and relative price stability as a result. This held true even in

years when oil supply or demand were experiencing great upheavals, such as during World

War II and the postwar re-building of Europe. Although rare, the history of oil shows that

shifts in industry structure do occur, and the structural breaks in price behavior associated

with these shifts are testimony to their importance.
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Table 1: Sample Statistics of Oil Price Series
Subsamples Full Sample

1861-1877 1878-1972 1973-2009 1861-2009

Price (2009 $US)

Mean 50.9 17.2 44.7 27.8

Std. Deviation 25.3 5.1 22.1 20.2

Annual price change (abs.)

Mean 39.0% 14.2% 22.1% 19.0%

Std. Deviation 27.5% 13.7% 22.8% 19.6%

Data source: BP Statistical Review.
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Table 2: Testing for Change in Persistence of Real Oil Price

Sample 1861-1955 1881-2009

Change-point (direction) 1877 (I(1) to I(0)) 1973 (I(0) to I(1))

95% CI (1873, 1881) (1968, 1978)

Mean Score Statistics:

MS 0.03 (0.954) 31.98�� (0.033)

MSR 127.61��� (0.002) 0.10 (0.918)

MSMAX 125.99��� (0.002) 31.86�� (0.033)

Mean-Exponential Statistics:

ME 0.02 (0.966) 36.67�� (0.035)

MER 271.22��� (<0.001) 0.06 (0.888)

MEMAX 264.24��� (<0.001) 36.53�� (0.036)

Maximum Statistics:

MX 0.22 (0.830) 83.78�� (0.032)

MXR 575.38��� (<0.001) 1.86 (0.342)

MXMAX 561.67��� (<0.001) 83.40�� (0.032)

Note: Only statistically signi�cant change-points are listed. Three asterisks (���) denote sig-

ni�cance at the 1% level, two asterisks(��) denote signi�cance at the 5% level. T-statistics are in

parentheses. Data source: BP Statistical Review.
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Table 3: Testing for Change in Volatility of Oil Price, 1861-2009

Estimated breakpoints, con�dence intervals, and period mean volatilities:

Breakpoint 95% CI Mean Volatility (t-statistic)

Period I 1878 1873-1896 0.381 (9.4)

Period II 1933 1931-1946 0.195 (9.0)

Period III 1972 1950-1973 0.061 (2.3)

Period IV 0.228 (8.5)

The Bai-Perron test statistics:

Test Statistic Value

supFT (1 break vs. no breaks) 21.89���

supFT (2 breaks vs. no breaks) 14.85���

supFT (3 breaks vs. no breaks) 16.00���

Sequential Procedure:

supFT (2 breaks vs. 1 break) 7.66

supFT (3 breaks vs. 2 breaks) 32.07���

supFT (4 breaks vs. 3 breaks) 3.15

Three asterisks (���) denote signi�cance at the 1% level, two asterisks(��) denote signi�cance

at the 5% level.

Data source: BP Statistical Review.
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A Methods Used to Test for Change in Persistence

Consider a time series yt, where t = 1; :::; T . Assume the series can be decomposed into the

sum of a deterministic trend, a random walk, and a stationary error:

yt = �t+ rt + "t; (22)

where rt is the random walk component:

rt = rt�1 + ut: (23)

Let the errors ut be iid with mean zero and variance �2u. Then one can test the null hypothesis

of I(0) by positing H0 : �
2
u = 0 against the alternative H1 : �

2
u > 0. The test is constructed

as follows: let et denote the residuals from a regression of yt on a constant and a trend. Then

consider the following test statistic:

K =
1b�2"

TX
t=1

S2t ; (24)

where b�2" is the estimated error variance, and St denotes the partial sum process:

St =
tX
i=1

ei; t = 1; :::; T: (25)

A value of this test statistic that is higher than an appropriate critical value would imply a

rejection of the I(0) null. Kim (2000), later modi�ed and corrected by Kim et al. (2002),

and Busetti and Taylor (2004), apply this method to the question of change in the rate of

persistence of a series. With the same null hypothesis, consider the following two alternative

hypotheses:

H01 :

(
�2u = 0; t = 1; :::; �T

�2u > 0; t = �T + 1; :::; T
; (26)

H10 :

(
�2u > 0; t = 1; :::; �T

�2u = 0; t = �T + 1; :::; T
: (27)

The point �T at which the change from I(0) to I(1) (under H01) or vice versa (under H10)

is assumed unknown, and is estimated during the testing procedure. The test is carried out

as follows. At each possible change-point (i.e. at all points in the range [� lT; �uT ]), compute

two sets of residuals: let et denote the residuals from a regression of yt , t = 1; :::; �T on
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a constant and a trend, and let eet denote the residuals from a similar regression for the

observations t = �T + 1; :::; T . De�ne the partial sum processes accordingly:

eSt =

tX
i=�T+1

eei; (28)

St =

tX
i=1

ei: (29)

For all � 2 [� l; �u] de�ne the following statistic:

K[�T ] =
[T (1� �)]�2

PT
t=�T+1

eS2t
[�T ]�2

P�T
t=1 S

2

t

: (30)

Had � been known with certainty, this statistic (evaluated at �) could be used to test

the null of a pure I(0) process against the alternative H01. A high value of the statistic

would imply a rejection of the I(0) null. Since in general the true � is not known, Kim(2000)

suggests using three functions of the sequence of K[�T ] over the range � 2 [� l; �u]. The limits
� l; �u are arbitrarily chosen, commonly 0:2 and 0:8, respectively31. The three functions are

given by:

MS =
1

�u � � l + 1

�uTX
t=� lT

Kt;

ME = log

"
1

�u � � l + 1

�uTX
t=� lT

exp (Kt)
0:5

#
;

MX = max
t=� lT;:::;�uT

Kt:

Busetti and Taylor (2004) show that it is possible to use the reciprocal of Kt to test the

I(0) null against H10. We de�ne the functions MSR; MER, MXR in a similar manner,

substituting K�1
t for Kt everywhere. A third set of test statistics can be used to test the

null against any change in persistence, whether from I(0) to I(1) or vice versa. These are

31In our 1861-1965 sample, we choose instead � l = 0:1 and �h = 0:9, since the change-point occurs quite
early in the sample. If we choose the more common range, the change-point becomes 1879, the earliest year
allowed.
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de�ned as follows:

MSM = maxfMS;MSRg
MEM = maxfME;MERg
MXM = maxfMX;MXRg

Further, HLT show that all nine statistics, in a modi�ed form, can also be used to test an

I(1) null against H01, H10, or both. The modi�cation they propose corrects the test statistics

so that they have the correct size under both I(0) and I(1). HLT show that this can be

achieved by multiplying the relevant test statistic by exp(�bJ), where b is a constant32, and
J denotes the Wald statistic for testing the joint hypothesis that in the following regression:

yt = 0 + 1t+ 2t
2 + :::+ 9t

9;

the coe¢ cients of all higher order trends (i.e. 2; :::; 9, quadratic trend and above, in the

standard case) are zero33. HLT also allow for the test to include local to unit root behavior

as well as true unit root behavior, so that H01can be thought of as a signi�cant change in

persistence from I(0) to a rate of persistence that is very close to 1, but not necessarily

exactly 1. The same holds for H10.

The HLT procedure assumes homoskedasticity, which is inappropriate for our purposes

given the results of section 2.2. We therefore employ the correction suggested by Cavaliere

and Taylor (2008), i.e. we introduce a wild bootstrap. We generate bootstrap samples

by multiplying the vector et, t = 1; :::; T by random numbers taken independently from a

N(0; 1) distribution, and repeating the process 10,000 times. The bootstrap samples by

construction replicate the heteroskedasticity patterns in the price data. We then proceed

to calculate bootstrap analogs for all test statistics using bootstrap analogs of et and eet
, i.e. using residuals obtained by regressing the bootstrap samples on a constant and a

trend. This produces for every test statistic 10,000 bootstrap analogs, which we then use to

calculate the bootstrap p-values shown in Table 2. A complication is that the HLT modi�ed

test-statistics are sized correctly only in the homoskedastic case, and are therefore not well

suited for the wild bootstrap procedure. However these statistics are computed directly

from, and are uniformly lower than, the non-modi�ed test statistics. We bootstrap the

non-modi�ed statistics, and compute bootstrap p-values using the lower modi�ed statistics.

32HLT provide di¤erent values for b for di¤erent levels of signi�cance. We choose the values appropriate
for the 1% level, which are largest and therefore would reduce the likelihood of rejection.
33Due to computational reasons, we limit the polynomial in our tests to the 6thdegree. The value of the

Wald statistic is quite robust to changes in the degree of the polynomial.
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These p-values should therefore be viewed as biased upwards.

A �nal step in the testing procedure, taken only if the tests indicate that a change in

persistence has indeed taken place, is to estimate the change-point �T . Kim (2000) suggests

the formula:

�(�) =
[T (1� �)]�2

PT
t=�T+1 ee2t

[�T ]�2
P�T

t=1 e
2
t

;

where, in the case of rejecting the null in favor of H01, the estimated change-point is:

� 01 = arg max
t=� l;:::;�u

�(�);

and in the case of rejecting the null in favor of H10, the estimated change-point is:

� 10 = arg min
t=� l;:::;�u

�(�):

B Solving the Model

We solve the model numerically using spline collocation (see Judd, 1998, and Miranda and

Fackler, 2002)34. The following summarizes the logic of this method, using as an example our

simplest case of two state variables (e¤ective availability a and realtive income y) and one

choice variable (e¤ective storage x), when supply is restricted. Other versions of the model

are solved in exactly the same way, changing the variables and equations as appropriate.

The collocation method approximates an unknown function (in this case, the equilibrium

price function) by a linear combination of known functions of the state variables. Approxi-

mating the price function leads to better results compared with approximating the storage

rule directly, since the former function is relatively smoother. We have:

f(a; y) = [a� x(a; y)]� �
NaX
m=1

NyX
n=1

bm;n�m;n(a; y); (31)

where Na, Ny denote chosen number of points in each state variable�s support, called the

collocation nodes, where the equilibrium condition (13) must hold exactly. This produces

NaNy nonlinear equations, one for each collocation node, and a corresponding number of

coe¢ cients bm;n to be determined. We use polynomial splines for the bivariate basis func-

tions �m;n(a; y), since splines perform better in approximating functions with a derivative

discontinuity as we have here.

34We use the CompEcon Toolbox for MATLAB, provided by Paul Fackler on his website:
www4.ncsu.edu/~pfackler/compecon/toolbox
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The expectation operator is dealt with by a discretization of the known distribution of

the shock, i.e. by assigning probabilities wk to particular points on the distribution�s support

"k, where k = 1; :::; K, such that the continuous density is approximated by the two vectors

("k; wk). The method then proceeds to �nd the coe¢ cients of the linear approximation by

using a double iteration. First, given an initial guess for the coe¢ cients bm;n, it �nds the

values of the choice variable for which the equilibrium condition holds at the collocation

nodes. The equilibrium condition at node i must then hold exactly, allowing us to solve for

xi:

(ai � xi)
� = �

KX
k=1

NaX
n=1

NyX
m=1

wkbm;n�m;n[
xi + eZ=yi
y��1i e�+"k

; y�i e
"k ]� C: (32)

It is now possible to use the vector x generated in this way to update the coe¢ cients bm;n
by solving the following system of equations:

(ai � xi)
� =

NaX
m=1

NyX
n=1

bm;n�m;n(ai; yi); (33)

so that at every node i the approximating function is exactly equal to the equilibrium price.

These updated coe¢ cients are now used again to produce updated values for the response

variable at each of the collocation nodes, and so on until the coe¢ cients converge.
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