Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile

A R T I C L E I N F O

Article history:
Received 12 October 2010
Accepted 7 December 2010
Available online 21 January 2011

Editor: T.M. Harrison

Keywords:
U-series
assimilation
arc magmatism
basaltic andesite

A B S T R A C T

U-series disequilibria provide important constraints on the processes and time scales of melt production, differentiation, and transport in subduction settings. Such constraints, which are essential for understanding the chemical evolution of the continental crust, are conventionally based on the assumption that the U-series disequilibria measured in mafic lavas are produced during mantle metasomatism and melting, and that intracrustal differentiation and assimilation have limited impacts. Here we show that mantle-derived U-series disequilibria in mafic lavas erupted at Volcán Llaima, Chile are significantly diminished by assimilation of plutonic rocks forming Llaima’s subvolcanic basement. This contamination process is extremely subtle in terms of “classical” indicators of crustal assimilation like Sr, Nd or Pb isotopes because it is a manifestation of assimilative recycling of the plutonic roots of the arc. This process results in variations in U-series disequilibria and incompatible trace element ratios that are significant compared to regional and global variability in arc magmas. Furthermore, it yields linear correlations between U-series excesses and incompatible trace element ratios that are generally interpreted as slab-fluid indicators and chronometers, or tracers of sediment recycling in subduction zone. Cannibalization of ancestral magmas by ascending melts warrants careful evaluation when considering the components and chemical fluxes in subduction zones. Linear arrays defined by activity ratios of U-series nuclides with different half-lives may be the most reliable indicators of assimilative recycling of ancestral intrusive magmas.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Disequilibria between short-lived nuclides produced in radioactive decay chains of U and Th are excellent time-dependent tracers of magmatic processes. U-series disequilibria measured in arc magmas can provide constraints on the processes and time scales of mantle metasomatism, melt production, magma differentiation, and mass transport above subduction zones (see Turner et al., 2003, and references herein). These constraints are essential for quantifying chemical fluxes through subduction zones, with important implications for the chemical evolution of the continental crust, the dynamics of volcanic eruptions, and the formation of ore deposits.

Arc lavas generally have excesses of \(\frac{239}{235}U \) over \(\frac{230}{233}Th \) [i.e. \(\frac{230}{238}Th/235U \) < 1; where parentheses denote activity ratios] and large excesses of \(\frac{226}{232}Ra \) relative to \(\frac{230}{232}Th \). As both U and Ra are fluid mobile elements, and these excesses correlate with trace element ratios indicative of metasomatism by fluids (e.g. Ba/Th), they are generally attributed to recent addition of slab-fluid to the mantle wedge (Allegre and Condomines, 1982; Elliott et al., 1997; Gill and Williams, 1990; McDermott and Hawkesworth, 1991; Turner and Hawkesworth, 1997; Turner et al., 2000). The broad linear correlations between \(\frac{230}{238}Th / \frac{232}{238}Th \) and \(\frac{238}{226}U / \frac{226}{238}Ra \) observed for suites of lavas from single arc have been interpreted as an indication that the time span between fluid addition to the mantle wedge and eruption is typically between 20 and 150 kyr (Sigmarsson et al., 1990; Turner and Hawkesworth, 1997; Turner et al., 2001). Preservation of \(\frac{226}{238}Ra \) excesses in arc magmas indicate much shorter time scales, possibly as short as a few hundred years (Turner et al., 2001). These apparent discrepancies in the time scales of slab fluid addition have been interpreted to result from multistage dehydration events in which the fluid fluxes contain \(\frac{238}{226}Ra \) and \(\frac{226}{238}Ra \), when the last fluids expelled contain only \(\frac{226}{238}Ra \) produce by in-growth from residual \(\frac{230}{232}Th \) in the slab (Turner et al., 2000). The excesses of \(\frac{231}{226}Pa \) over \(\frac{232}{236}U \) observed in the majority of arc lavas are interpreted as slab-fluid indicators and chronometers, or tracers of sediment recycling in subduction zone. Cannibalization of ancestral magmas by ascending melts warrants careful evaluation when considering the components and chemical fluxes in subduction zones. Linear arrays defined by activity ratios of U-series nuclides with different half-lives may be the most reliable indicators of assimilative recycling of ancestral intrusive magmas.
interacted as an indication that mantle melting rates strongly control 231Pa excesses and are coupled to the subduction rate (Huang and Lundstrom, 2007; Turner et al., 2006).

These constraints on the time scales and processes of mantle metasomatism and partial melting are obtained from regional to global data sets. However, detailed studies on single volcanoes often reveal significant ranges in U-series disequilibria with respect to regional and global variations (e.g. Turner et al., 2007; Yokoyama et al., 2006), demonstrating that second-order local processes operating over relatively short time scales may modify mantle-derived U-series disequilibria. Several recent studies have shown that processes affecting the magmas during ascent through the crust (e.g. crustal assimilation, disequilibria). Several recent studies have shown that processes affecting the magmas during ascent through the crust (e.g. Bourdon et al., 2000; Garrison et al., 2006; Handley et al., 2008; Huang et al., 2008; Price et al., 2007; Yokoyama et al., 2006), to which extent crustal processes may have modified the signature of primary genetic processes (e.g. fluid addition to the mantle wedge, partial melting regime) needs to be considered to ascertain the reliability of time scales inferred from regional to global U-series data sets.

Here, we investigate the extent and cause of local and short-term temporal variability in U-series disequilibria in lavas from Volcán Llaima, Chile, one of the most historically active volcanoes in South America. To this end, we measured isotope concentrations of U, Pa, Th and Ra by mass spectrometry on multiple samples from each historic eruptive event for which vents and timing are reasonably well documented (Naranjo and Moreno, 2005).

2. Geological setting

Volcán Llaima, Chile is one of the most historically active volcanoes in South America. It is located at 38.7°S in the Andean Southern Volcanic Zone (SVZ; 33°-46°S) (Fig. 1). The SVZ overlay the section of the subducting slab bounded to the north and south respectively by the subducted Juan Fernandez Ridge and the Chile Rise. The Nazca oceanic plate being subducted beneath the central SVZ is ~30 Ma old and converges on the Andean margin at a rate of ~10 cm/yr (Tassara et al., 2007). The SVZ segment in which Llaima is located is underlain by 30-40 km thick continental crust and is characterized by the predominance of basaltic andesite strato-volcanoes whose magmas show relatively minor elemental or isotopic (Nd-Sr-Pb-O) indications of crustal contamination on their magma chemistry (Hickey et al., 1986; Hickey-Vargas et al., 2002; Tormey et al., 1991). The Andean crust thickens to 55 km from 36 to 33°S and andesite to dacite magmas with geochemical features indicative of significant crustal contamination predominate (Davidson et al., 1988; Hickey et al., 1986; Hildreth and Moorbath, 1988). The subvolcanic basement beneath Llaima comprises Tertiary diorite to granodiorite plutons related to earlier magmatism of the arc (Lucassen et al., 2004) (Fig. 1).

Holocene volcanic activity at Llaima began with caldera collapse and eruption of the basaltic to andesitic (~52-58% SiO$_2$, our unpublished data) Curacautín Ignimbrite (~13.5 ka). Eruptions from a N-S central-vent system and oblique-trending flank fissures buried this caldera during the late Holocene. Historical volcanic activity of Llaima consists predominantly of Strombolian events. Six major effusive eruptions occurred between 1640 and 1957 (Fig. 1). The most recent eruption activity started in May 2007 and it has been marked by short but vigorous Strombolian phases in January 2008 and April 2009, both of which subsequently produced small lava flows. Samples representative of the historical activity are presented here and were selected from a sample collection that includes more than 450 samples analyzed for major elements by XRF (Dungan et al., unpublished results). All historical samples are evolved basalts (~51% SiO$_2$, <6.5% MgO) to basaltic andesites (~55% SiO$_2$, ~3.9% MgO) and contain mineral assemblages with widely variable proportions of plagioclase, olivine, one or two pyroxenes, and spinel.

3. Analytical techniques

Major elements were determined by X-ray fluorescence (XRF) on fused glass discs on a Phillips PW 2400 spectrometer equipped with a rhodium tube at the University of Lausanne (Switzerland), following the methods described by Pfeifer et al. (1991). Trace element concentrations were determined using a Thermo X-series ICP-MS quadrupole at Harvard University. The samples (50 mg) were processed using the method described in Bezos et al. (2009), 72Ge, 108Rh, 115In, 169Tm, and 209Bi were used for internal standard curves: BHVO-2, BCR-2, AGV-1, DNC-1, and JB-2, as well as the in-house standard Mid-Atlantic Ridge basalt (MAR). The in-house standard K1919 was also analyzed and used for drift correction. Trace element data obtained by ICP-MS are accurate to within ±5% on the basis of duplicate analyses.

Neodymium isotopic ratios were measured on a Nu Instrument® MC-ICP-MS at ETH Zurich. For each sample, about 100 mg of rock powder was digested in a mixture of HF-HNO$_3$, followed by neodymium separation by extraction chromatography using Eichrom TRU and LN spec resins columns following the procedure of Pin and Zalduegui (1997). The sample solutions were introduced using an Apex desolvation system. 143Nd/144Nd isotope ratios were corrected for mass fractionation using a 146Nd/144Nd ratio of 0.7219 and normalized to the JNdI-1 standard value of 0.512115 (Tanaka et al., 2000). Repeated measurements of JNdI-1 during the analysis period yielded a mean 143Nd/144Nd=0.512111±0.000029 (2 S.D. n = 14).

Full details of the chemical separation and analytical techniques used for U-series analyses are given in Koornneef et al. (2010), and an outline is given here. U, Pa, Th, and Ra concentrations and isotope ratios were determined on single aliquots (about 800 mg) spiked with 238U, 229Th, 231Pa, and 228Ra tracers before dissolution in HF-HNO$_3$.
mixture. U, Pa, Th, and Ra purification was achieved using a combination of EiChrom® TRU-spec and Sr-spec, and Bio-Rad® AG 1-X4, AG 1-X8 and AG50W-X8 resin columns. Concentrations and isotope ratios were measured on a Nu Instrument® MC-ICP-MS at ETH Zurich. Analyses of rock standard in secular equilibrium performed concurrently with the samples yielded the following results:

U = 1.691 ± 0.003 ppm, Th = 5.87 ± 0.04 ppm, \((234U/238U) = 1.002 ± 0.004, (231Pa/235U) = 1.012 ± 0.022, (230Th/238U) = 0.998 ± 0.011, (230Th/232Th) = 0.875 ± 0.021, (226Ra/230Th) = 1.008 ± 0.024\) for BCR-2; and U = 0.502 ± 0.006 ppm, Th = 2.127 ± 0.021 ppm, \((234U/238U) = 1.004 ± 0.008, (231Pa/235U) = 0.999 ± 0.016, (230Th/238U) = 0.996 ± 0.014, (230Th/232Th) = 0.714 ± 0.009, (226Ra/230Th) = 1.007 ± 0.030\) for W2.

4. Results

4.1. Major and trace elements

Llaima historical magmas show major element trends with decreasing MgO, CaO, Fe2O3 and Al2O3, and increasing K2O and TiO2, while SiO2 content increases (Fig. 2 and Table 1). The ranges of major elements contents observed at a given SiO2 content indicate that these magmas do not follow a simple liquid line of descent. Either distinct fractionation paths or open system processes, such as magma mixing and crustal assimilation are required. Alkali elements show a moderate increase during differentiation suggesting a limited role of crustal assimilation compared to others SVZ volcanoes (Fig. 2b).

Llaima magmas have typical subduction-related trace element signatures. Large ion lithophile elements (LILE) are enriched relative to LREE (Ba/La 23.3 – 27.4) and both are enriched relative to high field strength elements (HFSE) (Ba/Nb 75.5 – 99.2; La/Nb 3.0 – 3.6). Llaima lavas have trace element contents similar to others SVZ magmas but show limited ranges in HFSE contents and La/Sm ratios compared the SVZ ranges (Fig. 2c and d). HFSE abundances are moderately enriched relative to N-MORB values: e.g. Nb/Yb = 1.0 – 1.2, compared with 0.8 for average N-MORB (Sun and McDonough, 1989).

4.2. Neodymium isotopes

New \(^{143}Nd/^{144}Nd\) isotopic compositions of Llaima lavas define a limited range from 0.512878 to 0.512899 that encompass previously published values (Hickey et al., 1986) (Table 1). Llaima lavas have among the highest Nd isotope ratios in the SVZ, a general feature of volcanoes of the central and southern SVZ (38 – 41°S) (Hickey et al., 1986; Hildreth and Moorbath, 1988). No correlation is observed between Nd isotope ratios and incompatible element abundances or ratios. Tertiary granites located near Llaima have \(^{143}Nd/^{144}Nd\) isotopic compositions (0.512850 – 512858) similar to Llaima magmas, and are distinctly higher than sediments (0.512673 – 0.512787) currently entering the subduction zone at these latitudes (Lucassen et al., 2009).

4.3. Uranium series isotopes

Llaima lavas are characterized by \(^{238}U, ^{231}Pa\), and \(^{226}Ra\) excesses typical of arc magmas (Figs. 3 and 4) (see Turner et al., 2003, and...
<table>
<thead>
<tr>
<th>Eruption</th>
<th>2008</th>
<th>1957</th>
<th>1957</th>
<th>1780 SSW</th>
<th>1780 N</th>
<th>1780 S</th>
<th>1751</th>
<th>1640</th>
<th>1640 S</th>
<th>1640 S</th>
<th>1903</th>
<th>1852</th>
<th>1852</th>
<th>1852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>508</td>
<td>12c</td>
<td>61</td>
<td>33</td>
<td>19</td>
<td>208</td>
<td>7</td>
<td>95</td>
<td>31</td>
<td>385</td>
<td>252</td>
<td>85</td>
<td>76</td>
<td>74c</td>
</tr>
</tbody>
</table>

Chemistry																
SiO2	52.0	52.1	51.7	52.1	52.6	51.6	51.6	51.6	54.3	54.3	55.7	52.2	53.1	52.4	54.1	51.8
TiO2	1.11	1.02	1.04	0.95	1.10	1.01	1.04	1.03	0.98	1.31	1.22	1.01	1.00	1.18	1.15	1.06
AI2O3	3.06	3.06	3.03	1.92	2.39	2.12	2.18	2.18	3.28	3.28	3.28	2.25	2.25	2.25	2.25	2.25
FeO	2.02	1.78	1.88	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.76
MnO	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
MgO	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
CaO	5.30	4.60	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70
Na2O	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
143Nd/144Nd	0.512890	0.512878	0.512888	0.512892	0.512897	0.512899	0.512883	0.512898	0.512879	0.512890	0.512886	0.512890	0.512890	0.512890	0.512890	0.512890

- Table 1: Major (wt.%) and trace (ppm) concentrations, and Nd isotope compositions for Volcán Llaima lavas.
- Sample: 508, 12c, 61, 33, 19, 208, 7, 95, 31, 385, 252, 85, 76, 74c.
5. Discussion

5.1. Controls on U–Th and U–Pa arrays

The linear array between $^{231}\text{Pa}/^{235}\text{U}$ and $^{230}\text{Th}/^{238}\text{U}$ pointing toward secular equilibrium (Fig. 4a) is a remarkable feature of Llaima historical magmas and needs to be accounted for in geochemical models. ^{231}Pa excesses in arc lavas are considered to be generated by partial melting in the mantle wedge (Bourdon et al., 1999; Pickett and Murrell, 1997; Thomas et al., 2002; Turner et al., 2006), whilst ^{238}U excesses are thought to result from U addition to the mantle wedge by slab fluids (Allegre and Condomines, 1982; Gill and Williams, 1990; Sigmarsson et al., 1990). Coupling between slab fluid flux and partial melting dynamics may produce correlated $^{231}\text{Pa}/^{235}\text{U}$ and $^{230}\text{Th}/^{238}\text{U}$. Fluid flux melting models predict that $^{231}\text{Pa}/^{235}\text{U}$ and $^{230}\text{Th}/^{238}\text{U}$ ratios should be correlated and should both diminish with increasing enrichment in large ion lithophile elements relative to high field strength elements (e.g. Ba/Th) produced by slab-fluid addition (Dosseto et al., 2003; Thomas et al., 2002). A strong positive correlation between $^{231}\text{Pa}/^{235}\text{U}$ and Ba/Th (Fig. 4b) is observed at Llaima. This precludes coupled fluid flux and partial melting as the mechanism controlling these linear arrays. In addition, the linearity of these arrays eliminates variable ageing of magmas between production in the mantle and eruption as the controlling process. Llaima magmas are relatively differentiated basaltic andesites with MgO < 6.5 wt%, implying significant fractional crystallization from primary magmas in equilibrium with mantle peridotite. U, Th, and Pa are all strongly incompatible with respect to the mineral assemblage olivine, pyroxenes, and plagioclase (Blandy and Wood, 2003), and fractional crystallization cannot change element ratios sufficiently to produce the observed range in U–Th and U–Pa disequilibrium. We conclude that the correlations among Pa–U–Th disequilibrium and incompatible trace element ratios at Llaima are not source-derived features produced by combined mantle partial melting and/or slab-fluid addition. Mixing between a component with high ^{231}Pa and ^{238}U excesses and a component with small or no excesses appears to be the only process able to produce these linear arrays.

5.2. Origin of the component with high ^{231}Pa and ^{238}U excesses

The component with ^{231}Pa, ^{238}U, and ^{226}Ra excess required to anchor the high-disequilibrium ends of the Llaima mixing trends is characterized by high fluid-immobile incompatible element concentrations, high LILE/HFSE ratios, and unradiogenic Nd isotope ratios relative to N-MORB (Fig. 6). This component could be produced by melting of a mantle source less depleted than a typical N-MORB source which would have been modified by slab fluids, as has generally inferred for SVZ magmas (Hickey et al., 1986; Lucassen et al., 2006).

To explore the conditions that can produce the ^{231}Pa, ^{238}U, and ^{226}Ra excess in the high-disequilibrium mixing component, we have used two step models in which metasomatism of the mantle wedge by slab fluid is followed by dynamic partial melting. The activity ratios in the high-disequilibrium primary melt and the exact time spans between melting, crustal assimilation, and eruption are unknown. Consequently, the models presented only aim at reproducing the highest excesses measured in Llaima magmas and thus at constraining the limit of a range of possible solutions. The mantle wedge source is assumed to be initially in secular equilibrium and to be characterized by a Th/U ratio of 3.3, which is compatible with an enriched MORB source (Sun and McDonough, 1989). The effect of metasomatism of this source was modeled by adding fluids in equilibrium with Chile rise MORBs that are subducting beneath the SVZ (Karsten et al., 1996). To calculate the composition of fluids, fluid/eclogite (subducted MORB) bulk partition coefficients from Klimm et al. (2008) and the compilation of Turner et al. (2003) were used. Fluids may also equilibrate with sediments overlying subducting MORBs. The fluid/eclogite bulk partition coefficients are unlikely to be drastically different for sediments and MORB compositions (Klimm et al., 2008). Metasomatism by fluids derived from U- and Th-rich sediments will lower the amount of fluid required in the models but will not affect the following observations.
The metasomatized mantle source is assumed to start melting instantaneously after addition of slab-fluids, except for some of the models aiming at reproducing the \((^{226}\text{Ra}/^{230}\text{Th})\) ratios, for which the \(^{226}\text{Ra}\) excesses produced by slab-fluid addition are allowed to decay back to equilibrium before melting (Fig. 7d). The formulation of Williams and Gill (1989) and partition coefficients from Blundy and Wood (2003) were used in our dynamic melting models. The extreme incompatibility of Pa causes \((^{231}\text{Pa}/^{235}\text{U})\) ratios to be controlled by the bulk partition coefficient of \(U\) \((D_\text{U})\), the residual porosity, and the partial melting rate of lherzolitic mantle.

During melting, the Llaima trend can be reproduced for values of \(D_\text{U}/D_\text{Th}\) between 0.7 and 0.8 (Fig. 7b). In addition, \(D_\text{U}/D_\text{Th}\) < 1 during melting is necessary to sustain sufficient \(^{238}\text{U}\) excesses at the low melting rates required to produce the observed \(^{231}\text{Pa}\) excesses. During partial melting of Iherzolitic mantle, \(U\) is more incompatible than \(Th\) only in clinopyroxene (Blundy and Wood, 2003; Wood et al., 1999) and \(D_\text{U}/D_\text{Th}\) in clinopyroxene decreases under increasingly oxidizing conditions (Lundstrom et al., 1994). Thus, the initial \(Pa\), \(U\), and \(Th\) disequilibria required in Llaima primary melt (i.e. the high \(U\)-series excess component) suggest that clinopyroxene controls the \(U\) and \(Th\) budget during mantle melting and reflect the oxidized state of the metasomatized mantle source. The involvement of sediments via equilibration with slab fluids or as partial melts, as well as ageing of the source after addition of slab fluids would raise the \((^{230}\text{Th}/^{232}\text{Th})\) ratio of the metasomatized mantle source (Fig. 7b), requiring even lower \(D_\text{U}/D_\text{Th}\) ratios (<0.7) during melting.

The main outcome of these metasomatism and melting models is that melting processes are sufficient to produce the moderate \(^{226}\text{Ra}\) excesses in Llaima magmas and that at the low melting rates required to account for the \(^{231}\text{Pa}\) excesses, \((^{226}\text{Ra}/^{230}\text{Th})\)
Table 2

<table>
<thead>
<tr>
<th>Eruption</th>
<th>Sample</th>
<th>U ppm</th>
<th>(238U/232Th)</th>
<th>(230Th/238U)</th>
<th>(234U/238U)</th>
<th>(231Pa/235U)</th>
<th>(226Ra/230Th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>508</td>
<td>0.49</td>
<td>169.8</td>
<td>1.37</td>
<td>1.095</td>
<td>0.827</td>
<td>1.001</td>
</tr>
<tr>
<td>1957</td>
<td>12c</td>
<td>1.38</td>
<td>173.5</td>
<td>1.04</td>
<td>1.003</td>
<td>0.846</td>
<td>1.001</td>
</tr>
<tr>
<td>1780</td>
<td>SSW</td>
<td>33</td>
<td>175.8</td>
<td>1.09</td>
<td>1.086</td>
<td>0.883</td>
<td>1.001</td>
</tr>
<tr>
<td>1780</td>
<td>N</td>
<td>61</td>
<td>193.0</td>
<td>1.04</td>
<td>1.047</td>
<td>0.857</td>
<td>1.306</td>
</tr>
<tr>
<td>1903</td>
<td>85</td>
<td>1.61</td>
<td>184.8</td>
<td>1.05</td>
<td>1.107</td>
<td>0.900</td>
<td>1.225</td>
</tr>
<tr>
<td>1852</td>
<td>23</td>
<td>1.14</td>
<td>137.5</td>
<td>0.70</td>
<td>0.980</td>
<td>0.857</td>
<td>1.091</td>
</tr>
<tr>
<td>Standard</td>
<td>BC2</td>
<td>5.91</td>
<td>157.3</td>
<td>1.98</td>
<td>1.001</td>
<td>0.892</td>
<td>1.000</td>
</tr>
<tr>
<td>Standard</td>
<td>W2</td>
<td>214.4</td>
<td>169.7</td>
<td>1.88</td>
<td>1.001</td>
<td>0.899</td>
<td>1.000</td>
</tr>
</tbody>
</table>

disequilibria result from in-growth during melting. Consequently 226Ra excesses, in the case of Llaima, do not unequivocally indicate slab-fluid addition to the mantle wedge shortly (~8 kyr) before eruption.

5.3. The secular equilibrium component

The (231Pa/235U) vs. (230Th/238U) array argues for a second mixing end-member component that is, in or near, secular equilibrium. Elliott et al. (1997) previously suggested the contribution of a component in U–Th secular equilibrium in Mariana arc magmas and interpreted it as an aged sediment melt. The inferred secular equilibrium component
at Llaima is characterized by low Ba/Th (<100) and high Th/La (>0.25), Th/Nb (>1), and Th/Nd (>0.2). Such values are typical of continental margin sediment (Plank and Langmuir, 1998), but bulk assimilation of sediments that are being subducted beneath the SVZ (Lucassen et al., 2009) does not reproduce the observed trends (Fig. 6). Sediment partial melts, as argued for the Mariana magmas, are also unsatisfactory components due to their low 143Nd/144Nd and the high Ba/Th ratios produced by partial melting (Hermann and Rubatto, 2009; Johnson and Plank, 1999) (Fig. 6b) (Supplementary Table 3). The assimilated granitic rocks are diorite and granodiorite as in Fig. 4 (data from Lucassen et al., 2009). Chile rise MORB data are from Karsten et al. (1996). Values for N-MORB, E-MORB and OIB are from Sun and McDonough (1989).

Turner et al. (2007) suggested that negative correlations between 231Pa/235U and 230Th/238U may be produced by mixing between deeper hydrous melts produced just above the slab with hotter and dryer melts produced at shallower depths by decompression melting. This model cannot explain the Llaima data because the component with low 231Pa and 238U excess should have a significantly higher Th/La ratio (>0.3) than N-MORB or E-MORB (0.048 and 0.095 respectively (Sun and McDonough, 1989)) as shown in Fig. 6a, and such ratios cannot reasonably be produced by melting of a mantle source.

These geochemical arguments plead against mantle melting, slab-fluid influx, and/or addition of sediments or sediment melts as explanations for the arrays observed at Llaima. The chemical and U-series variability defined by samples from single eruptions (Fig. 3) suggests that processes occurring in the upper crust, rather than in the mantle, control the U-series arrays. Assimilation of up to 20% of Tertiary diorite to granodiorite rocks of the Neogene subvolcanic basement beneath Llaima (Lucassen et al., 2004) (Fig. 1) reproduces the U-series and Nd isotope trends, as well as the trace element ratios (Figs. 4 and 6) (Supplementary Table 3), and provides a geologically realistic scenario. The assimilated granites represent the plutonic roots of the arc. Additional mixing/mingling between some of the “contaminated” basaltic andesite magmas and intermediate crystal mush several kyr old had limited impacts on 230Th/238U, 231Pa/235U, and 230Th/232Th activity ratios and incompatible trace element ratios, but significantly affected the 228Ra/232Th activity ratios and incompatible trace element abundances.

In summary, we propose that the remarkable linear correlations between 230U and 231Pa excesses and incompatible trace element ratios shown by Llaima historical magmas, are a consequence of assimilation of Tertiary granitic rocks forming the substratum of the volcano, i.e. the differentiated plutonic roots of the arc. Additional mixing/mingling between some of the “contaminated” basaltic andesite magmas and intermediate crystal mush several kyr old had limited impacts on 230Th/238U, 231Pa/235U, and 230Th/232Th activity ratios and incompatible trace element ratios, but significantly affected the 228Ra/232Th activity ratios and incompatible trace element abundances.
5.4. Implications for arc magmatism

Previous studies have shown that assimilation of crustal lithologies may exert significant leverage on U-series disequilibria. These conclusions have been based on correlations between U–Th disequilibria and Sr or Pb isotope ratios (Boudon et al., 2000; Handley et al., 2008; Price et al., 2007). It has also been suggested that 230Th excesses in continental arc magmas result from assimilation of the lower crust (Boudon et al., 2000; Garrison et al., 2006; Jicha et al., 2007). The Llaima dataset demonstrates that even in cases without obvious isotopic indications of crustal contamination, U-series systematics in conjunction with incompatible element ratios, can be affected by crustal assimilation if the contaminant is an earlier product of the arc.

It could be argued that the Llaima case is applicable only to continental margin arc volcanoes, and that the effect of assimilation is particularly significant owing to the low incompatible element contents of Llaima magmas and relatively high U and Th concentrations in the assimilated plutonic rocks. Nonetheless, assimilation (or mixing) of a component in secular equilibrium by magmas with U-series disequilibria typical of arc magmas can have significant effects even where contaminants are less enriched in U and Th; e.g. silicic magmas erupted at oceanic island arcs (Fig. 8). The life spans of most arc volcanoes ($10^5–10^6$ yr) generally exceed the times necessary for U-series disequilibria to return to secular equilibrium. Ascending melts almost inevitably encounter and interact with products of crystallization of ancestral magmas at arc volcanoes (Dungan and Davidson, 2004; Reubi and Blundy, 2008; Reubi and Blundy, 2009). Assimilative recycling of the aged plutonic roots of arc volcanoes is likely to be widespread, but is difficult to monitor due to low Nd–Sr–Pb isotopic contrast. Linear arrays defined by activity ratios of nuclides with contrasting half-lives may be the most reliable indicators of assimilation of ancestral intrusive magmas.

Inclined U–Th isotope arrays similar to the one shown in Fig. 4c have been observed for several arcs and have been subject to multiple interpretations (Elliott et al., 1997; Turner et al., 2003). Predominant models involve addition of variable amount of slab-fluid and interpret the slope of these arrays as an indication that the time span between

Fig. 7. Metasomatism, dynamic melting, and assimilation models. The source is assumed to be initially in secular equilibrium, to have a U/Th ratio of 3.3 typical of enriched MORB sources, and to be composed of 53% olivine + 27% orthopyroxene + 17% clinopyroxene + 3% spinel. Metasomatism by slab fluids was modeled assuming fluid equilibration with Chile rise MORBs (Karsten et al., 1996) and using the H$_2$O-rich fluid/eclogite bulk partition coefficients from Klimm et al. (2008) (model 1, blue triangles) and Turner et al. (2003) (model 2, red triangles). The metasomatized mantle source is assumed to start melting instantaneously after addition of slab-fluids, except for some of the models aiming at reproducing the $(^{226}$Ra/230Th) ratios (in d). Dynamic melting calculations according to the formulation of Williams and Gill (1989) and partition coefficients from Blundy and Wood (2003). (a) $(^{231}$Pa/235U) ratio as a function of $D_{U/Th}$ and melting rate. Black lines represent $(^{231}$Pa/235U) = 2 for a range of source residual porosities (ϕ). The metasomatized mantle source is here assumed to have $(^{231}$Pa/235U) = 0.56 at the onset of melting, corresponding to 20% slab-fluid input calculated according to model 2. Melting rates up to 50% higher would produce $(^{231}$Pa/235U) = 2 if the metasomatized mantle source had 231Pa excesses as in model 2. (b) U–Th equilibration diagram. The blue and red arrows show the effects of variable $D_{U/Th}$ during melting of variably metasomatized mantle sources (blue and red arrows for sources calculated according to models 1 and 2 respectively). Dashed line shows the effect of assimilation of granodiorite forming the basement beneath Llaima volcano [sample T-00-56 and T-00-59 from Lucassen et al. (2004)]. (c) $(^{231}$Pa/235U) vs. $(^{230}$Th/232Th) diagram showing the same features than in (b). Dynamic melting calculations for $(^{226}$Ra/230Th) vs. $(^{230}$Th/232Th) (d) were done for two scenarios; (1) melting instantaneously after slab fluid addition, (2) melting 10 kyr after slab fluid addition, and for two amounts of slab fluid input calculated according to model 2. The curved trends in d show the effect of radioactive decay. Dynamic melting models in b, c and d were calculated for a melting rate of 1 E–4 kg/m3yr and residual porosities of 0.2%. Error bars are smaller than symbol size.
Uma (231Pa/235U) equal to 0.71 and 1.7 respectively. Such values are representative of the Bonin arcs. Continental arc data are from North, Central and South America. Oceanic arc data are from the Marianna, Tonga, Kermadec and Izu-Bonin arcs.

46 wt.% SiO2 erupted at the same volcanic arc. This shows possible importance of assimilation of preexisting arc crust (Turner et al., 2003). In contrast, the positive correlation between Ba/Th and 226Ra excesses observed in arc magmas has been interpreted by addition of slab-fluid influx and partial melting dynamics, or by addition of sediments or sediment melts to a mantle source. The preservation of U-series heterogeneities that are closely coupled with elemental ratios in single eruptions is difficult to reconcile with inheritance from mantle metasomatism or melting processes. A more plausible explanation is overprinting within the subvolcanic magmatic system. Bulk assimilation of 5–20% of basement granodioritic to dioritic rocks, respectively, beneath Llaima volcano, coupled with variable amounts of magma mixing/mingling in the subvolcanic magmatic system matches the U-series, Nd isotope, and incompatible trace element ratios of magma mixing/mingling in the subvolcanic magmatic system. The contaminant is assumed to be in secular equilibrium. Curves are shown for continental arcs (CA) and oceanic arcs (OA). Values in brackets are ratios of U contents in assimilated silicic magma (\leq 65 wt.% SiO2) and U in assimilating ma.

Historical mafic magmas at Volcán Llaima have ranges in 238U, 231Pa, and 226Ra excesses typical of arc magmas. Variations in U-series disequilibria observed for lavas from a single eruption cover up to 66% of the total measured range and are significant compared to the global ranges in arc magmas. Key features of the Llaima data are the strong linear correlations between 238U and 231Pa excesses and incompatible trace element ratios, indicating that the responsible processes operated on time scales significantly shorter than the half-life of 210Pa (32 kyr). Such linear arrays cannot be produced by coupled slab-fluid influx and partial melting dynamics, or by addition of sediments or sediment melts to a mantle source. The preservation of U-series heterogeneities that are closely coupled with elemental ratios in single eruptions is difficult to reconcile with inheritance from mantle metasomatism or melting processes. A more plausible explanation is overprinting within the subvolcanic magmatic system. Bulk assimilation of 5–20% of basement granodioritic to dioritic rocks, respectively, beneath Llaima volcano, coupled with variable amounts of magma mixing/mingling in the subvolcanic magmatic system matches the U-series, Nd isotope, and incompatible trace element ratio arrays. Data from Llaima demonstrate that assimilation of the plutonic roots of the arc can impose intra-crustal U-series arrays on mantle signals with limited warning from traditional chemical indicators of crustal assimilation. Assimilation of differentiated magmas older than 350 kyr produces correlated U-series and incompatible trace element ratios arrays, which could be mistaken as indicators and chronometers of slab fluid addition, or tracers of sediment recycling. Cannibalization of ancestral magmas by ascending melts warrants careful consideration when considering chemical fluxes in subduction zones, but is difficult to monitor due to low Nd–Sr–Pb isotopic contrast. Linear arrays defined by U-series activity ratios of nuclides with contrasting half-lives could be the most robust indicators of assimilative recycling of plutonic roots of volcanoes by ascending magmas.

Fig. 8. Effect of assimilation of old arc magmas on U-series disequilibria. The curves represent the activity ratios of mafic magmas (\leq 65 wt.% SiO2) after assimilation of silicic magma (\geq 65 wt.% SiO2) erupted at the same volcanic arc. This shows possible extent of U-series disequilibria modification as a result of assimilation of silicic magmas left behind by the arc earlier activity (assimilation of plutonic roots) in a scenario similar to what is observed at Llaima. (a) (231Pa/235U) as a function of percentage of assimilation. (b) (230Th/238U) as a function of percentage of assimilation. The assimilating mafic magma is arbitrarily assumed to have an initial (230Th/238U) and (231Pa/239U) equal to 0.71 and 1.7 respectively. Such values are representative of the high ends of the ranges in 238U and 231Pa excesses in arc magmas (Turner et al., 2003). The contaminant is assumed to be in secular equilibrium. Curves are shown for continental arcs (CA) and oceanic arcs (OA). Minimum (min.) and maximum (max.) curves represent, respectively, the smallest and highest U$_{assim.}$/U$_{mag.}$ ratios in the data set. Average U contents in mafic magmas \geq 65 wt.% SiO2 and in silicic magmas \leq 65 wt.% SiO2 were used to calculate the average curves (av.). Data are from the GeoToC database (http://georoc.mpc-mainz.gwdg.de/georoc/). Oceanic arc data are from the Marianna, Tonga, Kermadec, and Izu-Bonin arcs. Continental arc data are from North, Central and South America.
References

