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Abstract

Exchangeable graph models (ExGM) subsume a
number of popular network models. The math-
ematical object that characterizes an ExGM is
termed agraphon. Finding scalable estimators of
graphons, provably consistent, remains an open
issue. In this paper, we propose a histogram es-
timator of a graphon that is provably consistent
and numerically efficient. The proposed estima-
tor is based on a sorting-and-smoothing (SAS)
algorithm, which first sorts the empirical degree
of a graph, then smooths the sorted graph using
total variation minimization. The consistency of
the SAS algorithm is proved by leveraging spar-
sity concepts from compressed sensing.

1. Introduction

Developing statistical models for network data has been a
growing research area in statistics and machine learning
over the past decade (Goldenberg et al., 2009; Kolaczyk,
2009; Airoldi et al., 2011). Among many models, the
parametricfamilies have been the major focus in the lit-
erature because of their simplicity and analytic tractabil-
ity. Popular examples of these parametric models in-
clude the exponential random graph model (Wasserman,
2005; Hunter & Handcock, 2006), the stochastic block-
model (Nowicki & Snijders, 2001), the mixed mem-
bership model (Airoldi et al., 2008), the latent space
model (Hoff et al., 2002), the graphlet (Azari & Airoldi ,
2012) and many others. However, as the complexities of
the networks increase, it becomes increasingly more chal-
lenging to fit the data using a particular parametric model.
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1.1. Non-parametric representation of a graph

In this paper, we consider a non-parametric perspective
of modeling network data using the exchangeable graph
models (ExGM). The notion of exchangeability is due to
de Finetti, later generalized by Aldous (1981), Hoover
(1979) and Kallenberg (2005). A connection between pop-
ular parametric models and exchangeable graph models has
been recently made (Hoff, 2008; Bickel & Chen, 2009).

The non-parametric(limit) object that characterizes an
ExGM is often termed agraphon. As we will define for-
mally in Section 2, a graphon is a2-dimensional continuous
function on[0, 1]2 → [0, 1] that generates random graphs.
Since a graphon is a model for network data, any model
based inference, prediction and hypothesis testing can be
performed using a graphon (Lloyd et al., 2012). For in-
stance, when comparing networks that span different sam-
ple sizes, graphons provide a natural solution: If two sam-
ples of a network are generated from the same ExGM, they
should have the same graphon, and hence, comparing two
networks can be done by comparing two graphons.

In this paper, we propose an efficient graphon estimator
based on 2D histograms. The challenge of the problem is
two-fold. First, since graphons are unique up to measure-
preserving transformations, it is important to identify the
conditions under which graphons can be uniquely recov-
ered (e.g., seeYang et al., 2013). Second, it is desirable for
a graphon estimator to be provably consistent.

1.2. Related work

Previous methods of graphon estimation algorithms can be
classified into two categories as follows.

The first category is to perform graphon estimation con-
ditioned on the node arrangement. When the node ar-
rangement is conditioned on, we can bypass the dif-
ficult problem of identifying a canonical representation
of the graphon. For example, the universal singular
value thresholding (Chatterjee) and the matrix comple-
tion (Keshavan et al., 2010) seek low-rank structures of the
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adjacency matrix, whereas the stochastic blockmodel ap-
proximation (Airoldi et al., 2013; Chan et al., 2013) groups
similar nodes to form community structures. However,
since the estimations are conditioned on the node arrange-
ment, the resulting graphons are not canonical.

Different from the first category, the second category of
methods estimatecanonical graphons. In (Bickel et al.,
2011), the authors proposed a method of moments which
is theoretically consistent for that purpose. However,
the method requires knowledge ofall wheels of the net-
work, and hence is computationally infeasible. Choi et
al. (Choi et al., 2012; Choi & Wolfe) attempted the prob-
lem by a clustering approach, but they stopped at the clus-
tering step without actually estimating the graphon. In
(Lloyd et al., 2012), Lloyd et al. considered a Bayesian ap-
proach to estimate a graphon. However, the MCMC sam-
pling process of the algorithm is computationally intensive.
Moreover, there is no consistency guarantee of the esti-
mator. More recently, other groups have begun exploring
alternative approaches (Wolfe & Olhede; Tang et al., 2013;
Latouche & Robin, 2013; Olhede & Wolfe). Yet, none of
these methods arebothconsistent and computationally ef-
ficient.

1.3. Contributions

In this paper, we propose a histogram approach to estimate
graphons. Our method, called the Sorting-And-Smoothing
(SAS) algorithm, consists of two steps. In the first step,
we sort the empirical degrees and rearrange the nodes of
the graph for a canonical ordering. In the second step, we
compute the histogram of the sorted graph and smooth the
histogram by a total variation minimization. Details of the
SAS algorithm are presented in Section 3.

The estimator returned by the SAS algorithm is consistent.
The consistency proof leverages the sparsity concepts from
compressed sensing. In particular, we show, in Theorem
3, that if the true graphon satisfies some Lipschitz condi-
tions and has sparse gradients, then the mean squared error
(MSE) of the estimator isO((log n)/n), wheren is the size
of the network. Discussion of the consistency is presented
in Section 4.

We test the SAS algorithm on both simulation data and real
data (Section 5). The experiment of using the simulation
data indicates that the SAS algorithm is superior to, both
in terms of estimation quality and speed, several existing
methods. Applying the SAS algorithm to real data, we es-
timate graphons of two large-scale social networks and re-
veal some structures. These results provide an alternative
way of analyzing large-scale network data.

2. Graphons and identifiability

The purpose of this section is to introduce the concepts of a
graphon and discuss the conditions under which a graphon
can be uniquely identified.

2.1. Definition of a graphon

We let G be the adjacency matrix of a graph with the
(i, j)th entry denoted byGij ∈ {0, 1}. For an infinitely
sized graphG, we say thatG is exchangeable if it satisfies
the following definition.

Definition 1. An infinite random arrayG = (Gij)i,j∈N is
exchangeable if

(Gij)
d
= (Gσ(i)σ(j)), (1)

for any permutationσ.

Definition1 is also known as thejoint exchangeability, be-
cause the permutation is applied to both rows and columns
simultaneously (Orbanz & Roy).

We refer to all random graph models that satisfy exchange-
ability as exchangeable graph models (ExGM). A use-
ful characterization of an ExGM is given by the Aldous-
Hoover theorem.

Theorem 1 (Aldous-Hoover). An infinite random array
(Gij)i,j∈N is exchangeable if and only if there is a random
measurable functionF : [0, 1]3 → {0, 1} such that

(Gij)
d
= (F (Ui, Uj , Uij)), (2)

where (Ui)i∈N and (Uij)i,j∈N are sequences of i.i.d.
Uniform[0, 1] random variables.

The functionF in Theorem1 defines agraphon:

Definition 2 (Graphon). A graphonw is a symmetric mea-
surable functionw : [0, 1]2 → [0, 1] such that

F (Ui, Uj , Uij) =

{
1, if Uij < w(Ui, Uj)

0, otherwise,
(3)

where (Ui)i∈N and (Uij)i,j∈N are sequences of i.i.d.
Uniform[0, 1] random variables.

Equivalently, (3) can be expressed as the following two-
stage sampling scheme:

Ui
iid∼ Uniform[0, 1],

Gij | Ui, Uj ∼ Bernoulli(w(Ui, Uj)).
(4)

Therefore, a finite sized network generated from a graphon
can be regarded as a finite sample drawn according to (4).



A Consistent Histogram Estimator for Exchangeable Graph Models

2.2. Identifiability of a graphon

To understand the identifiability issue of a graphon, it is
important to discuss measure preserving transformations.

Definition 3 (Measure Preserving Transformation). A
transformationϕ : [0, 1] → [0, 1] is measure-preserving
w.r.t. a measureµ if it is measurable, and for allA ∈ [0, 1],

µ(ϕ−1(A)) = µ(A). (5)

For example, ifϕ is a measure preserving transformation
andU ∼ Uniform[0, 1], thenϕ(U) is also distributed uni-
formly on [0, 1]. Similarly, if ϕ is a measure preserving
transformation, then the graphon

w′(u, v)
def
=w(ϕ(u), ϕ(v))

defines the same ExGM asw because there exists a trans-
formation such thatw andw′ are identical.

The identifiability issue of a graphon arises because the
converse of Definition3 is not true in general: Ifw and
w′ define the same ExGM, there may not exist a mea-
sure preserving transformationϕ′ such thatw(u, v) =
w′(ϕ′(u), ϕ′(v)) (Diaconis & Janson, 2008). For exam-
ple, the functionsw(u, v) = uv and w′(u, v) = (2u
mod 1)(2v mod 1) define the same ExGM, but there is
noϕ′ such thatw(u, v) = w′(ϕ′(u), ϕ′(v)).

A formal statement of the above observation is given by the
following theorem, which says that we need to find apair
of measure-preserving transformationsϕ andϕ′ in order to
show thatw is unique.

Theorem 2((Diaconis & Janson, 2008), Thm. 7.1). Letw
andw′ be two graphons. Thenδ�(w,w′) = 0 if and only if
there exist measure-preserving transformationsϕ andϕ′ :
[0, 1] → [0, 1] such that

w(ϕ(u), ϕ(v)) = w′(ϕ′(u), ϕ′(v)), (6)

where the distanceδ�(w,w′) is the cut-norm defined by
(Lovász & Szegedy, 2006).

A consequence of Theorem2 is the notion of twin-free:

Definition 4 (Twin-free (Borgs et al., 2010)). A graphonw
is calledtwin-freeif for anyu1 andu2 ∈ [0, 1],w(u1, v) 6=
w(u2, v) for almost allv ∈ [0, 1].

Essentially, the twin-free condition excludes the cases
where two graphons can be made identical by row and col-
umn permutations. For example, the pair shown in Figure1
are twin, and hence they are not identifiable.

The twin-free condition is necessary but not sufficient
for identifying a unique graphon when we marginalize a
graphon (Orbanz & Roy):

g(u)
def
=

∫ 1

0

w(u, v)dv.

0 1

1 0

1 0

0 1

w w′

Figure 1.Example of a pair of twin graphons:w andw′ are not
identifiable if we randomly permute their columns and rows.

For example, if we considerw andw′ in Figure1, and a
graphonw′′(u, v) = 1/2, thenw′′ is twin-free butg(u) =
g′(u) = g′′(u), whereg, g′ andg′′ are marginalizations of
w, w′ andw′′, respectively.

The necessary and sufficient condition for a graphon to
be identifiable is to require strict monotonicity of degrees
(Bickel & Chen, 2009; Yang et al., 2013).

Condition 1 (Strict Monotonicity of Degree). A graphon
w has a unique representation if and only if there exists
wcan such that

gcan(u)
def
=

∫ 1

0

wcan(u, v)dv

is strictly increasing (or decreasing). The graphonwcan is
called the canonical representation ofw.

It is evident that the strict monotonicity condition im-
plies twin-free, but not vice versa. In addition, if we let
U ∼ Uniform[0, 1], then strict monotonicity implies that
gcan(U) is absolutely continuous.

In the rest of the paper we assume that all graphons of in-
terests satisfy the strict monotonicity condition. For nota-
tional simplicity, we drop the superscript(·)can, and denote
w as the canonical representation.

3. The sorting-and-smoothing algorithm

3.1. Overview

The intuition of the proposed SAS algorithm is based on the
following idea: As the size of a graph grows, the (sorted)
empirical degree should converge to the ideal (canonical)
degree distribution. Therefore, if we can sort the empirical
degree of a given graph, then by applying suitable smooth-
ing algorithms we can find an estimate of the canonical
graphon.

Following this intuition, we propose a two-stage algorithm.
In the first stage, we sort the rows and columns ofG to
obtain a sorted grapĥA according to the empirical degree.
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Figure 2.Illustration of the SAS algorithm. Given an observed graphG, we first sortG using the empirical degrees to getÂ. Then, a
local histogramĤ is computed and a total variation minimization is used to determine an estimatêwtv.

In the second stage, we compute a histogramĤ of Â, and
apply a total variation minimization to find an estimateŵtv.
An illustration of the SAS algorithm is shown in Figure2.

3.2. Stage 1: Sorting

The purpose of the sorting step is to rearrange the observed
graphG so that the rearranged empirical degrees are mono-
tonically increasing. To this end, we compute the empirical
degree

di
def
=

n∑

j=1

Gij , (7)

and define a permutation̂σ such thatdσ̂(1) < . . . < dσ̂(n).
Then, we define a rearranged graph

Âij = Gσ̂(i)σ̂(j), (8)

where an example is shown in Figure2.

It is important to note that since the permutationσ̂ is de-
fined by the empirical degrees, it could be different from
the true permutation that defines the canonical graphon ac-
cording to the node arrangement. To differentiate the em-
pirical permutation̂σ and the true permutation, we define
σ as the oracle permutation that sorts the node labels(Ui)
such thatUσ(1) < . . . < Uσ(n). Correspondingly, we de-
fine the oracle ordered graph as

Aij = Gσ(i)σ(j) . (9)

3.3. Stage 2: Smoothing

Network Histogram Estimation
Once the graph is rearranged to have monotonically in-
creasing degrees, the graphon estimation problem becomes
finding a smooth surface that best fits(Âij). To this end,
we consider a simplified version of the stochastic block-
model approximation (Airoldi et al., 2013) which approx-
imates the continuous graphon using a piecewise constant
function. More precisely, the stochastic blockmodel ap-

proximation defines

Ĥij =
1

h2

h∑

i1=1

h∑

j1=1

Âih+i1,jh+j1 , (10)

and correspondingly

Hij =
1

h2

h∑

i1=1

h∑

j1=1

Aih+i1,jh+j1 , (11)

for some parameterh > 0 denoting the size of each block.

Equations (10) and (11) indicate that the stochastic block-
model approximations(Ĥij) and(Hij) are the histograms
of (Âij) and (Aij), respectively. Since all function val-
ues in the same block are identical, the effective degrees of
freedom in(Ĥij) and (Hij) arek × k instead ofn × n,
wherek = ⌊n/h⌋ is the number of blocks.

Total Variation Minimization
While the network histogram estimation step is consistent,
the decay rate of the error can be further improved by in-
troducing a total variation minimization step.

The total variation minimization step is based on a sparsity
assumption of the true graphonw. Analogous to natural
images, we assume that graphons aresparsein the gradi-
ents. Discretizing the continuous graphonw into ak × k
grid, the assumption suggests thatw needs to have a small
total variation

‖w‖TV =

k∑

i=1

k∑

j=1

√(
∂w

∂x

)2

ij

+

(
∂w

∂y

)2

ij

, (12)

where∂w
∂x and ∂w

∂y denote the horizontal and vertical finite
difference ofw, respectively.

Using the total variation concept, the refinement step can
be posed as the following minimization problem:

ŵtv = argmin
r̂

‖r̂‖TV , subject to‖r̂− Ĥ‖2 ≤ ε, (13)
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where‖·‖2 is the matrix Frobenius norm, andε > 0 is a pa-
rameter that controls the fidelity between the total variation
solutionr̂ and the histogram̂H . To solve the minimization
problem (13), we use the alternating direction method of
multipliers (ADMM) (Chan et al., 2011).

We remark that the size of̂wtv is k × k. To ensure that the
final estimate have the same size as the true graphon, we
define the final estimate as

ŵest = ŵtv ⊗ 1h×h, (14)

where1h×h denotes an all 1 matrix of sizeh×h, and⊗ de-
notes the Kronecker product operator. Therefore, the final
estimateŵest has a sizen× n.

3.4. Complexity

The complexity of the SAS algorithm can be analyzed by
considering each step individually. In computing the em-
pirical degree distribution,O(n) additions are used. The
sorting procedure, in general, requiresO(n logn) com-
parisons. Therefore, the complexity for sorting is about
O(n logn) multiplications plusO(n) additions. Next, for
the histogram computation, computing each value of the
bin requiresO(h2) additions, and there arek2 = (n/h)2

bins. Thus a total ofO(n2) additions are needed. Finally,
the total variation minimization is solved on ak × k array.
Thus, the complexity of the ADMM step isO(k2 log k2).
(See (Chan et al., 2011) for discussions.) Combing these
results we can show that the overall complexity of the SAS
algorithm isO(n logn + k2 log k2) multiplications plus
O(n2) additions.

4. Consistency

In this section we discuss the statistical consistency of the
proposed SAS algorithm.

Analyzing the consistency of the SAS algorithm is equiva-
lent to determining an upper bound of the error

MSE
def
=

1

n2
E
[
‖ŵest − w‖22

]

=
1

n2

(
E
[
h2‖ŵtv −Hw‖22

]
+ E

[
‖Hw ⊗ 1h×h − w‖22

]

+ 2E
[
(ŵtv −Hw)T (Hw ⊗ 1h×h − w)

] )
, (15)

whereHw is the histogram approximation ofw:

Hw
ij =

1

h2

h∑

i1=1

h∑

j1=1

wih+i1,jh+j1 . (16)

Before we proceed, we note that the second expectation
in (15) is a classical result of approximating a continuous
function by step functions. The bound is given in the fol-
lowing Lemma.

Lemma 1 (Piecewise Constant Function Approximation).
Let w ∈ [0, 1]n×n be the true graphon and letHw ∈
[0, 1]k×k be the histogram approximation defined in(16).
Then,

‖Hw ⊗ 1h×h − w‖22 ≤ C′

k2
, (17)

whereC′ is a constant independent ofn.

Therefore, it remains to find an upper bound of‖ŵtv −
Hw‖22. (The last expectation in (15) can be bounded using
Cauchy’s inequality.) In the following subsections, we dis-
cuss how each step of the SAS algorithm contributes to this
upper bound.

4.1. Consistency of empirical degree sorting

To establish the consistency of the empirical degree sorting,
we must first establish the relationship between the oracle
permutation(σ(i)) and the oracle degree(dσ(i)).

Lemma 2. Let σ(i) be the oracle permutation such that
Uσ(1) < Uσ(2) < . . . < Uσ(n). Let g(u) =

∫ 1

0
w(u, v)dv,

and assume that there exists constantsL1 > 0 andL2 > 0
such that

L2|x− y| ≤ |g(x)− g(y)| ≤ L1|x− y|, (18)

for any0 ≤ x ≤ 1 and0 ≤ y ≤ 1. Then, the following
result holds.

If
∣∣∣σ(i)n − σ(j)

n

∣∣∣ < 1
6L1

√
logn
n , then

∣∣dσ(i) − dσ(j)
∣∣ <

√
logn

n
, (19)

with probability at least1− 8e
− 1

18L2
1

logn
.

Conversely, if (19) holds with probability at least1 −
8e

− 1

18L2
1

logn
, then

∣∣∣∣
σ(i)

n
− σ(j)

n

∣∣∣∣ <
√

logn

n

[
1

3L1
+

1

3L1L2
+

1

L2

]
,

(20)

with probability at least1− 40e
− 1

18L2
1

logn
.

The interpretation of Lemma2 is as follows. First, (18)
is the two-sided Lipschitz condition, with Lipschitz con-
stantsL1 andL2. The Lipschitz condition enforces the de-
gree distributiong(u) to be well-behaved so that there is
no abrupt transition for bothg andg−1. Second, the for-
ward statement suggests that if the oracle ordered indices
have bounded differences, then correspondingly the empir-
ical degrees should also have bounded differences. Con-
versely, (20) suggests that if we can bound the difference
in empirical degrees, then the difference in the true posi-
tions should also be bounded.
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As an immediate consequence of Lemma2, we observe
that for any fixedi, if we choosej such thatσ(j) = σ̂(i),
then the converse of Lemma2 implies the following.

Corollary 1. If
∣∣dσ(i) − dσ̂(i)

∣∣ <
√

logn
n holds with prob-

ability at least1− 8e
− 1

18L2
1

logn
, then

∣∣∣∣
σ(i)

n
− σ̂(i)

n

∣∣∣∣ < C

√
logn

n

holds with probability at least1 − 40e
− 1

18L2
1

logn
, where

C = 1
3L1

+ 1
3L1L2

+ 1
L2

is a constant independent ofn.

Therefore, if the error
∣∣dσ(i) − dσ̂(i)

∣∣ is small, then the er-
ror betweenσ(i) andσ̂(i) will also be small.

4.2. Consistency of the histogram estimator

During the histogram estimation step, the error associated
with the empirical degree sorting is translated to the error
between the empirical histogram̂H and the ideal histogram
H . This is reflected in the following lemma.

Lemma 3 (Bounds on‖Ĥ − H‖2). Let w be the ground
truth graphon and assume thatw is Lipschitz with constant
L > 0. If H andĤ are defined according to(11) and(10),
respectively, then

E[‖Ĥ −H‖22] ≤
k4

n2

(
2 + 4C2L2 logn

n

)

+ k2
(
4C2L2 logn

n

)
, (21)

whereC is a constant independent ofn.

We also establish the relationship betweenH and the step
approximationHw.

Lemma 4 (Bounds on‖H − Hw‖2). LetHw be the step
function approximation of the graphonw and letH be the
histogram defined as(11). Then,

E[‖H −Hw‖22] ≤
k4

n2
. (22)

4.3. Consistency of total variation smoothing

To analyze the total variation minimization step, we first
observe that

Ĥ = Hw + Ĥ −H︸ ︷︷ ︸
η

+H −Hw

︸ ︷︷ ︸
ρ

. (23)

Therefore, if we considerHw as the desired function to be
estimated, and considerη andρ as perturbations added to
Hw, thenĤ can be regarded as a noisy observation ofHw.
Consequently, by applying total variation minimization to

(23), we find a solutionŵtv that best fits (23) and has the
minimum total variation.

To characterize the solution of the total variation minimiza-
tion problem, we first define thes-sparsity of the gradient
of a functionHw.

Definition 5. A functionHw ∈ [0, 1]k×k is s-sparse in
gradient if its gradient∇Hw has at mosts non-zero en-
tries.

With this definition, we apply the following result in com-
pressed sensing.

Lemma 5 ((Needell & Ward) Theorem A). If Ĥ = Hw +
η + ρ with ε2 = E[‖η + ρ‖22], then the solution̂wtv of

ŵtv = argmin
r̂

‖r̂‖TV subject to ‖r̂ − Ĥ‖2 ≤ ε,

satisfies the condition

‖ŵtv −Hw‖2 ≤ ‖∇Hw − (∇Hw)s‖1√
s

+ ε,

where(·)s denotes the function reconstructed from thes
most significant non-zero entries of the argument.

Lemma5 indicates that the error‖ŵtv−Hw‖2 is controlled
by the perturbationε and the sparse approximation error
‖∇Hw − (∇Hw)s‖1. Sinceε2 = E[‖η + ρ‖22], andη
andρ are defined according to (23), ε is upper bounded by
(21) and (22). For the sparse approximation error term, in
general‖∇Hw − (∇Hw)s‖1 6= 0 becauseHw is not nec-
essarilys-sparse in gradient. However, in practice, many
real world networks are sparse (i.e. number of edges are
much fewer than number of nodes). Therefore, for practi-
cal consideration it is often reasonable to assume thatHw

is s-sparse in gradient and so‖∇Hw − (∇Hw)s‖1 = 0.

4.4. Overall consistency

In summary, the overall consistency is given by the follow-
ing theorem.

Theorem 3(Consistency of SAS algorithm). Letw be the
true graphon with the following properties: (i)w is Lip-
schitz with constantL > 0; (ii) g(u) =

∫ 1

0
w(u, v)dv is

Lipschitz as defined in Lemma2; (iii) Hw is s-sparse in
gradient. Then, the MSE of the SAS estimator satisfies

MSE ≤ O
(
logn

n

)
, (24)

and henceMSE → 0 asn → ∞ andk/n → 0, wherek is
the number of blocks defined in(11).

5. Experimental results

After establishing the theoretical results, we now present
simulation results of the proposed SAS algorithm.
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5.1. Simulations

The first experiment considers a number of graphons listed
in Table1. The choices of these graphons are made to in-
clude both low rank and high rank graphons, where the rank
is measured numerically using a1000×1000discretization
of the continuous graphons. Among the 10 graphons listed
in Table1, we note that graphon no. 1w(u, v) = uv is a
special case of the eigenmodel (Hoff, 2008), graphon no. 5
w(u, v) = 1/(1+exp{−10(u2+v2)}) is a variation of the
logistic model presented in (Chatterjee), and graphon no. 6
w(u, v) = |u − v| is the latent distance model (Hoff et al.,
2002). Other graphons are chosen to demonstrate the ro-
bustness of the SAS algorithm.

ID w(u, v) rank(w)

1 uv 1
2 exp{−(u0.7 + v0.7)} 1
3 1

4

[
u2 + v2 + u1/2 + v1/2

]
2

4 1
2 (u+ v) 2

5 1
1+exp{−10(u2+v2)} 10

6 |u− v| 1000
7 1

1+exp{−(max(u,v)2+min(u,v)4)} 1000

8 exp{−max(u, v)3/4} 1000
9 exp{− 1

2

(
min(u, v) + u1/2 + v1/2

)
} 1000

10 log(1 + 0.5max(u, v)) 1000

Table 1.List of graphons for testing. The rank ofw is estimated
from a1000× 1000 discretization of the graphon.

We compare the SAS algorithm with the universal sin-
gular value thresholding (USVT) algorithm (Chatterjee)
and the stochastic blockmodel approximation algorithm
(Airoldi et al., 2013). These two algorithms are the exist-
ing methods that have provable consistency and are numer-
ically efficient. However, since both of these two methods
do not have a sorting step, we apply the sorting step of the
SAS algorithm prior to running the two algorithms. For the
choice of binwidthh, we seth = logn for the SAS algo-
rithm, and an oracleh that minimizes the MSE for the SBA
algorithm (i.e., using the ground truth).

The results of the experiment are shown in Table2, where
we report the mean squared error (MSE) of the estimated
graphons using the SAS algorithm, the USVT algorithm
and the SBA algorithm. To reduce the random fluctuations
caused by independent realizations of the random graphs,
we average the MSE over 50 independent trials. Two cases
of graph sizes are considered:n = 200 andn = 1000.
The results show that the SAS algorithm in general outper-
forms the USVT algorithm and the SBA algorithm. Av-
eraged over the 10 testing graphons, we see that the SAS
algorithm achieves the lowest MSE among all three meth-
ods.

SAS (Proposed) USVT SBA

(a)1.09× 10−5 (b) 8.69× 10−5 (c) 1.60× 10−3

(d) 1.37× 10−4 (e)1.24× 10−3 (f) 7.38× 10−4

Figure 3.Comparisons between the SAS algorithm, the USVT
algorithm (Chatterjee), and the SBA algorithm (Airoldi et al.,
2013). Numbers indicate the mean squared error. (a)-(c):
Graphon 5; (d)-(f): Graphon 10. SAS algorithm usesh = log n.
SBA algorithm uses an oracleh that minimizes the MSE. In this
example, we setn = 1000.

Figure3 displays two examples of the estimated graphons.
As shown in the figure, we see that while the USVT algo-
rithm returns a reasonable estimate for graphon no.5 (which
has a low rank), it returns a relatively worse estimate for
graphon no. 10 (which has a high rank). Looking at the
SBA algorithm, it is evident that using the oracle binwidth
h, the average MSE is lower than that of USVT. However,
the SBA algorithm tends to return a graphon with few com-
munities. This is not favorable if the network has non-block
structures. In contrast, the SAS algorithm returns results
with lower MSE, and retains important features of the true
graphons.

In Figure4 we show the runtime comparison between the
SAS algorithm and the USVT algorithm. Both algorithms
are implemented on an Intel 3.5GHz machine with 16GB
RAM, Windows 7 / MATLAB R7.12.0 platform. The run-
time plot indicates that the SAS algorithm has a signifi-
cantly lower complexity than the USVT algorithm.

5.2. Real data analysis

As an application of the proposed SAS algorithm, we
consider the problem of estimating graphons from real-
world networks. For this purpose, we consider the col-
laboration network of arXiv astro physics (ca-AstroPh)
and the who-trusts-whom network of Epinions.com (soc-
Epinions1) from Stanford Large Network Dataset Collec-
tion1. The ca-AstroPh network is a symmetric binary graph
consisting of1.8×104 nodes and3.9×105 edges, whereas
the soc-Epinions-1 network is an unsymmetrical binary

1http://www.cise.ufl.edu/research/sparse/matrices/SNAP/



A Consistent Histogram Estimator for Exchangeable Graph Models

n = 200 n = 1000

ID SAS (Proposed) USVT (Chatterjee) SBA (Airoldi et al., 2013) SAS (Proposed) USVT (Chatterjee) SBA (Airoldi et al., 2013)

1 6.59e-04± 5.18e-05 1.90e-03± 1.88e-04 2.77e-03± 1.60e-04 8.56e-05± 3.42e-06 3.86e-04±1.70e-05 9.00e-04± 1.70e-05
2 4.92e-04± 6.81e-05 2.18e-03± 1.95e-04 2.36e-03± 1.97e-04 7.12e-05± 5.92e-06 4.46e-04±1.84e-05 1.39e-03± 3.99e-05
3 6.95e-04± 7.52e-05 3.12e-03± 2.32e-04 5.08e-03± 2.26e-04 9.60e-05± 5.78e-06 9.69e-04±2.67e-05 8.66e-04± 1.90e-05
4 6.48e-04± 5.30e-05 3.51e-03± 1.93e-04 2.77e-03± 1.49e-04 7.82e-05± 5.17e-06 8.83e-04±2.47e-05 1.43e-03± 2.63e-05
5 9.74e-05± 2.76e-05 3.15e-03± 8.76e-19 3.13e-03± 3.31e-04 1.09e-05± 1.66e-06 8.69e-05±7.03e-06 1.60e-03± 3.45e-05
6 4.29e-02± 9.27e-05 8.91e-02± 1.23e-03 4.37e-02± 1.20e-04 4.19e-02± 9.58e-06 8.42e-02±1.70e-04 4.22e-02± 1.42e-05
7 4.81e-04± 7.50e-05 2.40e-03± 1.77e-04 2.71e-03± 2.09e-04 8.48e-05± 7.47e-06 6.76e-04±1.81e-05 1.21e-03± 3.65e-05
8 9.38e-04± 1.21e-04 6.27e-03± 1.58e-03 1.52e-03± 1.52e-04 1.73e-04± 1.30e-05 1.66e-03±4.56e-05 6.81e-04± 2.14e-05
9 6.50e-04± 7.73e-05 2.87e-03± 2.32e-04 3.96e-03± 3.25e-04 1.02e-04± 5.15e-06 1.26e-03±3.01e-05 1.15e-03± 3.44e-05
10 7.67e-04± 1.01e-04 4.74e-03± 6.25e-04 1.13e-03± 1.23e-04 1.37e-04± 1.02e-05 1.24e-03±3.30e-05 7.38e-04± 1.67e-05

Average 4.83e-03± 7.43e-05 1.19e-02± 4.65e-04 6.91e-03± 1.99e-04 4.27e-03± 6.74e-06 9.18e-03±3.91e-05 5.22e-03±2.06e-05

Table 2.Mean squared error (average± std. dev.) comparisons between the SAS algorithm, the USVT algorithm (Chatterjee), and the
SBA algorithm (Airoldi et al., 2013). MSE is averaged over 50 independent trials.
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Figure 4.Run time comparison between USVT (Chatterjee) and
the SAS algorithm (averaged over 10 graphons listed in Table1).

Figure 5.Estimated graphons for real networks. Left: Collabo-
ration network of arXiv astro physics (ca-AstroPh)n = 1.8 ×

104. Right: who-trusts-whom network of Epinions.com (soc-
Epinions1)n = 7.5 × 104.

graph consisting of7.5×104 nodes and5.1×105 edges. For
both networks, we randomly permute the rows and columns
to simulate the raw data scenario where nodes are initially
unordered.

Figure5 shows the results of the SAS algorithm. For the

ca-AstroPh network, the graphon shows close collabora-
tions among a group of people concentrated around the
top left corner of the graphon. It also shows a number
of small communities along the diagonal. For the soc-
Epinions1 network, the graphon indicates that there are
some influential nodes which consistently interact among
themselves. These can be seen from the repeated patterns
of the graphon.

We remark that or the ca-AstroPh network (n = 1.8× 104)
and the soc-Epinions-1 network (n = 7.5 × 104), the esti-
mations are completed in 20 seconds and 170 seconds, re-
spectively, on a PC using an unoptimized MATLAB code.
This provides a strong indication of the scalability of the
SAS algorithm to larger networks.

6. Concluding remarks

The Sorting-And-Smoothing (SAS) algorithm is a consis-
tent and efficient graphon estimation algorithm. The SAS
algorithm consists of two steps. In the first step, the ob-
served graph is rearranged so that the degrees are mono-
tonically increasing. In the second step, a histogram es-
timation and a total variation minimization is applied to
estimate a smooth surface that best fits the observed data.
The SAS algorithm is evaluated on both simulation data
and real network data. Our simulation results indicate that
the SAS algorithm outperforms the universal singular value
thresholding algorithm and the stochastic blockmodel ap-
proximation algorithm. On large-scale real networks, the
SAS algorithm returns consistent graphon estimates.

Code. Available at: https://github.com/airoldilab/SAS
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