Optimal Income, Education and Bequest Taxes in an Intergenerational Model

Stefanie Stantcheva
(Harvard Society of Fellows)

May 1, 2015
Parents can transfer resources to children through education or bequests.
An Intergenerational Model of Bequests and Education

- Dynamic intergenerational model à la Barro-Becker: altruistic preferences.

- Parents can transfer resources in two ways:
 - **Bequests** yield safe, uniform return.
 - **Education** yields idiosyncratic return: persistent, stochastic “ability.”

- Wage of child = f(education, ability)
 - “Ability:” broad, multi-dimensional, exogenous component.

- Government: maximize expected welfare of today’s generation.
 - Baseline tools: linear education subsidy, income taxes, bequest taxes.
 - Extend to fully unrestricted mechanism (the “best” we could possibly do).
Goal 1: Derive Simple Operational Optimal Formulas

- For education subsidy, bequest tax, income tax:

- In terms of estimable sufficient stats
 - robust to heterogeneity in preferences and primitives.

- Given all other (not necessarily optimally set) taxes.

- Isolating each tool’s redistributive impact.
 - Can use generalized social welfare weights to accommodate any redistributive preferences.

- First, intuition from one-period model. Dynamic formulas look like static ones with appropriately redefined elasticities (of long-term tax base).
Goal 2: How should tax system account for bequests and education investments?

- Should parental human capital expenses be fully tax-deductible?
 - “Siamese Twins” result, Bovenberg and Jacobs (2005).

- Not generally true unless relative efficiency cost = relative distributional
effect for bequests and education investments.

- Education subsidies and income taxes need not co-move.

- Bequest and income taxes need not co-move.

- Extend to OLG model to capture credit constraints: will typically ↑
optimal education subsidy, not change bequest tax.
Goal 3: Introduce and Use Reform Specific Elasticities

- Hard to estimate relevant elasticities in practice: can we target formulas to existing reforms?
- Yes: For any reform: can derive optimal formulas using “reform-specific elasticities.”
Goal 4: Solve for Fully Unrestricted Taxes

- Mechanism design approach.

- Optimal to distort parental trade-off between education and bequests.
 - Except in very special case in which Hicksian coefficient of complementarity $\rho_{\theta s} = 1$ for kids.
 - I.e., only if wage = ability \times education.

- If education benefits mostly less able kids – should subsidize it relative to bequests (who benefit everybody equally).
Related Literature

Human Capital: Heckman (1976), Heckman, Lochner and Taber (1997),

Human Capital and Taxation: Bovenberg and Jacobs (2005), Jacobs (2007),

Bequest taxation: Piketty and Saez (2013), Farhi and Werning (2010, 2013).

Quantitative models with bequests: Krueger and Ludwig (2013, 2014).

Credit constraints for education: Carneiro and Heckman (2002), Jacobs and Yang (2011),
Outline

1. Intergenerational Model
2. Simple One-Period Version
3. Optimal Linear Dynamic Policies
4. Credit Constraints
5. Optimal Unrestricted Policies (Mechanism)
Education investments and bequests

- Agents live for 1 period: born, have single child, die.

- Agent from dynasty i at generation t denoted ti.

- Parents in generation t purchase education s_{t+1i} for child.

- Ability θ: stationary, ergodic process with correlation between generations (possibly, multidimensional).

- Wage: $w_{ti}(s) \equiv w(s, \theta_{ti})$
 - How complementary are education and ability ($\frac{\partial^2 w}{\partial \theta \partial s}$)?
 - Early Childhood investments vs. College?
 - Wlog, different types of human capital: $w(s_1, ..., s_N, \theta_{ti})$.

- Income: $y_{ti} = w_{ti}/l_{ti}$.
Dynastic Setup and Taxes

- Flow utility: \(u_{ti}(c, y, s) \equiv u\left(c, \frac{y}{w(s, \theta_{ti})}; \eta_{ti}\right) \)

- Expected utility of dynasty \(i \)
 \[
 U_{1i} = E\left(\sum_{t=1}^{\infty} \beta^{t-1} u_{ti}(c_{ti}, y_{ti}, s_{ti})\right)
 \]

- Bequests left by generation \(t, b_{t+1i} \), yield \(R \).

- Linear taxes: \(\tau_{Lt}, \tau_{St}, \tau_{Bt} \).

- \(G_t \): lump-sum demogrant.

- Agents’ per-generation budget constraint:
 \[
 c_{ti} + b_{t+1i} + (1 - \tau_{St}) s_{t+1i} = Rb_{ti}\left(1 - \tau_{Bt}\right) + w_{ti}(s_{ti}) l_{ti}\left(1 - \tau_{Lt}\right) + G_t
 \]
Equilibrium and Government Budget

- Aggregate (or per capita): y_t, b_t, and s_t.

- Stochastic processes for θ and η assumed to be ergodic.

 ▶ at constant $(\tau_L, \tau_B, \tau_S, G)$, unique ergodic steady state independent of initial distribution of s_{1i} and b_{1i}.

 ▶ If tax policy $(\tau_{Lt}, \tau_{Bt}, \tau_{St}, G_t)$ converges to long-run constant policy $(\tau_L, \tau_B, \tau_S, G)$ then s_{t+1}, y_t, and b_t also converge to steady state levels and depend on steady tax policies.

- Government budget constraint in equilibrium (per period):

 $$G_t = \tau_L y_t + \tau_B R b_t - \tau_S s_{t+1}$$

 ▶ With golden rule followed, such that $\beta = 1/R$, this is wlog.
Outline

1. Intergenerational Model

2. Simple One-Period Version

3. Optimal Linear Dynamic Policies

4. Credit Constraints

5. Optimal Unrestricted Policies (Mechanism)
Simple One-period Version of the Model

- Utility: $U_i = u_i(c_i, y_i, s_i)$

- Budget constraint: $c_i + (1 - \tau_S) s_i = w_i(s_i) l_i(1 - \tau_L) + G$

- Social Welfare: $SWF = \int \omega_i u_i(c_i, y_i, s_i) \, di$
 - For any set of Pareto weights $\{\omega_i\}_i$.

- Government BC: $G = \tau_L y - \tau_S s$
Elasticities and Distributional Characteristics

- Aggregate elasticities of y and s to $1 - \tau_L$:
 \[\varepsilon_Y \equiv \frac{dy}{d(1-\tau_L)} \frac{1-\tau_L}{y}, \quad \varepsilon_S \equiv \frac{ds}{d(1-\tau_L)} \frac{1-\tau_L}{s} \]

- Aggregate elasticities of y and s to $\tau_S - 1$:
 \[\varepsilon_S \equiv \frac{ds}{d(\tau_S-1)} \frac{\tau_S-1}{s}, \quad \varepsilon_Y \equiv \frac{dy}{d(\tau_S-1)} \frac{\tau_S-1}{y} \]

- Distributional characteristic of output and education:
 \[\bar{y} \equiv \frac{\int_i \omega_i u_{c,i} y_i di}{y \int_i \omega_i u_{c,i} di}, \quad \bar{s} \equiv \frac{\int_i \omega_i u_{c,i} s_i di}{s \int_i \omega_i u_{c,i} di} \]

- \bar{s} large if s concentrated among high u_c (low c) agents
 - If s and ability not very complementary (Early Childhood Investments)?
 - \bar{s} depends on what type of human capital subsidized (free public education?)

- $\bar{y} \ll 1$ typically.
Optimal Static Linear Tax and Subsidy

- Optimal Labor Tax:
 \[\tau_L^* = \frac{1 - \bar{y} - \tau_S \frac{y}{y} \varepsilon_Y}{1 - \bar{y} + \varepsilon_Y} \]

- Typical trade-off between redistribution \((1 - \bar{y})\) and efficiency \((\varepsilon_Y)\).

- Fiscal spillover on education tax base: \(\tau_S \frac{y}{y} \varepsilon_Y\) (0 if \(\tau_S = 0\)).

- Optimal Education Subsidy:
 \[\tau_S^* = \frac{1 - \bar{s} + \frac{y}{s} \varepsilon_Y \tau_L}{1 - \bar{s} + \varepsilon_S} \]

- Redistributive effect of education \((1 - \bar{s})\) ↑ \(\tau_S\).
 - (1 - \bar{s}) large for Early Childhood Investment.

- Fiscal spillover: \(\frac{y}{s} \varepsilon_Y \tau_L\) increasing in \(\tau_L\).
“Siamese Twins Result” Revisited

- Benchmark: Full deductibility of education expenses.
 \[\tau_S = \tau_L \iff \text{equivalent to taxable income being } y - s. \]

- Full deductibility optimal iff:
 \[
 \frac{\left(\frac{y}{s} \varepsilon_Y^S - \varepsilon_S \right)}{\left(\frac{s}{y} \varepsilon_Y^Y - \varepsilon_Y \right)} = \frac{1 - \bar{s}}{1 - \bar{y}}
 \]

- If \(1 - \bar{s} \gg 1 - \bar{y} \), then optimal to have: \(\tau_S^* > \tau_L^* \).

- Bovenberg and Jacobs (2005) find \(\tau_S = \tau_L \), because:
 - \(w = \theta s \) and quasilinear utility.
 - Hence: \(\bar{y} = \bar{s}, \varepsilon_Y^S = \gamma, \varepsilon_Y = 1 - \gamma, \varepsilon_Y^S = -\gamma, \varepsilon_S = \gamma - 1 \)
Outline

1. Intergenerational Model
2. Simple One-Period Version
3. Optimal Linear Dynamic Policies
4. Credit Constraints
5. Optimal Unrestricted Policies (Mechanism)
A Variational Approach – One instrument at a time

- **Social Welfare:**

\[
SWF = \max E \sum_{t=1}^{\infty} \beta^{t-1} \left[u_{ti} \left((1 - \tau_{Lt})y_{ti} - s_{t+1i}(1 - \tau_{St}) \right)
+ R(1 - \tau_{Bt})b_{ti} - b_{t+1i} + G_t, y_{ti}, s_{ti} \right]
\]

subject to

\[
G_t = \tau_{Lt}y_t + \tau_{Bt}Rb_t - \tau_{St}s_{t+1}
\]

- **Variation:** \(d\tau_{St} = d\tau_S \) for \(t > T \).

- \(dSWF = \) direct welfare (by envelope theorem) + mechanical revenue effect + behavioral effects (anticipatory and post-reform).
Elasticities of the Present Discounted Tax Bases

- Long run elasticities of PDV of tax bases:

\[\varepsilon'_S \equiv (1 - \beta) \sum_{t \geq 1} \beta^{t-1-T} \varepsilon_{St+1} \]

\[\varepsilon'_Y \equiv (1 - \beta) \sum_{t \geq 1} \beta^{t-1-T} \varepsilon_{Yt} \]

\[\varepsilon'_B \equiv (1 - \beta) \sum_{t \geq 1} \beta^{t-1-T} \varepsilon_{Bt} \]

- Mix both children’s and parents’ responses.

- Mix income and substitution effects.

- Redistributive factors:

\[\bar{y} \equiv \frac{E(u_{c,ti}y_{ti})}{E(u_{c,ti})y_t}, \quad \bar{s} \equiv \frac{E(u_{c,ti}s_{t+1i})}{E(u_{c,ti})s_{t+1}}, \quad \bar{b} \equiv \frac{E(u_{c,ti}b_{ti})}{E(u_{c,ti})b_t} \]
Optimal Linear Taxes and Subsidies

- Optimal education subsidy:

\[\tau^*_S = \frac{1 - \bar{s} + \varepsilon_Y \tau_L \frac{y}{s} + \varepsilon_B \tau_B \frac{R}{e}}{1 - \bar{s} + \varepsilon_S'} \]

- Decreasing in \(\varepsilon_S' \) (like in static, but now it’s elasticity of full base).

- Tax deductibility not optimal in general: \(\tau_S \) and \(\tau_L \) need not even co-move (unless no income effects).

- \(\tau_S \) and \(\tau_B \) may or may not co-move (substitution vs. income effects).

- Can use formula to evaluate reforms (at any given \(\tau_B \) and \(\tau_L \)).
 - Maybe most useful application, only requires knowing \(\varepsilon, \bar{s} \) at status quo.

- Distributional effects again crucial.
 - Depend on complementarity and institutional setup.

- Can use generalized Social Welfare Weights (Saez and Stantcheva 2014).
Generalized Social Welfare Weights

Instead of standard weights derived from SWF ($\omega_{ti} u_{c,ti}$), use **generalized social welfare weights** g_{ti}

- g_{ti}: Social marginal value of giving 1 to person i.

$$\bar{s} = \frac{E(g_{ti} s_{ti})}{E(g_{ti}) s_t}, \quad \bar{y} = \frac{E(g_{ti} y_{ti})}{E(g_{ti}) y_t}, \quad \bar{b} = \frac{E(g_{ti} b_{ti})}{E(g_{ti}) b_t}$$

All redistributive considerations translate into different values for \bar{s}, \bar{y}, \bar{b}.

- No need to rederive anything.
- No SWF, only variations/reforms.

- Rawlsian case: $\bar{s} = 0$.
- Pure Efficiency consideration: $\bar{s} = 1$.
- Value altruistic parents most: $\bar{s} >> 1$.
- Worry about kids from poor background: $\bar{s} = \frac{E(s_{ti}| \text{poor background})}{\text{Prob}(\text{poor background}) s_t}$.
Optimal Linear Taxes and Subsidies

- Optimal Bequest Tax:

$$\tau_B^* = \frac{1 - \bar{b} + \varepsilon'_B \frac{s}{b} \tau_S - \varepsilon'_Y \tau_L \frac{Y}{b}}{1 - \bar{b} + \varepsilon'_B}$$

- Generically not zero – contrast to zero capital taxation result (Chamley, Judd):

- Fiscal spillover/constraint on other tax instruments.

- ε'_B finite (true with uncertainty), breaks down with perfect certainty.

- $\bar{b} \neq 1$: except if utility linear in c, or purely accidental bequests uncorrelated with income.
Reform-Specific Elasticities

- What if we cannot estimate all cross-elasticities needed?

- Target formulas to specific reforms (shifts in several instruments), and care only about total effect. Formulas are “reform-specific.”

- E.g.: \(d\tau_{St} = d\tau_S \) for \(t > T \), with \(d\tau_{Lt} \) to maintain budget balance, \(\tau_B \) unchanged.

- Optimal education subsidy with reform-specific elasticities:

\[
\tau_S^* = \frac{1 - \frac{s}{y} \left(1 - \varepsilon'_Y \frac{\tau_L}{1-\tau_L}\right) + R^b_s \varepsilon'_B \tau_B}{1 - \frac{s}{y} \left(1 - \varepsilon'_Y \frac{\tau_L}{1-\tau_L}\right) + \varepsilon'_S}
\]

- Long-run elasticities \(\varepsilon'_B, \varepsilon'_Y \) and \(\varepsilon'_S \) estimated from a revenue neutral reform changing \(\tau_S \) and adjusting \(\tau_L \) for budget balance.
Reform-Specific Elasticities: Discussion

- Most useful formulation for reforms that have been done so can use “ready” estimates.

- Best to evaluate reforms around status quo where elasticities estimated.

- If we knew primitives (Slutsky matrices), formulas are equivalent.

- Not necessary to assume that τ_L or τ_B optimally set.
Unobservable Education or Human Capital Spending

- Need to provide indirect incentive for human capital *indirectly* through labor and bequest tax only.

- Optimal labor tax with unobservable education:

\[
\tau^*_L, \text{unobs} = \frac{1 - \bar{y} - b \varepsilon_Y^' \tau_B}{1 - \bar{y} + \varepsilon_Y'}
\]

- If \(\varepsilon_Y^' < 0 \), then if \(\tau^*_S > 0 \) was optimal, \(\tau_L \) lower with unobservable education.

- Optimal bequest tax with unobservable education:

\[
\tau^*_B, \text{unobs} = \frac{1 - \bar{b} - \varepsilon_Y^' \tau_L \frac{Y}{b}}{1 - \bar{b} + \varepsilon_B^'}
\]

- If education and bequests substitutes overall, \(\varepsilon_S^B < 0 \), and if \(\tau^*_S > 0 \) had been optimal, \(\tau_B \) higher to indirectly encourage education.
Outline

1 Intergenerational Model

2 Simple One-Period Version

3 Optimal Linear Dynamic Policies

4 Credit Constraints

5 Optimal Unrestricted Policies (Mechanism)
An Augmented Dynastic OLG Model

- Generation t born at time t lives for 3 periods:
 1. “Young:” receive s_t from their parents.
 2. “Adult:” have one child each, work to earn y_{t+1}, save k_{t+1}, invest s_{t+1}.
 3. “Old:” Receive bequests b_{t+1} at beginning of period, consume, leave bequests b_{t+2}, die.

- Unit mass of each young, adult, and old at each t.

- Inelastic labor supply for exposition only: $y_{t+1i} = w_{t+1}(s_{ti}, \theta_{t+1i})$.

- Utility (realized in old age at time $t + 2$): $u_{t+2}(c_{t+2i}, \eta_{t+2i})$.

- Budget constraint of adult i from generation t:
 $$(1 - \tau_{Lt+1})w_{t+1}(s_{ti}, \theta_{t+1i}) = k_{t+1i} + s_{t+1i}(1 - \tau_{St+1})$$

- Budget constraint of old agent i from generation t:
 $$k_{t+1i} + Rb_{t+1i}(1 - \tau_{Bt+2}) = c_{t+2i} + b_{t+2i}$$
Government Transfers, SWF and Credit Constraints

- G_t given at beginning of old age (after bequests received have been taxed). Transfer at time t (to old of generation $t - 2$):
 $$G_t = \tau_{Lt-1}y_{t-1} + \tau_{Bt}Rb_{t-1} - \tau_{St-1}s_{t-1}$$

- Social Welfare:
 $$SWF_0 = \max E \sum_{t=1}^{\infty} \beta^{t-1} [u_{ti}(1 - \tau_{Lt-1})y_{t-1} - s_{t-1}(1 - \tau_{St-1}) + R(1 - \tau_{Bt})b_{t-1} - b_{t+1} + G_t)]$$

- If no credit constraints: all periods collapsed into 1, equivalent to before.

- Credit constraints: $k_t = (1 - \tau_{Lt})w_t(s_{t-1}, \theta_t) - s_t(1 - \tau_{St}) \geq 0$, multiplier γ_{ti}.

- Redistributive incidence of credit constraints: $\tilde{s} \equiv \frac{E(\gamma_{ti}s_{t-1})}{E(u_{c,ti})s_{t-1}}$

- \tilde{s} higher if credit constraints hit mostly parents who invest a lot in s.
Government Transfers, SWF and Credit Constraints

- Optimal human capital subsidy:

\[\tau^{\star,cc}_{S} = \frac{1 - (\bar{s} + \tilde{s}) + \varepsilon_{Y}^{S'}\tau_{L}y_{s} + \varepsilon_{B}^{S'}\tau_{B}R_{b}s}{1 - (\bar{s} + \tilde{s}) + \varepsilon'_{S}} \]

- Additional term \(\tilde{s} \) acts exactly like \(\bar{s} \).

- Credit constraints concentrated among parents who invest a lot in their children \(\iff \) high social marginal value on parents investing a lot.

- Tend to increase optimal human capital subsidy, all else equal.

- Bequest tax unchanged: bequests occur too late in life to relieve credit constraints. Could change?
Outline

1. Intergenerational Model
2. Simple One-Period Version
3. Optimal Linear Dynamic Policies
4. Credit Constraints
5. Optimal Unrestricted Policies (Mechanism)
Optimal Unrestricted Mechanism: Setup

- Simplify: no preference shocks η.
- θ_t follows Markov process $f_t(\theta_t|\theta_{t-1})$.
 - Parents have some advance info, but not full info about kids’ abilities.
- Utility separable: $\tilde{u}_t(c_t, y_t, s_t; \theta_t) = u_t(c_t) - \phi_t\left(\frac{y_t}{w_t(\theta_t, s_t)}\right)$
- Key parameter: **Hicksian coefficient of complementarity** between ability and education in the wage function
 \[\rho_{\theta s} \equiv \frac{w_{\theta s} w}{w s w_\theta} \]
 - $\rho_{\theta s} < 0$: lower ability kids have a higher marginal benefit from education (Early Childhood Investments, evidence from J. Heckman).
 - $\rho_{\theta s} > 0$: higher ability kids have a higher marginal benefit from education (Heckman and Cunha evidence for College).
 - $\rho_{\theta s} > 1$: higher ability kids have a higher proportional benefit from education (Wage elasticity w.r.t ability increasing in education).
Solution Method: First-order Approach + Dynamic Programming

- Farhi and Werning (2013) and Stantcheva (2014).

- Imagine direct revelation mechanism: specify allocations as functions of reported θ^t.

- Continuation utility of the dynasty after history θ^t:

$$
\omega (\theta^t) = u_t (c (\theta^t)) - \phi_t \left(\frac{y (\theta^t)}{w_t (\theta_t, s (\theta^t))} \right) + \beta \int \omega (\theta^{t+1}) f^{t+1} (\theta_{t+1} | \theta_t) \, d\theta_{t+1}
$$

- Replace by "envelope condition:'

$$
\dot{\omega} (\theta^t) := \frac{\partial \omega (\theta^t)}{\partial \theta_t} = \frac{w_{\theta, t}}{w_t} l (\theta^t) \phi_{l, t} (l (\theta^t)) + \beta \int \omega (\theta^{t+1}) \frac{\partial f^{t+1} (\theta_{t+1} | \theta_t)}{\partial \theta_t} \, d\theta_{t+1}
$$
Rewrite Problem Recursively

- Rewrite problem recursively using: promised continuation utility v, promised marginal continuation utility Δ.

- The program of the government is:

$$K(v, \Delta, \theta_-, t) = \min \int (c(\theta) + s_{t+1}(\theta) - w_t(\theta, s_t(\theta))) l(\theta)$$

$$+ \frac{1}{R} K(v(\theta), \Delta(\theta), \theta, s_{t+1}(\theta), t + 1)) f^t(\theta|\theta_-) d\theta$$

subject to:

$$\omega(\theta) = u_t(c(\theta)) - \phi_t(l(\theta)) + \beta v(\theta)$$

$$\dot{\omega}(\theta) = \frac{w_{\theta,t}}{w_t} l(\theta) \phi_{l,t}(l(\theta)) + \beta \Delta(\theta)$$

$$v = \int \omega(\theta) f^t(\theta|\theta_-) d\theta$$

$$\Delta = \int \omega(\theta) \frac{\partial f^t(\theta|\theta_-)}{\partial \theta_-} d\theta$$

maximization is over functions $(c(\theta), l(\theta), s(\theta), \omega(\theta), v(\theta), \Delta(\theta))$.
Characterize Marginal Distortions Using Wedges

- Distortions relative to *laissez-faire* characterized by “wedges” (pure definitions):

- Intratemporal wedge on labor $\tau_L(\theta^t)$

\[
\tau_L(\theta^t) \equiv 1 - \frac{\phi_{l,t}(l_t)}{w_t u'_t(c_t)}
\]

- Intertemporal wedge on bequests $\tau_B(\theta^t)$

\[
\tau_B(\theta^t) \equiv 1 - \frac{1}{R\beta E_t(u'_t(c_{t+1}))}
\]
Optimal Relation between Bequests and Education

- ε_u^t: uncompensated labor supply elasticity

- ε_c^t: compensated labor supply elasticity (all holding savings fixed).

At the optimum:

$$R = E \left(w_{s,t+1} l_{t+1} \left(1 + \tau_{L,t+1} \frac{\varepsilon_c^{t+1}}{1 + \varepsilon_u^{t+1}} (1 - \rho \theta_{s,t+1}) \right) \right)$$

- LHS = Return to bequests.

- RHS = Social return to education = Private return + incentive effect.

- Bequests affect everybody equally, but education does not.
Subsidizing or Taxing Education Relative to Bequests

Education subsidized relative to bequests $\Leftrightarrow \rho_{\theta s, t} \leq 1$

Labor Supply Effect:
Education subsidy increases children’s wage
$\rightarrow \uparrow$ labor
$\rightarrow \uparrow$ resources.

Inequality Effect:
if $\rho_{\theta s} \geq 0$, education benefits more able children more
$\rightarrow \uparrow$ pre-tax inequality.

$\rho_{\theta s} \leq 1 \Rightarrow$ subsidy \downarrow post-tax inequality
\Rightarrow has positive redistributive and insurance effects.

$\rho_{\theta s} = 1 \Rightarrow$ No distortion between bequests and education
Benchmark case in literature $w_t = \theta_t s_t$
Conclusion

- Derive formulas for optimal linear taxes as functions of estimable behavioral elasticities and redistributive factors, robust to heterogeneities and preferences.
 - “Reform elasticities” adapted to existing reforms.

- Not optimal to make education expenses fully tax deductible, as education subsidies have differential distributional impacts.
 - τ_S, τ_B, τ_L can co-move positively or negatively...

- Credit constraints would typically increase optimal education subsidy.

- Fully unrestricted mechanism: if education highly complementary to ability ($\rho_{\theta s} > 1$), tax education relative to bequests.