CHAPTER 6

Asymptotic Distributions of Instrumental
Variables Statistics with Many Instruments
James H. Stock and Motohiro Yogo

ABSTRACT

This paper extends Staiger and Stock’s (1997) weak instrument asymptotic approximations to the
case of many weak instruments by modeling the number of instruments as increasing slowly with
the number of observations. It is shown that the resulting “many weak instrument” approximations
can be calculated sequentially by letting first the sample size, and then the number of instruments,
tend to infinity. The resulting distributions are given for k-class estimators and test statistics.

1. INTRODUCTION

Most of the literature on the distribution of statistics in instrumental variables
(I'V) regression assumes, either implicitly or explicitly, that the number of instru-
ments ( K;) is small relative to the number of observations (T'); see Rothenberg’s
(1984) survey of Edgeworth approximations to the distributions of IV statis-
tics. In some applications, however, the number of instruments can be large;
for example, Angrist and Krueger (1991) had 178 instruments in one of their
specifications. Sargan (1975), Kunitomo (1980), and Morimune (1983) pro-
vided early asymptotic treatments of many instruments, More recently, Bekker
(1994) obtained first-order distributions of various IV estimators under the
assumptions that K, — 00, T — 00, and K»/T — ¢, 0 <c¢ < 1, when the
so-called concentration parameter (%) is proportional to the sample size and
the errors are Gaussian. Chao and Swanson (2002) have explored the consis-
tency of 1V estimators with weak instruments when the number of instruments
is large, in the sense that K> is also modeled as increasing to infinity, but more
slowly than T.

This paper continues this line of research on the asymptotic distribution
of 1V estimators when there are many instruments. Our focus is on the case
of many weak instruments, that is, when there are many instruments that are,
on average, only weakly correlated with the included endogenous regressors.
Specifically, we extend the weak instrument asymptotics developed in Staiger
and Stock (1997) to the case of many instruments. The key technical device of
the Staiger-Stock (1997) weak instrument asymptotics is fixing the expected
value of the concentration parameter, along with the number of instruments,
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as the sample size increases. Here, we extend this to the case that the ex-
pected value of the concentration parameter is proportional to the number of
instruments, and the number of instruments is allowed to increase siowly with
the sample size, specifically, as T — 00, K, — 00, E(u?)/Ks — Ay (afixed
matrix), and K; /T — 0. We refer to asymptotic limits taken under sequences
satisfying these conditions as many weak instrument limits. (The term “many”
should not be overinterpreted because while the number of instruments is al-
lowed to tend to infinity, the condition K5/ T — 0 requires it to do so very
slowly relative to the sample size.) Under these conditions, and some add:-
tional technical conditions stated in Section 2 (including i.i.d. sampling and
existence of fourth moments), it is shown that the limits of k-class IV statistics
as K and T jointly tend to infinity can in general be computed using sequential
asymptotic limits. Under sequential asymptotics, the fixed-K» weak instrument
limit is obtained first, then the limit of that distribution is taken as K — 0.
The advantage of this “first T then K,” approach is that the sequential calcu-
lations are simpler than the calculations that arise along the joint sequence of
(K,, T). A potential disadvantage of this approach is that this simplicity comes
at the cost of a stronger rate condition than might be obtained along the joint
sequence.

We begin in Section 2 by specifying the model, the k-class IV statistics of
interest, and our assumptions. Section 3 justifies the sequential asymptotics by
showing that, under these assumptions, a key uniform convergence condition
holds. In Section 4, we derive the many weak instrument limits of k-class
estimators and test statistics using sequential asymptotics. These many weak
instrument limits are used in Stock and Yogo (2004) to develop tests for weak
instruments when the number of instruments is moderate. Some of these results
might be of more general interest, however; for example, Chao and Swanson
(2002) show that LIML is consistent under these conditions, and in this paper

we provide its 4/ K>-limiting distribution. Section 5 provides some concluding
remarks.

2. THE MODEL, STATISTICS, AND ASSUMPTIONS

2.1. Model and Notation

We consider the IV regression model with n included endogenous regressors:

y=Y@+u, 2.1
Y=ZI+V, ' (22)

where y is the T x 1 vector of T observations on the dependent variable, Y is
the T x n matrix of n included endogenous variables, Z is the T x K, matrix
of K> excluded exogenous variables to be used as instruments, and u and V
area T x 1 vector and T x n matrix of disturbances, respectively. The n x |
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vector 3 and K, x n matrix IT are unknown parameters. Throughout this paper
we exclusively consider inference about 3.

It is useful to introduce some additional notation. Let Z, = (Zy, - -+ Zg,)',
Vi=Vy - Vo), Y=1yY],Qzz = E(Z,ZL),

Uy / _ O uy ZHV
S=E [(Vt) (u, V, )] = [EW EW], (2.3)

p =S Sy V2, (2.4)
C =+TII, and (2.5)
Ag, = TSW INQzzIIE vy [ Ky = B3/°C'QzzCERY /Ko (2.6)

The n x n matrix A, is the expected value of the concentration parameter,
divided by the number of instruments, K,. Note that p’p < 1.

2.2 k-Class Statistics

The k-class estimator of 3 is
Blk) = [Y'T - kMz)Y]" [Y'( - kMz)y], 2.7)

where My =1 - Z(Z'Z)"'Z' and % is a scalar. The Wald statistic, based on the
k-class estimator, testing the null hypothesis 3 = 3, is

[B(k) — BoY[Y'(I — kMZ)Y][B(k) — B,]

Wi = 16 (k)

(2.8)

where 6, (k) = G(k) (k) /(T — n) and (k) = y — YB(k).

Specific k-class estimators of interest include two-stage least squares
(TSLS), the limited information maximum likelihood (LIML) estimator,
Fuller’s (1977) k-class estimator, and bias-adjusted TSLS (BTSLS; Nagar 1959;

Rothenberg 1984). The values of k for these estimators are (cf. Donald and
Newey 2001):

TSLS: k=1, (2.9
LIML: & = kv is the smallest root of det (Y'Y — kY'MzY) = 0, (2.10)
Fuller-k:  k = kume — ¢/(T — K), where ¢ is a positive constant,  (2.11)

BTISLS: k=T/T - K, +?2), (2.12)

where det(A) is the determinant of matrix A.
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2.3. Assumptions

We assume that the random variables are i.i.d. with four moments, the in-

struments are not multicollinear, and the errors are homoskedastic; that is, we
assume:

Assumption A

(a) There exists a constant Dy > 0 such that mineval(Z’Z/T) > D a.s.
forall K, and for all T greater than some T.

(b) Z, is iid. with EZ,Z, = Qgzz, where Qgzz is positive definite, and
EZ} < Dy <oo, wherei=1,..., K».

(c) m, = (w, Vi1 is i.id. with E(n;| Z;) =0, E(nm;| Z;) = %, which
is positive definite, and E(Inin j: el | Z,) = E(Mit’?jtnkt’?ltl)f
Dy < oo, whereld, j,k,1=1...,n4+ 1.

The next assumption is that the instruments are weak in the sense that the
amount of information per instrument does not increase with the sample size,
thatis, the concentration parameter is proportional to the number of instruments.
For fixed K, this assumption is achieved by considering the sequence of models
in which C = II/+/T is fixed, so that IT is modeled as local to zero (Staiger
and Stock 1997). We adopt this nesting here, specifically:

Assumption B. max; ;|C; ;| < D4 < 00, where Dy does not depend on T or
Ky, and C'C/K; — Has T — oo, where H is a fixed n x n matrix.

Assumption B implies that Ag, — Ao, as T — 00, where A is a fixed
matrix with maxeval(Ao,) < 00. When the number of instruments is fixed, this
assumption is equivalent to the weak-instrument Assumption L in Staiger and
Stock (1997).

Our analysis focuses on sequences of K that, if they increase, do so slower
than +/T . Specifically, we assume:

Assumption C. K3/T — Oas T — oo,

Note that Assumption C does not require K, to increase, but it limits the rat
at which it can increase.

3. UNIFORM CONVERGENCE RESULT

This section provides the uniform convergence result (Theorem 3.1) that jus-
tifies the use of sequential asymptotics to compute the many weak instrument
limiting representations. We adopt Phillips and Moon’s (1999) notation in
which (T, K; — 00)sq denotes the sequential limit in which first T — 0
then K, — oo; the notation (K, T — oo) denotes the joint limit in which K2
is implicitly indexed by T'.
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Lemma 6 of Phillips and Moon (1999) provides general conditions under
which sequential convergence implies joint convergence.

Phillips and Moon (1999), Lemma 6
(a) Suppose there exist random vectors Xx and X on the same probabil-
ity space as Xk r satisfying, for all K, Xg 7 5 x ¥k as T — oo and
Xy L XasK — oo.ThenXK,T—i Xas(K,T — oo)if and only if
lim supg 7 Pr[||Xx 7 — Xkl > ¢] =0foralle > 0. (3.1)
(b) Suppose there exist random vectors X such that, for any fixed K,

XK,T—d>XK as T — oo and XK—d>XasK — 0. Then XK,T—&;X
as(K,T — oo)if and only if, for all bounded continuous functions f,

lim supg 7| E[f(Xk,r)] = E[f (X))l = 0. (3.2)

Note that condition (3.2) is equivalent to the requirement
lim supy gsup,|Fx, ,{(x) — Fx, (x)| =0, (3.3)

where Fy, . is the c.d.f. of X¢ r and Fy, is the c.d.f. of Xg.

The rest of this section is devoted to showing that the conditions of this
lemma, that is, (3.1) and (3.3), hold under assumptions A, B, and C for the
statistics that enter the k-class estimators and test statistics. To do so, we use
the following Berry—Esseen bound proven by Bertkus (1986):

Berry—Esseen Bound (Bertkus 1986). Let {X;, ..., X7} be ani.i.d. sequence
in RX with zero means, a nonsingular second moment matrix, and finite ab-
solute third moments. Let Pr be the probability measure associated with
T-1/2 :T:_l X,, and let P be the limiting Gaussian measure. Then for each T,

Sup 4.« | Pr(A) — P(A)| < const x (K/T)2E| X}
= o ([&3/11") (3.4)

where CX is the class of all measurable convex sets in RX .

We now turn to k-class statistics. First note that, for fixed K7, under Assump-
tions A and B, the weak law of large numbers and the central limit theorem
imply that the following limits hold jointly for fixed K»:

(T e, T~'V'u, T7'V'V) 5 (044, Svi, D), (3.5)
'z zZI1 5 C'QzC, (3.6)
([I'Z'u, ITZ'V) 5> (C'Ty,, C'Tzy), (3.7)

. d , ., -
(u'Pzu, V'Pzu, VP, V) = (W, A W7y 077 V2.,
Wy Qzz%zv), (3.8)
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where ¥z, and Wy are, respectively, K, x 1 and K, x n random variables
and ¥ = [P, , vec(Wzvy)']' is distributed N(0, = ® Qzz).

The following theorem shows that the limits in (3.5)-(3.8) and related limits
hold uniformly in K, under the sampling assumption (Assumption A), the weak
instrument assumption (Assumption B), and the rate condition { Assumption C).
Let |A| = [tr{A’A)]!/? denote the norm of the matrix A and, asin (3.3), let F
denote the c.d.f. of the random variable X (etc.).

Theorem 3.1. Under Assumptions A, B, and C,

(a) lim supy, ¢ Pr{l|(wu/T, Vu/T, V'V/T) = (0w Svu, Tyv)ll >
gel=0Ve=>0

(b) lim supy, ¢ Prl|ITVZ/ZIL}| /K, — C'QzzC/Kall > e] =0V e >0,

(c) lim supg, rsup, | Frrzu(X) — Fery,, (x)| = 0,

(d) lim supg, rsup, | Firzv(X) — Fow,,(X)| =0,

(e) lim supg, rsup,|Fupu(x) = Fy, g1, (0] = 0,

() lim supg, rsup | Fy pu(X) = Fy, o-14,, (0] =0,

(8) lim supy, psup|Fy p,v(X) = Fy o 1y, 0] = 0.

The proof of Theorem 3.1 is contained in the Appendix.

Theorem 3.1 verifies the conditions (3.1) and (3.3) of Phillips and M00I}’S
(1999) Lemma 6 for statistics that enter the k-class estimator and Wald stalis-
tic. Some of these objects converge in probability uniformly under the stated
assumptions (parts (a) and (b)), while others converge in distribution uniformly
(parts (c)—(g)). It follows from the continuous mapping theorem that continy-
ous functions of these objects also converge in probability (and/or distrjbution)
uniformly under the stated assumptions. Because the k-class estimator 3(k) and
Wald statistic W (k) are continuous functions of these statistics (after centering
and scaling as needed), it follows that the (K,, T — 00) joint limit of these
k-class statistics can be computed as the sequential limit (T, Ky — 0)seq:

4. MANY WEAK INSTRUMENT ASYMPTOTIC
LIMITS

This section collects calculations of the many weak instrument asymptoti¢
limits of k-class estimators and Wald statistics. These calculations are don¢
using sequential asymptotics (justified by Theorem 3.1), in which the fixed-K:
weak instrument asymptotic limits of Staiger and Stock (1997, Theorem 1)
are analyzed as K, — 0o. The limiting distributions differ depending on thF
limiting behavior of k. The main results are collected in Theorem 4.1, which15
proven in the Appendix.

Theorem 4.1. Suppose that Assumptions A, B, and C hold, and that K, — ®
Let x be an n-dimensional standard normal random variable. Then the followiné
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limits hold as (K,, T — o0):
(a) TSLS: If T(k — 1)/ Ky — O, then

Bl — B5 o285 (A + 1) p and (4.1)
pPAg + L) 'p
n[l —=2p (A + L) 1p+ p' (Ao + 1,)72p]

(b) BTSLS: If / Ko[T(k — 1)/ K7 — 1] = 0 and mineval (As) > O, then

W(k)/ Ky >

(4.2)

V2B = B) > N(©, 04 Sy A (Aeo +1,
+ pp )AL zv‘/z') and (4.3)

W) 2> X (Aoo + Ln + pp)' 2 AZ (Ao + 1, + o) 'x/n.  (4.4)
(b) LIML, Fuller-k: If T(k — kypmr)/+/ K2 — 0 and mineval(A ) > 0,

then

VKT = 1)/Ks — 115 N(0, 2), 4.5)

VEABK) - B)> N, 0, By A (Ag +1, — pp)
ATy and (4.6)

W) > X (Ao + 1 — pp) PAL Ao + 1, — pp)x/n. (A7)

5. DISCUSSION

To simplify the proofs we have assumed i.i.d. sampling. Gétze (1991) provides
a Berry-Esseen bound for i.n.i.d. sampling. The bound in the i.n.i.d. case is
const x (KZ/T)E| X|I> = O(LK3/T]'/?), so the rate in Assumption C would
be slower, KS/T — 0. With this slower rate, the results in Section 3 would
extend to the case where the errors and instruments are independently but not
necessarily identically distributed.

The many weak instrument representations in Theorem 4.1 for BTSLS,
LIML, and the Fuller-k estimator rule out the partially identified and unidenti-
fied cases, for which mineval(A ) = 0. This suggests that the approximations
in Theorem 4.1, parts (b) and (c), might become inaccurate as Ak, becomes
nearly singular. The behavior of the many weak instrument approximations in
partially identified and unidentified cases remain to be explored.
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APPENDIX

This appendix contains the proofs of Theorems 3.1 and 4.1. The proof of The-
orem 3.1 uses the following lemma.

Lemma A.l. Let Ar =(Z'Z/T)™! — Q}. Under Assumptions A and C,

(a) limsupy, + Pr(IT~'WZArZ'u| > e] =0 Ve > 0,
(b) lim supy, + P{|T~'V'ZArZ'u|| > e] =0V & >0,
(c) lim supg, + Pr[|T™'VZATZ'V| > ] =0V ¢ > 0.

Proof of Lemma A.1. The strategy for proving each part is first to show thatthe
relevant quadratic form (for example, in (a), the quadratic form T 1WZAZ')
has expected mean square that is bounded by const x (K? 5/ T), and then to apply
Chebychev’s inequality and the condition in Assumption C that K3/T - 0.
The details of these calculations are tedious and are omitted; they can be found
in an earlier working paper (Stock and Yogo 2002, Lemma A.2).

Proof of Theorem 3.1. (a) This follows from the weak law of large numbers
because (w'u/T, V'u/T, V'V/T) do not depend on K>. '

(b) Note that E[TU'Z'ZIL/ K, — C'Qz7C/K,] = 0.The (1,1) element of this
matrix is

(II'Z'ZI1 — C’szc)l 1/ K>
2 2
=(TKy)™ ZZZCHC,I(ZUZ,: i)
=1 i=1 j=

where g;; is the (i, j) element of Qzz. Because Z, is i.i.d. (Assumption A(b))
and the elements of C are bounded (Assumption B), the expected value of the
square of this element is

E{[(I'Z'ZII — C'QzzC)y.1/K2)

= [TK; ZZ iCz1C11(Z:ijr qu):l

=1 i=1 j=
K: Ki Ky K,

TK? NCinCnCnEWZuZjr — qii)(Zie Zir — qui)]
2 =l j=1 k=1 I=1

2

K
< const x —2 x ( ZlC,ll) < const X —-7—,2-

By the same argument applied to the (1,1) element, the remaining elements
Of H’Z’ZI'I /K2 — C'QzzC/ K, are also bounded in mean square by const X
K3/T). The matrix IN'Z'ZII/ K, is n x n and so the number of elements does

not depend on K3, and the result (b) follows by Chebychev’s inequality and
noting that, under Assumption C, K2/T — 0.
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(c) Under Assumption B, II'Z'u = T~12C'Z'u = C'(T~'7 ST Zuy).
Let Pr denote the probability measure associated with T-12Z'u and let
P denote the limiting probability measure associated with ¥z,. Define the
convex set A(x) = {y € R¥2: C'y < x}, so that Pr(A(x)) = Frrz.u(x) and
P(A(x)) = F¢y,, (x). By Assumption A, Zu, is an i.i.d., mean zero K-
dimensional random variable with finite third moments, so the Berry-Esseen
bound (3.4) applies and sup, | Frizw(X) — Fow,u(x)| < const x Kg /T.The
result (c) follows from Assumption C. We note that this line of argument is used
in Jensen and Mayer (1975).

(d) The proof is the same as for (c).

(€) Write u'Pzu = (T™'VAWZYT ' ZZNT~*Z'u) = &, +&,, where §; =
(T~2u'Z)Q;, (T~ Y*Z'u) and§, = (T~ V2w ZY)A(T~V?Z'n). As inthe proof
of (c), let Py denote the probability measure associated with T-127'a and let
P denote the limiting probability measure of Wz,. Let B(x) be the convex set,
B(x) = {y e R¥: y'Q71y < x}, so that Pr(B(x)) = Fz (x) and P(B(x)) =
F'V’z“Qii‘VZu (x). It follows from (3.4) that sup,|Fg (x) = Fy; o-ly,, (X)) <

const X v K;/T. By Lemma A.1(a), &, 20 uniformly as (K, T — o0), and
the result (e) follows.

(f) and (g). The dimensions of V'Pzu and V'PzV do not depend on K3, and
the proofs of (f) and (g) are similar to that of (e).

Proof of Theorem 4.1. We first state the fixed-K> weak instrument asymptotic
representations of tlhg k-class estimators. Define the K> x 1and K, % n random
variables z, = Q;:z/ "Wy om!t and zy = Qi%‘/ Z’WZVE;‘I/ 2 (¥z, and Wzy are

defined following (3.8)), so that

Zy ~ 3 S 1 p,
(vec(zv)) N(0, ¥ ®@I,), where & = [p In]' (A1)
Also let
v = (A +zy) (A +zv) and (A.2)
vy =QA+2)%, (A.3)

where A = Q;’g CE;\I/ 2 Then under Assumptions A and B, with fixed K3,

By — B 0125521 — k1) (wy — kp) and (A4)
‘v(k)_ﬁ) (U2 - KP)’(VI - Kln)—-l(VZ - Kp) ’
nll = 2p'(wy — k1)~ (2 — kp) + (V2 — kpY () — kL) 2 (W2 — & p)]

(A.5)

where (A.5) holds under the null hypothesis 3 = 3. The representations (A.4)
and (A.5) follow from Staiger and Stock (1997, Theorem 1) because Assump-

tions A and B imply Staiger and Stock’s Assumptions M and L when Kz is
fixed.
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The following limits hold jointly as K, — oc:

vi1/Ky = Ao + 1, (A6
va/Ks > p, (AT)
( 7,2z, — K, \
VK3 2y
Mz d 20 P
2 — N, B), whereB=1| 0 Ay 0
VK 20 0 Litpp
zyzy — K2p (a9
VK>
W2 — K2p)[vV Ky = N0, Ao + L + pp')- (A9)

The results (A.6)—(A.9) follow by straightforward calculations using the cent.ral
limit theorem, the weak law of large numbers, and the joint normal distribution
of z, and zy in (A.1).

We now turn to the proof of Theorem 4.1. o
(a) From (A.4), the fixed-K, weak instrument z}gproximation to thl%dls_t]l}é
bution of the TSLS estimator is 87518 — B ~ o 4255/ v vy = 0w By
(v1/K2)" 2/ K3). The limit stated in the theorem for the estimator follows
by substituting (A.6) and (A.7) into this expression. The many weak instrument

limit for the TSLS Wald statistic follows by rewriting (A.5) as

WTSLS /K, ~ w2/ K2) (w1 /K2) ™ (V2 /K2)

Al ~ 21/ K2) " (v2/ K2) + (v2/ K2 w1/ Ka) 22/ K2l
and applying (A.6) and (A.7).
(b) The fixed- K, weak instrument approximation to the distribution of ak-class
estimator, given in (A.4), in general can be written as

-1
A A stz [ Kol ] (,’C_:—&)In]
Kz[ﬁ(k) ﬁ] Oy z)VV |: K> v K> \ﬁ{—é

V; — sz K — K2 10)
X —_— p , (A.
VK, v K>
where T(k — 1) 4 « for fixed K. The assumption /K [T(k — 1)/K2 ~ 1]-
0implies that (k — K3)/+/K2 — 0,s0by (A.6) and (A.9) we have, as K2 >

vy — K>l, 1 (K—‘Kz)l 2 A and
KZ VK?_ ‘\/Kz " o

ﬁl’&f—(”"(z) 4 N©, A +1, + pp)
m \/ITz p s Fhoo n T PP)

and the result (4.3) follows. The assumption mineval( A.) > Ois used t0 ensure
the invertibility of A . The distribution of the Wald statistic follows.



1V Statistics with Many Instruments 119

(c) For fixed K7, T(kume — 1) > k*. We show below that, as K — o0,

k* - K, z.z,— K,
= = + 0,(1). (A.11)
VK VK2 d
The result (4.5) follows from (A.11) and (A.8). Moreover, applying (A.6), (A.8),
(A.9), and (A.11) yields

- KzIn 1 K* — Kz) p
- L,— Ay and
K, N ( VK, )T
— Kgp (K‘* - Kz) _ )L’Zu n Z,VZ,, - Ksp
VK> v K> v K> /K>
(ZZ‘Z“ _ Kz) +0,(1)> NO, Ao +1 )
—| —F/——— o ; n- ,

where A is invertible by the assumption mineval(A ) > 0. The result (4.6)
follows, as does the distribution of the Wald statistic.
It remains to show (A.11). From (2.11), «* is the smallest root of

Ozdet[(z“z" ”2)—K*(1 ”)]. (A.12)
| 2] 174} P In

Leto = («* — K2)/ /K2, a = (2,2, — K2)//K2,b = (v2 — K2p)/+/ K2, and
L = (v, — K31,)/K;. Then (A.12) can be rewritten so that ¢ is the smallest

root of
a—a@ (b—op)y
0= dt[b op JEL - ¢I] (A.13)

We first show that K '/4¢ 5o0. Lel¢ K;'*¢. By (A.6), (A.8), and (A.9),
K, Vg Lo, K, 1 4b 5 0,and L5 Ay . By the continuity of the determinant,
it follows that in the limit K» — 00, ¢ is the smallest root of the equation

¢ o0
0= det[(ﬁp ¢I 10 (Kl/4)] (A.14)

from which it follows that ¢ = Kz_'/4¢ 5.
To obtain (A.11), write the determinantal equation (A.13) as
0=[(a—¢)—(b—¢p)(Ky’L — ¢1,)"' (b — pp)] det(K,"’L — ¢1,,)
= K}”{(a — ¢) — [K; (b — pp)I (L — K7 2¢1,)!
x [K; (b — gp)ldet(L — K5 ' ¢l,)
= K3 {[(a — ¢)] det(Ao) + 0,(1)}, (A.15)
where the final equality follows from K;*b 50, L5 Ay, K70 50,

and det(A,) > 0. By the continuity of the solution to (A.13), it follows that
¢ =a + op(1), which, in the original notation, is (A.11).
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