
On System Design

Jim Waldo

On System Design

Jim Waldo

Perspectives 2006-6
In an Essay Series Published by Sun Labs

December 2006

This work first appeared as part of the OOPSLA 2006 Essays track, October 22-26, Portland, Oregon, USA. Copyright © 2006 Sun Microsystems,
Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun Microsystems, Inc. Printed in
U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@sun.com>.All technical
reports are available online on our website, http://research.sun.com/techrep/.

Notes from the Author

What follows is a slightly edited version of an essay I wrote for the 2006 Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA) conference. Richard Gabriel urged me to consider submitting to the essays
track of the conference, and I agreed to write something well before I knew what I would be writing about. What
intrigued me about the task was the thought of using the essay form, which allows the author to insert opinion and
personal observation, as a way of exploring a subject that did not seem to lend itself to the more impersonal form of a
conference paper.

In writing an essay, I am always aware of skating on the thin line between capturing something worth saying and sim-
ply pontificating. I hope that I have stayed to the useful side of that line, and apologize for those places where I have
crossed it. Much in this essay is borrowed or stolen from others, and I try to indicate the heavy influence of people
like Fred Brooks and Ivan Sutherland have had on my thinking in this area.

The subject of the essay, System Design, is one that as a profession we talk about less than I believe we should. It is,
in many ways, the most important and most difficult thing that we engineers attempt to do. I believe that we avoid
talking about it because it is hard, and seems somehow “unscientific.” There are clearly some designs that are good
and others that are not. But the judgment of how good a design is often seems subjective or based on aesthetic princi-
ples rather than on the cold hard facts that we are engineers who pride ourselves on forming the basis for all that we
do. I hope that this essay convinces some readers that the dichotomy between science and art or engineering and aes-
thetics is not clear, required, or even desirable. What we do must be grounded in fact, but it also needs to be grounded
in taste. We should revel in that rather than trying to cover it up. It makes what we do more difficult, but also much
more interesting.

Jim Waldo
Burlington, MA
December 2006

Editor’s Notes

About the series—The Perspectives series is a collection of essays written by individuals from Sun Microsystems
Laboratories. These essays express ideas and opinions held by the authors on subjects of general rather than technical
interest. Sun Microsystems Laboratories publishes these essays as a courtesy to the authors to share their views with
interested friends and colleagues. The opinions and views expressed herein are solely those of the authors, and do not
in any way represent those of Sun Microsystems Laboratories, nor Sun Microsystems, Inc.

~~~~~~~~

Dr. Waldo is presently a Distinguished Engineer with Sun Microsystems, Inc.

—Ed.



 1 

On System Design 
Jim Waldo 

Sun Microsystems, Inc 
1 Network Drive 

Burlington, MA 01803 
1 781 442 0497 

jim.waldo@sun.com 

 
Abstract 
In this essay, I consider some of the factors that are making it 
more and more difficult to expend the effort necessary to do 
system design. Because of changes in the economics of the 
field in both industry and research, we have become less able 
to take the time needed to do real system design, and to train 
the next generation of designers. Because of the intellectual 
property landscape, we are less able to discuss system 
design. The end result is that we do less good system design 
than we used to, at least in those environments where system 
design used to be most common. But there are reasons to be 
optimistic about the future of system design, which appears 
to be happening in non-traditional ways and in non-
traditional venues. In particular, one interpretation of the 
popularity of both agile methods and open source projects is 
that they give the participants places where they can learn the 
craft of system design.  

1. Introduction 
I am beginning to believe that the art and craft of system 
design is in danger of being lost. Carefully designed systems, 
in which the right abstractions are combined in just the right 
way to produce a system that is easy to learn, easy to change, 
and pleasing to use and work with, are unlikely to happen 
using the kind of design techniques that are popular today. It 
isn’t just the techniques that we use that impede our ability to 
design systems. We are unable to train engineers and 
scientists adequately in system design. The economics of the 
industry push us in directions that don’t favor design. The 
realities of funding in research make it unlikely that much 
time will be spent on system design. The end result is that 
less careful design work is being done, and we as an 
industry, a profession, and an intellectual discipline don’t 
seem to care or be able to do much about it. 

In what follows, I will try to describe and explain some of 
these factors, and try to make clear the price that the industry 
and the discipline are likely to pay because of these factors. I 
will begin by trying to characterize what we mean by system 
design. On the characterization I will give, all but the most 
trivial of software artifacts have a design, but only some of 
them were given that design consciously. I will then turn to 
how system design is learned, and given that as a base will 
look at the changes in both industry and academia that have 

made it harder for system design to be taught or even done in 
a reasonable way.  

I am beginning to believe that the art and craft of 
system design is in danger of being lost.  

 

The inability to do or to learn system design in these 
traditional venues has led to the emergence of new areas 
where engineers and scientists can practice and perfect their 
skills in the area. I will end the essay by discussing some of 
those areas, as they provide the hope that good system design 
will continue to be part of what we teach, learn, and practice. 

2. What Is System Design? 
One of the most interesting, and most difficult, of the tasks 
that we may undertake in our careers as engineers or 
computer scientists is the design of an entire system. A 
system is a set of interacting parts, generally too large to be 
built by a single person, created for some particular purpose. 
We work with systems all the time. The operating systems 
that control our machines are systems. The layers of 
hardware and software that allow the programs on these 
machines to interact with each other over a network are 
systems. Even most applications that we use are systems, 
whether we know it or not.  

As engineers, we know that the way to solve a large problem 
is to break it into a set of interacting smaller problems. Each 
of these smaller problems can then be decomposed into even 
smaller problems, until after enough iterations we have a 
problem that can be solved on its own. Each decomposition 
gives us a set of components, and deciding what those 
components are and how they fit together is the activity of 
system design.  

All reasonable1 software is a system that has a design on this 
characterization. The software will be organized around 
methods or procedures or functions or whatever abstraction 
                                                                    
1 We have all seen BASIC programs that have no such 

design. However, after the first week or so of writing 
code, anyone who does not avoid that sort of non-
structure should be quietly, but firmly, convinced to 
spend his or her time doing something, anything, else. 



 2 

for this sort of decomposition the language being used 
supports. Each of these methods will represent a 
decomposition and abstraction of a problem that must be 
solved for the software to run. The larger the piece of 
software, the more layers there are in the design, and the 
more complex the system. 

But to say that all software has a design does not entail that 
all software is designed. Designing a system requires that 
someone think about the right way to decompose the 
functionality, and how to create a small set of abstractions 
that can be re-used and re-combined to provide the needed 
functionality. The notion that anything that shows some kind 
of design is therefore the result of some conscious activity of 
design is a confusion that is based on an ambiguity in the 
term “design.” On one sense of the word, design is a 
property of some object such as a program, a system, or the 
like that merely indicates that there are parts that interact. On 
another sense of the word, design indicates the activity of 
determining what the parts of some larger whole should be, 
and how those parts will fit together. While anything that is 
the result of the activity of design will itself have a design, it 
does not follow that anything that has the property of a 
design is therefore the result of the activity of design.2 

One of the best indications that a program is the result of the 
activity of design is the existence of a document that 
describes that design, especially if the document was written 
before the program. But all too often we must discover the 
design by inspecting the code. Sometimes the design that is 
discovered shows all the hallmarks of a thoughtful design 
activity, but there are other times that the discovered design 
shows a haphazard combination of various abstractions, 
duplication of functionality in slightly different forms, and 
inconsistencies in the way in which abstractions were 
selected, implemented, and used. Such discovered designs 
show either the absence of any design activity prior to the 
construction of the program, or that what design activity did 
occur prior to the writing of the program was, to speak 
plainly, not very good. 

I know of no adequate set of necessary and sufficient 
conditions for determining whether a design is good or not, 
but like so many things having to do with taste and aesthetics 
we generally know good  and bad design when we see it. The 
Unix® operating system has a simplicity and symmetry that 
is indicative of a good design; the companion C 
programming language has a combination of power and 
brevity that both reflects and compliments the PDP-11 
architecture for which it was originally intended.  
                                                                    
2 The assumption that anything that exhibits the property of 

having a design is, therefore, the result of the activity of 
design is the base of arguments that go far beyond 
computer science, engineering, or programming. Space 
limitations and good sense keep me from addressing the 
wider issues of this debate. 

System design can change and evolve over time. The 
original Javatm programming language and associated 
libraries had a simple and consistent design. Some of the 
additions to the libraries associated with the environment 
since it was first introduced reflect the original design, but 
others have introduced other notions of design. The overall 
system has evolved into something that, at a certain scope, 
has a coherent design but which, taken as a whole, is far less 
unified than it once was. A more radical example of design 
change over time is seen in the sets of protocols and 
languages that define the World Wide Web; when first 
introduced these were simple and had a coherent design. But 
the collection of designs that have been proposed or that 
have become accepted standards in the past decade, show no 
such coherence or simplicity. Individual collections of these 
may be said to form a designed system, but the amalgam that 
forms the overall platform does not. 

Some of these examples of good design were thought out in 
fairly complete detail before the systems were produced. 
Others evolved with the implementation of the system itself. 
But in all of the cases of good design, there is a fairly simple 
set of principles that can be seen to underlie the design. In 
the case of Unix, the idea of a file and the ability of any 
program to take an ASCII stream as input and produce such 
a stream as output allowed those learning the system to know 
what to expect as they encountered new parts of the system. 
There are times that the design of a system, even when it is 
an example of good design, will need to be pushed and 
prodded in unnatural ways to gain something that the 
original design did not take into account. It was a great 
simplification in Unix to treat all files as ASCII streams, but 
the introduction of magic numbers, various kinds of headers, 
and conventions having to do with the filename extension 
show the desire for a typed file system being overlaid on 
such a system. 

Given my characterization of system design, I should really 
restate my concern on the subject. Since any system will 
have a design, saying that system design is dying out would 
be the same as saying that software development is dying 
out. That is demonstrably not the case. More and more 
software is being produced, so there are more and more 
system designs. 

What I am worried about is the demise of systems that are 
designed, in the sense that there is some coherent plan for the 
system that is arrived at by the people working on the system 
in a way that is separate from simply observing how the code 
falls out. Maybe a better characterization of my worry is that 
the act of designing a system is happening less and less, and 
as a result the design of the systems that we are producing is 
becoming more and more haphazard and the resulting 
designs are less and less coherent, simple, and aesthetically 
pleasing. We seem to be producing software where the 
overall design can only be determined after the fact, by 
looking at the code that is produced 



 3 

Whether the perceived lack of designing systems is good or 
bad, it is something that we as an industry and as an 
intellectual discipline should understand. The change in the 
design of systems is, I think, being caused by a number of 
factors. Individually, they might not be a problem; taken 
together they are changing the way we build systems. Part of 
it has to do with education; part if it has to do with 
economics; part of it has to do with the current fads or 
fashions in the way we write software. In what follows, I will 
look at each of these factors in turn. 

Let’s start with some thoughts on education. 

3. TRAINING IN SYSTEM DESIGN 
Like most other industrial research laboratories, Sun Labs 
brings in groups of interns over the summer to work on 
various projects. This is about as classic a win-win situation 
as can be found in business. Most of the interns are graduate 
students, with some undergraduates and an occasional high-
school student. The interns find a summer job in their field of 
interest. The lab gets an injection of enthusiasm that is hard 
to replicate. The students think they are being overpaid, 
while we get what we consider cheap labor. The students 
don’t know what things can’t be done, and therefore often do 
the seemingly impossible. Best of all, the interns get to see 
what the “real world” is like.3  
This past summer, while walking back from lunch about a 
week into his tenure, the intern working in my group turned 
to me and asked, “So, how do you go about learning to 
design a system?” Like most great questions, it showed a 
level of naivety that was breathtaking. The only short answer 
I could give was, essentially, that you learned how to design 
a system by designing systems and finding out what works 
and what doesn’t work. I’ve been thinking about the long 
answer ever since; I’m not sure that the long answer differs 
from the short answer in much more than length, but 
nonetheless here is what I’ve come up with.  

3.1 The Origin of Good Design 
Before knowing how to train someone in system design, it is 
useful to have some idea concerning the origin of good 
design. If we can know what leads to good design, we can try 
to teach people to do those sorts of things in the hope that 
good design will result. 
There is no shortage of books, seminars, and other training 
guides that claim to help in this quest. There are techniques 
such as Six Sigma that profess to aid in the development of 
good design. There are languages such as UML that claim to 
help in the development of good design. And there are no 
end to the methodologies and processes that claim to enable 

                                                                    
3 The thought that an industrial research lab could be 

considered part of the real world is in itself something of 
a comment on the connection between academia and 
reality. 

any team to create a good design that will meet the needs of 
the customer by the mere repeated application of the rules 
that make up the methodology. 

“So, how do you go about learning to design a 
system?” Like most great questions, it showed a 
level of naivety that was breathtaking. The only 
short answer I could give was, essentially, that you 
learned how to design a system by designing 
systems and finding out what works and what 
doesn’t work.  

 

I have no doubt that the success stories that each of these 
design approaches and aids cite are true. In some sense, that 
is just the problem; completely incompatible and 
contradictory approaches to the design problem have been 
shown to be wildly successful by their proponents and wildly 
unsuccessful by the proponents of competing approaches. 
Bottom-up or top-down, waterfall or extreme; all seem to 
work for some and not for others.  
The only generally applicable rule that doesn’t have obvious 
counterexamples is one I first heard enunciated by Fred 
Brooks more than a dozen years ago. In a talk given in a 
Sun-internal seminar (an expanded version of which became 
the basis for his Turing Award lecture in 2000[3]), Brooks 
talked of the work he had been doing to try to find the 
underlying common feature of good design, not just in 
computer hardware and software but also in such endeavors 
as architecture, graphics, and the fine arts. The only thing 
that he could find that good designs had in common was that 
they were produced by good designers.4 
There is one reading of this insight on which it is true but 
uninteresting, a mere tautological statement that reflects 
giving in to the unpredictable and inscrutable mystery of 
design. On this reading, the only way to determine what 
produces a good design is to wait until you have one, and 
then attribute it to the designer. Good design, on this view, 
happens by chance. You can hope for it, but you can’t do 
anything to improve your chances of getting a good design. 
This is not the reading that I believe Brooks intended, nor the 
one that I found persuasive when I first heard the talk. My 
reading of this principal is that those who have been able to 
produce a good design in the past are far more likely to be 
able to produce a good design in the future. There is no 
guarantee that the future designs will be good, but your 
chances are much better. There is no magic process by which 

                                                                    
4 As a somewhat depressing side-note, the first question 

asked at the end of the talk was what process those good 
designers used to produce the good designs. The question 
was asked by a senior engineer, who should have known 
better. Sometimes hearing is not the same as 
understanding. 



 4 

such designers produce their designs; each may go about the 
design problem in a different way, and a designer may 
approach one problem in a particular way and another in a 
completely different fashion.  
The point, I believe, is that good design is a capability that 
some people have, and others simply do not. Whether this is 
an innate skill that people are born with, or one that is 
cultivated over time in ways that we don’t understand, is a 
question far too deep for me to address here. I neither know 
nor care. But by the time someone is designing a computer 
system, whatever it takes to be a good designer is either there 
or it is not. When it is there, it can be developed and honed. 
It can also be degraded or warped. But when it is not there, 
there is no technique or process that can make up the deficit.  
Some people are uncomfortable with this idea. Many of them 
are managers; I will discuss their discomfort later. Others are 
uncomfortable for more philosophical reasons; they feel that 
saying that there are those who can produce good designs 
and those who cannot is contrary to some egalitarian notion 
(which it is) and somehow elitist or undemocratic (which I 
think it is not). 
Why should we be surprised to find that there are some 
people who are just not capable of doing first-rate system 
design? Such designs are difficult, complex, and require a 
great deal of taste to get right. Further, they require the 
ability to deal with a great deal of ambiguity while forming 
the design, an ability to deal with whole sets of questions that 
the designer can’t solve but which he or she knows or has the 
faith to believe will be solved at the appropriate time. Given 
the difficulty of all of these tasks, it is no more surprising 
that not everyone can be a great designer than it is that not 
everyone can be a great composer, or a great artist, or a great 
architect, which not coincidentally are all fields that are a 
kind of design. This is not to say that designers are better 
people than those who are not great designers; indeed, 
designers are good or bad people in roughly the same 
proportion as any other group. But it is to say that some 
people are better designers than others, and ignoring that is 
one of the many things that leads to bad system design. 

3.2 Teaching by Doing 
Having said all that, the question of how to teach system 
design is still open. The fact that good designs come from 
good designers does not tell us where the good designers 
come from. While it may be true that not everyone can be a 
good designer, it is also true that there is some learning that 
goes on. I am reminded of posters I saw years ago at the 
Rhode Island School of Design, posters with the headline 
“Talent without technique is a waste.” The school does not 
claim to be able to make anyone an artist. But they do claim 
to be able to take someone with the talent to be an artist and 
give them the technique that will let them exploit and 
channel that talent. The same is true in system design; it may 
be that you must have some talent to do the design task well, 

but it is also true that you need to learn the technique that 
allows you to channel and amplify that talent. 
In my own case, the instruction that I received in system 
design came in the form of an apprenticeship with a master 
designer. This was not a formal arrangement, and it could 
well be that the person I considered myself apprenticed to 
did not see our relationship in anything like those terms. But 
looking back on it, I clearly see it that way.  
The more structured and corporate relationship was that of 
an overall software architect for a major component of a 
system and an individual contributor for that system. The 
group I was in was responsible for the windowing system 
and all user-visible tools for Apollo Computer, an early 
workstation company. The architect of the group had 
implemented the first version of these components on his 
own, but as is often the case grander plans had been hatched 
for the second system and a small group had been assembled 
to do the design and implementation. I had been hired to 
design and implement the component library that would deal 
with text; there were others who were dealing with the 
windowing system, input mechanisms, the shell interpreter, 
and even a scripting language. 
The overall design process for the group required the owner 
of each component to write a series of specifications for his 
or her component. The first of these was a straw man, meant 
to be a quick sketch of the various pieces and the overall 
component model. The last was an iron man, a detailed 
specification of all of the entry points and their functionality. 
Once a month, the entire group would go off site, usually to 
the apartment of the manager of the group, for a morning to 
review one of the specifications for some component.  

The fact that good designs come from good 
designers does not tell us where the good designers 
come from.  

 

The overall architect of the group was not one of the more 
active participants in these discussions. But when he talked, 
everyone else listened. His most damning criticism was a 
simple “That’s too hard.” When said of a specification, it 
indicated that you had not done the work to sufficiently 
understand the problem and boil it down to some simple 
core. The assumption was that there was always some simple 
core, and by making the assumption such a core was 
generally found. 
Those design reviews, and the constant interaction with both 
the architect and the other members of the group over a 
multi-year period of time, were the places where my system 
design skills were honed. It was here I learned about 
simplicity and symmetry, about interfaces and designing for 
change, and a host of other rules and techniques that I still 
use. More important, I learned what worked for me and what 
did not, and that what worked for me might not work for 



 5 

others. Rather than learning a process of design, I learned 
how I could best design. 
I originally thought that this way of learning design was 
unusual, and a result of my academic background being in a 
field unrelated to computer science. But as I learned more 
and began talking to others who I considered to be good at 
system design, I found that this experience was more than 
just common; it was nearly universal. Everyone I talked to 
had a similar story of the master designer who had, either 
consciously or by example and correction taught him or her 
what they considered to be the important lessons in design. 
There was a period when I would ask, “who did you do your 
design apprenticeship with?” without supplying any other 
context. I expected some to be confused by the question, but 
I found that everyone to whom I asked the question not only 
understood it, but was able to answer without thinking. Even 
more interesting, the names that were given were often the 
same. Whether they knew it or not, a relatively small number 
of master craftsmen were credited with training a much 
larger number of system designers. 

Design, if my experience is any indication, is best 
learned by a long and varied process of trying, 
failing, and trying again under the guidance of 
someone who is an expert at the task.  

 

This was hardly a scientific survey, and as scientists we 
should take care in drawing strong conclusions from 
anecdotal data. But I think it is indicative of something that 
no one that I have talked to about how they design and how 
they learned to design has pointed to a class that they took 
which trained them in any important ways. Design, if my 
experience is any indication, is best learned by a long and 
varied process of trying, failing, and trying again under the 
guidance of someone who is an expert at the task.  

3.3 Design and Curriculum 
That no one seems to learn system design from some course 
can be troubling. If designing of systems is really the hard 
part of what we as engineers and computer scientists do, 
aren’t we in need of some systematized way of teaching 
what is needed to do that kind of design?  
Looking around the web, there are some courses in system 
design that are taught at various universities, and lots of 
courses offered by consulting companies. I have more than 
just a passing interest in a course in system design for a 
variety of reasons, not the least of which is that I have been 
contemplating teaching such a course. It is the sort of course 
students ask for; it would be valuable if students coming into 
industry actually had some skill in system design; and it 
would be interesting to design the curriculum and readings 
for such a course. 
I had great difficulty in getting anything like a set of readings 
or a coherent plan for such a class. There are some obvious 

readings:  Lampson[6], and Brooks[2], and lots of things by 
Parnas[4]. But I’ve never been able to pin down the concepts 
that needed to be taught and the sequence in which those 
concepts are to be presented.  After considerable time of 
trying and failing to come to some plan, I realized that I was 
thinking about this problem in the wrong way.  
More than half a century ago, the philosopher Gilbert Ryle 
made a distinction between knowing how and knowing 
that[8]. Knowing that is a relation between a person and a 
proposition; it is a piece of factual knowledge that can be 
discovered, can be justified, and can be taught by the usual 
mechanisms of pedagogy. Knowing how is a different kind 
of thing; it is the kind of knowledge we have when we know 
how to walk, or run, or sing. It is not a factual sort of 
knowledge, but an ability that we exhibit in our actions. We 
can know how to do something reasonably well or expertly. 
We can’t know that the world is round reasonably well or 
expertly. Most important, while we can be taught to know 
how to do something, the kind of teaching that takes place is 
very different from the kind of teaching required to know 
that. 
Academic disciplines require a combination of knowing how 
and knowing that. To be fully educated in any of these 
disciplines, one certainly needs to understand the factual 
backgrounds of that discipline. But to be truly educated in 
the field also requires that one learn how to think in a 
particular way. Each field has its own technique or set of 
techniques that must be learned just as well as the subject 
matter of the field if you really want to be an expert in that 
field. 

Academic disciplines require a combination of 
knowing how and knowing that.  

 

Different fields have different combinations of subject 
matter, that requires knowing that, and technique, that 
requires knowing how. The vast majority of my formal 
training was in the field of philosophy. As practiced in the 
United States and England, what is sometimes called 
“Anglo-American” or analytic approach to philosophy, the 
field is almost entirely technique. Certainly there is plenty of 
content having to do with the history of philosophy and the 
great philosophical questions. But what really matters is the 
way in which one thinks, having to do with conceptual 
analysis, the building of logical models, and approaches to 
argumentation. While very little of the subject matter of 
philosophy was useful to me when I became a software 
engineer, I found that the techniques I learned were just as 
relevant in computer science as they were in the field in 
which I learned them. 
I’m told by those who have attended that law school is very 
much the same, in that gaining a technique, or learning to 
think like a lawyer, is far more important than the actual 
subject matter of the law After one has learned the technique, 



 6 

one can take the bar exam for a particular state, testing 
knowledge of the subject matter of the law for that state, 
before one can practice law. But knowing the law without 
knowing the technique does not make one a lawyer. 
There are other subjects where there is far more subject 
matter to master along with the technique. When studying 
geology you still need to learn to think like a geologist, but 
there is also a lot of subject matter that must be mastered. In 
these subjects, learning the technique is often a byproduct of 
learning the subject matter, or at least a byproduct of the 
pedagogy used in teaching the subject.  
Courses are organized around chunks of the subject matter 
rather than around technique. A well-designed program will 
use the technique of the field in all of the courses for that 
field, and will use the learning of the subject matter as an 
excuse to train students in the technique. Courses that try to 
teach only technique tend to be somewhat unsuccessful; at 
best they can provide a forum for students to demonstrate the 
technique they have already acquired. 
The academic discipline of computer science has not, I 
believe, done a particularly good job of recognizing the 
distinction between technique and subject matter. While 
there are some examples in which the technique is 
reasonably well described (a recent piece by Jeannette 
Wing[10] does a great job of describing what it is to think 
like a computer scientist), the seemingly non-terminating 
discussion of what the curriculum of a computer science 
major (see, for example, [1]) appears to confuse the 
techniques that we need to instill with the subject matter that 
we need to teach.  
My own conclusion is that system design is really a matter of 
technique, a way of thinking rather than a subject that can be 
taught in a particular course. It might be possible to build a 
program that teaches system design by putting students 
through a series of courses that hone their system design 
skills as they move through the subject matter of the courses. 
Such a series of courses would, in effect, be a formalized 
version of the apprenticeship that is now the way people 
acquire their system design technique.  
There may even be departments of computer science that 
have just such a series of courses. If so, I am not aware of 
them. They would certainly not be found by looking for 
schools that teach a course in system design; all of their 
courses would have as a subtext system design. I think it far 
more likely that computer science departments teach system 
design in much the same way that I learned system design—
that there are some professors who act as master craftsmen in 
the field for a group of students, who apprentice with those 
professors. These students will take any course taught by the 
professor, no matter what the subject matter, and learning by 
doing. But such training is accidental at best; often students 
are advised against taking too many courses from a single 
faculty member, which decreases the probability of such 
technique training occurring.  

What would be best is a situation where an entire department 
was cognizant of the need to teach design technique, and all 
of the courses from any of the instructors had as an admitted 
goal the training in such technique. Such curricula are 
possible in other design fields, but they are difficult to design 
and even more difficult to evaluate. Until we as a discipline 
find a way to do this kind of curricula design and evaluation, 
system design will continue to be learned as a craft, through 
an apprenticeship, and outside of the normal academic 
channels. Perhaps this is all that we can expect, but in times 
of optimism I think that we as a field could do better. 
It might be that we should look not at engineering but at the 
studio arts for direction on such a curriculum. The approach 
taken there is that the students do lots of design projects, of 
varying levels of complexity and size, and are constantly 
undergoing criticism of their work, both from their peers and 
their instructors. These students also see the work of their 
peers being criticized, which is another way in which design 
can be learned. This is a lot more work, both for the students 
and the teachers, but seems to have some positive impact on 
the development of technique in an area where elegance and 
taste are being taught. I doubt that we could do worse than we 
do currently if we as a discipline were to try such an approach. 

3.4 The Intellectual Gene Pool 
Before moving on to other topics, there is one side trip that I 
feel must be taken while on the subject of learning system 
design. It has to do with what I think is an unfortunate 
narrowing of the intellectual gene pool in our field. 

Until we as a discipline find a way to do this kind of 
curricula design and evaluation, system design will 
continue to be learned as a craft, through an 
apprenticeship, and outside of the normal academic 
channels.  

 

When I first started writing software, the industry was 
expanding so rapidly and the academic field was so new that 
there were far more jobs for software engineers than there 
were candidates with degrees in the field. As a result, lots of 
different backgrounds were represented in nearly every 
software engineering group.  
For example, in the group in which I served my 
apprenticeship, the academic backgrounds included a Ph.D. in 
physics, a Ph.D. in philosophy (me), an engineer who had 
done graduate work in psychology, another whose background 
was in anthropology, and two musicians, along with two 
engineers who had degrees in computer science and one who 
had no degree at all. As a result of all of this diversity of 
background, there were lots of different viewpoints on any 
given problem, and lots of ways of looking at any task. The 
end result was one of the most interesting and innovative 
groups that I’ve ever been a part of.  



 7 

What I find distressing is that I doubt very much if any of the 
members of that group who had studied something other than 
computer science could have gotten their first job as a software 
engineer today. Academia has always insisted on the proper 
credentials in the proper field. This is not surprising, given that 
they exist to issue such credentials. But industry now requires 
that those who fill the job of software engineer be trained in 
that field. The result is that the candidates entering the 
profession are far more homogeneous in the way they think 
and the way that they approach problems. Many times they 
have been told what the proper way to solve a problem is, and 
so they simply solve it that way. 

System design is not something that can be covered 
in a class, but is learned through a much longer 
process that is more like an apprenticeship than 
anything else. Such apprenticeships are not the sort 
of thing that our educational system is set up to 
provide (at least at the undergraduate level), and is 
not going to be provided by some change in the set 
of courses that make up the curriculum.  

 

If we actually knew what it is to think like a computer scientist 
or software engineer, and knew how to teach people to think 
that way, this might not be a problem. If we actually knew the 
answers to most of the questions that come up when producing 
software, getting people who already know those answers 
would be a way of making the industry more efficient. But, as 
I argued in the previous section, I don’t think that we are very 
good at teaching how to think like a computer scientist, or at 
least like a system designer. Nor do I think that we have 
adequate solutions to many of the problems that have to do 
with system design in particular and software engineering in 
general. We can certainly get more immediate returns on our 
investments by hiring only those students who have a degree 
in computer science or a related field. But I fear that we are 
limiting our genetic stock of ideas prematurely, and as a result 
the discipline is the poorer for it. 

3.5 Education and System Design 
If the above observations are correct, then it is not all that 
surprising that system design is uncommon, and good system 
design even more so. Good system design requires not only 
talent but the training that supplies the needed technique to 
go along with that talent. System design is not something 
that can be covered in a class, but is learned through a much 
longer process that is more like an apprenticeship than 
anything else. Such apprenticeships are not the sort of thing 
that our educational system is set up to provide, at least at the 
undergraduate level, and is not going to be provided by some 
change in the set of courses that make up the curriculum.  
In fact, most who do system design learned their craft after 
they completed their formal classroom education, either on 
the job or while doing thesis research. But changes in the 
economics of both research funding and the software 

industry have conspired against the kinds of training that lead 
to good system design.  

4. WHERE SYSTEM DESIGN HAPPENS 
If system design is in fact learned as part of an 
apprenticeship, there are two places that we should expect 
such learning to take place. The first is in graduate school, 
where a student can work with a single faculty member, his 
or her advisor, who acts as a master. The other is on-the-job, 
learning the arts of system design by doing such design.  
But various forms of pressure have made this kind of training 
harder and harder to obtain, because less and less real design 
goes on either in academic research or in industry. Instead, 
academic research has become much more of an 
evolutionary task, a change that has been an unintended 
consequence of decisions by funding agencies designed to 
reduce risk. At the same time, industrial system design has 
become more constrained, more expensive, and less 
adventurous. The result of both has been not just a reduction 
in the ability to teach system design, but an environment in 
which many of the wrong things are being taught about how 
to accomplish that task. 

4.1 Industrial System Design 
Perhaps we should not be surprised that there is less 
opportunity to learn system design in industry, if for no other 
reason than that there are fewer systems that need to be 
designed than there were ten or twenty years ago. Industry 
consolidation and maturity have changed the need for system 
design, and therefore the opportunity for learning such design. 
Twenty years ago there were far more companies creating 
computer systems than there are today. Further, these 
companies competed not merely on price but on the 
functionality, stability, and sophistication of the overall 
system, which was proprietary to the company. Every 
computer company had their own chips, their own hardware, 
their own operating system and their own programming 
language. Indeed, IBM had three or four of each. In addition, 
customers buying these systems would then need custom 
software that went beyond the basic computer system, so 
there was a thriving industry in building that custom 
software. All of these projects required system design, so 
there were lots of chances to try designing a system, and lots 
of chances to learn either by getting it right or getting it 
wrong. There was also a thriving interchange of design ideas 
in conferences like USENIX, OOPSLA, HotOS and the like.  
Current industry trends are very different. Where there used 
to be many computer companies, there are now far fewer. 
The number of operating systems has been reduced to two, 
with the choices being Windows or one of the Unix variants. 
Customers almost never purchase custom software systems, 
built from the ground up from specifications hammered out 
in discussions between the software engineers and the 
customers themselves. Instead, most custom software is 
written to allow the connection of existing systems, or the 



 8 

continuation of those systems on new hardware or in new 
environments. The production of this kind of software  
comes not from small companies that specialize in doing 
system design but rather from either the consulting services 
of existing companies or specialized consultancies, and is 
generally constrained to the existing environments in such a 
way that the design freedom of the creator of the software is 
tightly constrained.  
A lot of effort has been put into finding ways of building 
these custom systems in ways that are more efficient and 
responsive to the customer. Techniques such as extreme 
programming, in which small changes are made to a system 
with constant feedback from the customer have been 
developed and are widely used. These techniques emphasize 
doing quick prototypes and then enhancing those step-by-
step until what the customer wants is produced. 
Such techniques are excellent ways of making sure that the 
system produced is the one that the customer actually wants. 
But they are not good techniques if one wants to insure some 
form of up-front system design. Rather than trying to think 
out the system ahead of time by decomposing it into its 
constituent parts, these sorts of iterative techniques 
emphasize adding features by aggregation on to a first-
approximation core. System design may be enhanced by 
refactoring as the project progresses, and there may be times 
when it is possible to review the entire system and change 
the design. But neither of these activities helps to get the 
project done, and often the result of such work is not visible 
to the customer. It is far more usual that problems in the 
design are coded around rather than fixed. The end result is a 
system in which the design emerges rather than one in which 
the design is thought out.  
Even worse than not being visible to the customer, work 
done on designing the system is not visible to the 
management of the company that is developing the system. 
Even though managers will pay lip service to the teaching of 
The Mythical Man Month[2], there is still the worry that 
engineers who aren’t producing code are not doing anything 
useful. While there are few companies that explicitly 
measure productivity in lines-of-code per week, there is still 
pressure to produce something that can be seen. The notion 
that design can take weeks or months and that during that 
time little or no code will be written is hard to sell to 
managers.  Harder still is selling the notion that any code that 
does get written will be thrown away, which often appears to 
be regression rather than progress. 

Grady Booch once told me that he believed that the 
greatest contribution the tools he and others had 
produced to support the design process was that 
they made it appear to managers that the designer 
was doing something.  

 

The fact is that good system design takes time; it is the sort 
of thing that requires hard solo thinking along with long 
discussions with other engineers. There are days when no 
real progress seems to be made, and other days when the 
only progress is to realize that what you thought was 
progress over the previous few days or weeks was in fact a 
wrong turn that won’t really work. Such a realization is 
progress. In fact, such a realization may be the most 
important kind of progress, as it can save huge problems 
later in the project. But to a manager it may not seem to be 
moving forward. 
Grady Booch once told me that he believed that the greatest 
contribution the tools he and others had produced to 
support the design process was that they made it appear to 
managers that the designer was doing something. He may 
have been exaggerating, but not by much. Anything that 
gives the designer time to think about the system before 
committing those thoughts to code helps the goal of well-
designed systems. 
What is really needed is an act of faith by management. 
The difference between someone who is making progress 
in coming to grips with a system and someone who is 
taking an in-office vacation may not be visible from the 
outside. Most managers are not able to do the design task 
themselves (those that can are rarer than those who can 
make the needed leap of faith), and so have to trust the 
system designer. Having an engineer as the designer who 
has been successful in the past may help a manager to be 
patient. But if you find a manager who is actually willing to 
give you time to do the design task, stick with him or her. 
He or she is a treasure much rarer than gold. 

4.2 Design and Intellectual Property 
A subtler change that has had an impact on system design is 
the change in the way corporations and, to some extent, 
universities, view intellectual property. One of the reasons that 
there were conferences and mailing lists that documented and 
discussed system design was that the companies in which 
those systems were developed did not want the ideas 
underlying the systems to be kept secret. Indeed, the 
developers of the system were generally encouraged to publish 
their designs. Such publications were seen as ways to market 
the products shipped by the company, and were seen by the 
designers as ways of getting feedback and new ideas about the 
design. It also meant that there were forums where system 
designers could look at the work of other designers, discuss 
that work with them, and find solutions that could be 
incorporated into their own designs. 
But over the past decade, the companies that funded the design 
work decided that they wanted to be paid when others used the 
results of the design. On the face of it, this is not a bad thing. If 
companies invested and obtained a result, it is reasonable that 
they be rewarded for the investment. If these companies can 
see that there is a reward, they are more likely to continue the 
investment. This is the premise behind the patent system in 



 9 

particular and intellectual property rights in general, so 
perhaps we should be surprised that there was a period when 
this kind of thinking was not applied to system design. 
There has been much debate about whether or not software 
in general and system designs in particular are proper 
artifacts for the patent process. I’m not sure where I stand on 
such issues; discussions on the reification of ideas in 
software and the comparison of that to the reification of other 
inventions in a form that can be touched and manipulated, 
and discussions of whether software system designs are more 
properly covered by patent laws or copyright, are interesting 
as ways to fuel conversations over drinks. But like many 
discussions that are essentially philosophical, I’m not at all 
sure that they will terminate with a real conclusion. 
Less debatable is the fact that the current system is not serving 
either the companies that fund design or the field in which the 
design takes place. Whether this is an inherent aspect of the 
system or an accident of the way in which the system has 
evolved is an issue that is beyond my skills to decide. But the 
effects are harmful in ways that I see every day. 
The first problem has to do with the way that the negotiation 
over the value of patents occurs between the companies that 
hold those patents. Such negotiations, I am told by those who 
have been party to them, are generally done by count rather 
than by value. That is, company A will count up the number of 
patents it holds in some broad area such as computer hardware 
and software. Company B will do the same. Whichever 
company holds the larger number of patents is the one that will 
be paid by the other, and the size of the payment is determined 
by the size of the difference. The end result is that each 
company cross-licenses all of their relevant patents to the 
other, and some amount of money changes hands. 
The problem with such a scheme is that it does not take into 
account the quality of the ideas that have been patented. A 
fundamental patent in a major part of the field is no more 
valuable in such a negotiation than some minor tweak that is 
no longer relevant because the industry has passed it by. The 
assumption is that, on average, any patented idea is just as 
valuable as any other. This is an assumption that makes such 
negotiations possible, since any negotiation based on the 
value of an idea would take forever. But it also encourages 
the companies involved to attempt to patent any idea, no 
matter how large or small, since the value of any patent is 
considered equal to the value of any other.  
This in itself would not be a problem if the quality of patents 
were itself more uniform. However, the software world is 
still somewhat mysterious to the patent office, and was even 
more so when software patents first started to be issued. We 
can all think of patents that have been obtained for 
techniques that have been in common use for years, or 
patents for techniques that appear to most members of the 
profession as obvious extensions to known techniques.  
I have toured the patent office, and know a number of the 
people who work there. They are trying hard to do the best 

they can, but are working with a number of handicaps. While 
the fees that are charged for patents are supposed to be 
returned to the office to fund the work that they do, in fact a 
considerable portion is taken and used elsewhere; the patent 
office is one of the few places in the U.S. government that 
could be considered a revenue generator. The pay that can be 
offered to examiners is far less than what they can make in 
the private law firms that deal with intellectual property law. 
One director in the patent office admitted to me that when 
examiners could only make 50% more in private industry it 
was still possible, because of government pensions and 
benefits, to attract good people, but when the differential 
became 100% or more it got much harder. The number of 
patents that are being filed has grown far faster than the 
number of examiners; I was told that the current wait 
between a filing and the time that an examiner is even 
assigned to a case is close to three years. Until then, 
applications are stored in a room filled with shelves that 
looks like something out of the last scene of Raiders of the 
Lost Ark.  
The end result is that patents are examined in a somewhat 
cursory fashion by examiners whose expertise varies widely. 
The patent office, to its credit, has taken steps to try to make 
things better, but there is a 10-year history of software 
patents of questionable quality. Once again, this would not 
be a problem in itself, for the issuing of a patent does not 
mean that the patent is good. That, as any patent attorney will 
tell you, can only be decided in court when the patent is 
contested. But here we get to the third problem with the 
patent system. 
Patent litigation, for those who have been through it, is the 
closest thing I’ve found to living in the world envisioned by 
Kafka. The theory is that a jury of ones peers can be presented 
with the facts of the case, and can decide if the patent in 
question is an embodiment of a true innovation and if the 
technology in question in fact infringes on the patented 
invention. But a jury of one’s peers does not mean a jury of 
one’s technical peers. Instead, it means a jury made up of 
people registered to vote in the district in which the trial is 
held. Indeed, having a technical background may well 
disqualify a person from serving on the jury in a patent case, 
since such a juror may be coming into the trial with a pre-
conceived notion of what is novel and what is not in the field.  
The result is that twelve non-technical citizens are asked to 
decide if something really is a novel invention, and if some 
other piece of technology infringes on that invention. To 
make this decision, the holder of the patent will introduce an 
expert witness, who will present his or her credentials and 
then testify that the invention is both novel and infringed. 
The defending lawyers will present their own expert witness, 
who will present his or her credentials and then point out 
how the invention in question was well known prior to the 
filing of the patent, embodied in a number of pre-existing 
technologies, and not part of the technology that is claimed 
to be infringed. The jury then has to decide which witness to 



 10 

believe. The presumption is that the patent is indeed valid; 
otherwise, why would the patent examiners have awarded a 
patent? The end result is probably not as random as flipping 
a coin, but if you have gone through the proceedings it is 
hard to convince yourself that the results of the process 
actually turn on the originality of the patent and the similarity 
of the technology claimed to infringe on that patent. 
Worse still for the subject of this work, if you have been 
found to infringe, there is then the question of whether or not 
you have infringed knowingly. If it is found that you have, 
rather than just infringing by accident by re-inventing the 
technology contained in the patent, the damages awarded to 
the holder of the patent are tripled. 

Patent litigation, for those who have been through 
it, is the closest thing I’ve found to living in the 
world envisioned by Kafka. The theory is that a jury 
of ones peers can be presented with the facts of the 
case, and can decide if the patent in question is an 
embodiment of a true innovation and if the 
technology in question in fact infringes on the 
patented invention.  

 

The impact on all of this on the discipline of system design is 
that companies now encourage their designers to patent any 
part of their design that seems novel, rather than publishing 
that design in a journal or talking about it at a conference. The 
more of this work that can be patented, the larger the patent 
portfolio for the company, and the less likely it is that there 
will be a need to pay large amounts of money to other firms 
when cross-licensing agreements are made. Part of patenting is 
that you can’t talk about the item being patented until the 
patent is filed5, which can be a long and involved process.  
At the same time, companies are actively discouraging 
designers from looking at the work of their colleagues in 
other companies. Looking at such work can lead to future 
claims of knowingly infringing on a patent, which triples any 
damages that might be awarded. This combination of the 
desire to patent and the fear of knowing infringement can 
lead to situations that verge on the absurd. I have been asked, 
as part of patent filings for work that I have done, to provide 
exhaustive lists of any pre-existing work that might have 
influenced the design, while at the same time being warned 
not to actually search the literature for anything that I might 
not have known about previously.  

                                                                    
5 More precisely, you can’t talk about the invention before 

it is filed if you want to get a European patent. In the 
U.S., the patent must be filed within a year of the 
invention first being disclosed. In practice, it is hard to 
get approval from the legal department of a company to 
talk about anything patentable prior to the filing, and even 
after it might be difficult. 

While the general situation around software and systems 
patents is troubling, the impact that situation has had on the 
discipline of system design is not often acknowledged but is 
nonetheless large. The co-demands of keeping our own 
innovations secret, at least until the patent is filed, and not 
studying the work of others, to keep from being charged with 
knowing infringement, is responsible, at least in part, for 
stifling the discussion about systems design in the 
communities of software engineering and computer science. 
We now talk about the process of system design, or the tools 
that we can use to support system design, but we rarely talk 
about actual system designs. It is as though artists were told 
they could no longer talk about art, but could only talk about 
brushes, pigments, and the way in which they prepare a 
canvas. It is very hard to learn about good system design 
unless you can see and study other system designs, both 
good and bad. The intellectual property atmosphere in 
industry has limited the number of designs that are actually 
talked about, and has convinced many system designers that 
they should not even look at the designs that are available. 
Whatever you think of the patent system, this effect has been 
bad for the overall quality of systems. 
Before moving on to other topics, it should be noted that 
open source is often touted as one answer to the problems of 
the intellectual property system. Open source, it is argued, 
has as a major advantage that anyone can look at and study 
the code for a system, and hence can learn the design of that 
system. Good designs can be seen, as well as bad designs, 
and the discussion, generally carried out on mailing lists, can 
take the place of the conferences that we used to have on 
system design. 
There is a sense in which this is true, and for that I am a great 
proponent of open source. However, open source generally 
requires the discovery of system design from the artifact of 
the code, rather than supplying some kind of documentation 
that explains why the system is the way it is. Further, many 
of the well-known open source projects, such as Linux and 
the Apache Web Server, are implementations of existing 
designs. Reading the code can teach one a lot about such 
implementations. But reading the code is less useful as a way 
of learning about the system design itself. 

4.3 Systems and Standards 
The one circumstance in which most managers will allocate 
time for the design of a system is when that design takes 
place in the context of a standards body. This is also the one 
time that most companies will allow the designers to talk 
with other designers about that design. So it would seem that 
standards bodies would be the best place for the activity of 
system design. Unfortunately, for a number of reasons, 
standards bodies are among the worst places to do real 
system design. 
The interaction between system design and standards bodies 
is complex and takes a number of different forms. At its best, 
standards bodies simply codify an existing technology that is 



 11 

so widely used that it is already a de facto standard. The 
intention is not to solve a technical problem with the 
standard, but to clarify and specify existing practice. This is 
the sort of role that the groups that standardized the C 
programming language or the IP protocol had. There were 
some technical contributions made by each of these 
standardization efforts, but those contributions were to 
clarify edge cases where the existing implementations of the 
de facto standard differed. 

The recent history of attempts to standardize 
various parts of the Extensible Markup Language 
(XML) takes this trend to something close to 
absurdity. In the early years of this decade, it 
seemed that a new standards body was being 
formed every month to promulgate an as-yet-
undesigned XML standard.  

 

This is a very different role than that taken on by standards 
bodies that attempt to create a standard technology out of 
whole cloth or from an as yet unproven idea. Classic 
examples of such attempts are the groups that defined the 
Ada programming language or the OSI networking standard. 
The OSI networking standard gave us the seven layer model 
that we all know and love, but also attempted to define a 
standard for interconnect based on that model. Only the 
seven-layer model remains today. The Ada language 
specification defined a language that is still in use, but most 
of the users are required to use the language contractually, 
not out of free choice. In both cases, the standard was an 
attempt to invent and guide technology rather than codify 
existing technology, and in both cases the results were 
somewhere between partial and total failure. 
One of the differentiators of standards that succeed and those 
that fail is where the system design takes place. If the system 
is designed outside of the standards process, generally by a 
small group or an individual, and has been implemented and 
used, the chances of the standard being widely accepted and 
useful are high. Examples of this include the C language and 
the TCP/IP standards. If the standards group undertakes the 
system design itself, the chance of producing a coherent and 
useful design is much lower. 
This should be no surprise. Good system design requires at 
least a unified vision of the overall system, and the ability to 
push that vision to all parts of the system. This can best be 
accomplished when the design is the responsibility of a 
single person, and can sometimes be maintained when a 
small group undertakes the design. However, a standards 
group is rarely small and unified in its vision. Indeed, the 
standards process is an inherently political one, where the 
addition of one feature is often bargained for by accepting 
the addition of a different feature.  
This political aspect of standards groups is exaggerated by 
the commercial importance of standards. There was a time 

when technology companies differentiated themselves by the 
features that they were able to design and build into their 
systems. However, over the last decade adherence to 
standards has become more and more important. This is not 
surprising, as it allows customers of these technologies to 
simplify their acquisition of products. They begin with a 
checklist of standards, and find the vendor who can supply 
all of those standards at the best price. More important, by 
adhering to standards, a customer is not tied to a particular 
vendor, since essentially the same system can be bought 
from the competitors of that vendor. 
Because of this change in the buying strategies of their 
customers, influence over standards groups has become very 
important for technology vendors. If a standard can be 
written in such a way as to advantage a particular vendor, the 
competitors of that vendor will be forced into playing catch-
up for some period of time. Thus participation in and control 
over standards groups has become a way for technology 
vendors to differentiate their offerings.  
The recent history of attempts to standardize various parts of 
the Extensible Markup Language (XML) takes this trend to 
something close to absurdity. In the early years of this 
decade, it seemed that a new standards body was being 
formed every month to promulgate an as-yet-undesigned 
XML standard. Each of these standards bodies was made up 
of some subset of the overall set of computer vendors, and 
determining which company was controlling the standards 
group and which was being frozen out took skills that used to 
be reserved for determining the meaning of which 
commissar was standing by which politburo member during 
the May Day parade.  
All of this may make for good business. It may give 
customers more choice and more control. My only point is 
that it does not produce good system design. It is hard 
enough to do good system design when it is done by a single 
person, or a small group, whose only design considerations 
are technical. When that same task is attempted by large 
groups of people each of whom has a different agenda and 
whose technical judgment is at least influenced by, if not 
subordinate to, commercial or political considerations, we 
should not be surprised if the resulting designs are not those 
that we hope others will learn to produce. 

4.4 Academic System Design 
If system design is best learned by apprenticeship, we could 
expect that system design could be learned in graduate 
school, where the student/advisor relationship closely models 
the apprentice/master craftsman relationship. This may be 
true for some graduate programs, but just as the changing 
economics of industry have made it harder and harder to 
teach or do system design in companies, changes in the 
economics of academic research have made it more and 
more difficult to do real system design there. 
There is an idealized view of academic research in which 
that research takes greater risks than industry, plans for the 



 12 

longer term, and is less concerned with the commercial 
success of a research effort than in the intellectual content of 
the research. On this view, academic research can take a 
longer view than industrial research and development, and 
can take on higher-risk questions since even negative results 
can add to the base of knowledge that is the goal of 
academia. When a research program does pan out, the results 
can be transferred to industry for further development, and 
the academic researcher can turn to the next big question. 
Along the way, graduate students are trained in methods of 
research and techniques of system design, and when they are 
done they can either join the industrial world or return to 
academia to continue long-term research and the training of 
the next generation of graduate students. 
Those who believe this will also clap for Tinkerbell. 
The reality of academic research is much different than this. 
Professors spend much of their time writing grant proposals 
in an attempt to get funds for the support of graduate 
students. Once they get such grants, they need to target their 
research to produce the papers that will be accepted to the 
appropriate conferences and journals in their field, and be 
able to show the granting agencies enough progress that they 
will be able to get another round of grants. The cycle is 
actually quite short. Most grants require either yearly or 
semi-yearly reviews, and some require much more frequent 
updates. The received wisdom is that a grant needs to have 
enough detail to prove that the research the grant will support 
will in fact be successful; to do this it is in turn often 
necessary to have done the work already. Thus there is a 
tradition in some departments of using the results of the work 
done on one grant to get the money for the next grant. As in 
most systems, the hard part is bootstrapping (in this case, 
getting the first grant), but there is an increasingly common 
practice at universities to offer junior faculty seed grants for 
this bootstrapping mechanism. 
This may not have always been the case, but the realities of 
funding agencies have dictated this form of risk-averse 
funding. The funding agencies, many of which are 
governmental, have been pressured to show more relevance 
in the research they fund, and have sometimes been 
embarrassed by research that has not given positive results . 
This is not a new phenomenon; some of us are old enough to 
remember Senator William Proxmire’s Golden Fleece 
awards, given to government-funded research projects that 
appeared to be meaningless or otherwise ill-advised. As the 
funding agencies face more and more pressure to show that 
the work they are funding lead to actual results, those 
agencies in turn place more emphasis on ensuring that the 
research they fund will be successful.  
One way of doing this is to require occasional “bake offs” 
between research projects competing for money. This 
funding technique uses a simple recipe. Give a number of 
projects seed funding for a first phase of a project. At the end 
of the first, fairly short, phase, have the different projects 

demonstrate their results. As a result of this demonstration, 
either re-allocate the funding favoring the most promising of 
the alternatives, or simply cut the funding to all but the most 
promising project. Repeat.  
A number of government and private agencies that have been 
known for funding long-term research now use this model. 
While the model seems to make sense and certainly cuts the 
risk of making a major research investment in something that 
takes years and produces nothing but negative results, it also 
means that many academic research groups are in a constant 
short-term effort to produce the next bake-off demo.  
As a result, academic research is of a shorter duration and is 
more risk-averse than industrial research and development. 
Industry is often able to invest in high-risk development 
based on the possibility of large returns (although this is 
often tied to making the results of the development into a 
standard, which was discussed in the last section). 
Academics are increasingly unable to convince granting 
agencies to fund for the same long duration. 
Nor are academic institutions much more open to sharing the 
results of their research than is industry. The lesson of 
intellectual property has not been lost on many of these 
institutions that now seem to hope that the developments of 
their research can be used to add to the endowment of the 
university. I do considerable collaborative research with 
various academic institutions, and have noticed over the past 
five or so years an increase in the difficulty of negotiating 
agreements on the intellectual property generated by such 
collaborations. Indeed, one collaboration that I tried to fund a 
couple of years ago became impossible when the academic 
institution’s lawyers insisted on terms that gave the 
institution all rights to anything that was done by anyone in 
the collaboration, including any work done entirely by my 
group inside of Sun. Even when the conditions are not so 
irrational, the desire by these institutions to patent the result 
of the work of their faculty and graduate students has had the 
same squelching of open discussion as has been caused by 
the protection of intellectual property in industry. 
Whether such policies will lead to more money for 
universities is yet to be seen, but these changes in funding 
and sharing do mean that it is less likely that full system 
design will occur at these academic institutions. Academia is 
subject to the same pressures as industry. Even though the 
pressures comes from slightly different sources,  it gives the 
same results with respect to system design. 

5. WHAT DOES IT ALL MEAN? 
The previous sections paint a rather grim picture concerning 
the practice of system design. A combination of impatience, 
economic pressures, and a lack of trust by those who don’t 
understand what is required for system design seem to be 
creating a perfect storm, where we don’t have the time or 
support to do real design in either academia or industry, and 
where we can’t train the next generation of system designers 
in the craft.  



 13 

Perhaps this is just a sign of the age of the author, and all of 
the trends that I have identified are simply changes that have 
made the world different and to which I should simply adapt. 
I could be convinced of this if I didn’t see a real desire in the 
next generation of engineers and computer scientists to learn 
something about system design. It isn’t that they have gotten 
beyond the need to design systems; when they see a good 
system design they are appreciative, excited, and want to 
know how to create designs that have the same quality. They 
may not be able to verbalize what they are missing, but they 
know it when they see it, and they would like to learn.  
Another possibility is that the lack of system design at this 
time is just part of a natural cycle of development in the field 
of computer science. On this view, we are in the analogue of 
what Thomas Kuhn[5] called a period of normal science, in 
which the existing theory (or system designs) were being 
confirmed, tested, and slightly altered. Perhaps the systems 
that we have are good enough for what we need to do, so 
there is little or no need to do major design work on new 
systems. That will change in the future when we find tasks 
for which the current systems are inadequate, but until we do 
we should expect little support for system design. Indeed, 
systems like those being developed by Google are just the 
kind of radical departures that we would expect in a time of 
revolution, and they are indicators that we are about to enter 
into a new system design cycle. 

Where I see encouraging signs are in two areas that 
are generally not thought of as central to system 
design, the areas of agile methods and open source 
software.  

 

I have some sympathy for this view, in that it gives me hope 
that things will change. But I also realize that this view is 
based on the false assumption that there are fewer systems 
being produced now than there were in the past. In fact, I 
observe all kinds of systems being produced, from the 
service-oriented architectures of web services to the 
ontologies of the semantic web. What I find missing in these 
systems is a notion of design other than the designs that are 
done in standards committees or other large groups, or 
designs that emerge from the code that is thrown together to 
implement the system.  
I think one explanation can be seen if we re-read Ivan 
Sutherland’s Technology and Courage[9]. System design, 
like any other form of research, is hard work that entails 
taking great risks and therefore requires the constant 
application of what can only be called courage. It takes 
courage for an engineer to design a system without 
constantly asking the customer if it is what the customer 
wants. It takes courage for a manager to trust an engineer to 
take the time to design a system. It takes courage for a 
funding agency to underwrite an academic research project 
that might well fail. It takes courage for a company to back a 

design that has not been blessed by a standards body. What 
we are lacking today in our industry is the courage that is 
needed to take the kinds of risks that are inherent in doing 
system design. Whether this lack is caused by the scarcity of 
funding, or the bursting of the technology stock bubble, or 
the consolidation of the industry is hard to tell. But the 
reason that we are no longer designing interesting systems is, 
I believe, simply a lack of the courage needed to do so. 
If this is true, then one possible approach would be to solve 
this problem ourselves, at both the individual and collective 
level, by simply insisting that we be given the time and 
resources to do good system design. Finding courage is 
difficult, and instilling it in others more difficult still. But 
either is less difficult than changing the economy, or the 
legal system, or the attitude of the funding agencies, or the 
ways in which our field is taught. Indeed, we could make the 
change starting with ourselves, by taking the time and 
making the effort to do good system design, and to demand 
of our colleagues and managers that they both give us the 
opportunity to do such design and do such designs 
themselves.  
But given the realities of our industry and the wider 
economy, I hold little hope that simply making such 
demands will solve the problem. But this doesn’t mean that 
the situation is hopeless. Instead, it means that those who 
wish to continue in the craft of system design need to find 
other, less direct, ways of allowing such design to be 
practiced and taught. 
I am actually encouraged by some signs that this is already 
happening, although perhaps not in the ways or in the places 
that any of us might have expected. These signs are not 
coming from industry, where the relative power of the 
engineer and the manager has changed to the advantage of 
the latter, and where managers are under increasing pressure 
to cut costs and therefore have become more and more 
cautious. Nor do I see much change in academia, where short 
funding cycles and publications by the pound are still driving 
out good system design. Where I see encouraging signs are 
in two areas that are generally not thought of as central to 
system design, the areas of agile methods and open source 
software. 
“Agile methods” mean lots of different things to lots of 
different people, so I should begin by saying what I take 
them to be. This is not because I think that my 
characterization is any better than any of the others, but 
simply because it will help in the discussion that follows. 
Like patterns or open source, there is considerable theology 
in the characterizations of agile methods, and I don’t wish to 
get caught up in such theological debates. I’m happy to 
admit that my characterization is not really what is meant by 
agile methods; what I am describing is a trend I have seen in 
development that is at least sometimes given that label. 
What I am using the term “agile methods” to label is an 
approach to writing code and, ultimately, systems that is 



 14 

based on small groups of programmers working closely 
together; in the most extreme form of this the small group is 
a pair of programmers working together with a single 
keyboard and screen. No matter what the size of the group, 
the system is built by iteratively constructing small pieces, 
and then enhancing that working system in small, 
manageable chunks to build the ultimate large and complex 
system. In addition, I include the practice of “test driven 
development” in which the tests for some piece of 
functionality are written before the code that provides that 
functionality. There are, of course, many other techniques 
that get included under the term “agile methods,” but for the 
purposes of this discussion these are the features that are 
most important. 
Earlier I noted that such an approach to the production of a 
system seems to be an invitation to plunge into the code 
before thinking things through and then to make incremental 
changes to the undersigned system until things are good 
enough. Such an approach seems to actively discourage 
thoughtful system design. And, indeed, I have sometimes 
seen these methods produce systems that were badly 
designed, overly complex, and not well thought out. What 
has surprised me is the number of well-thought-out systems 
whose designs show taste and elegance that have been 
produced using these techniques.  
The reason, I believe, has to do with two of the aspects of 
such agile methods. The first is the combination of breaking 
the overall system down into small pieces and the 
requirements of test-driven development. Each of these 
techniques requires that some thought be given to the 
abstractions that form the system. Breaking the system down 
into smaller pieces requires some thought into what those 
pieces are going to be and how they fit together, which is 
exactly the art of system design. In order to write the tests 
before the code that is to be tested, an abstract notion of what 
the code is supposed to do must be thought through. In 
deciding what to test, a programmer needs to think about the 
general functionality of the system, and how that 
functionality is going to be accessed. Both activities require 
thinking about the interfaces for the various components of 
the system in a fashion that is one removed from the 
implementation of those interfaces. By deciding what small 
thing can be done and by writing the tests first, agile methods 
impose a requirement of thinking about the abstract system 
that is a way of expressing the overall design of the system. 

Breaking the system down into smaller pieces 
requires some thought into what those pieces are 
going to be and how they fit together, which is 
exactly the art of system design.  

 

The second, and more important aspect that favors system 
design when using agile methods is that those methods 
require that the work be done in small groups, each member 

of which needs to understand the entire artifact. This in turn 
encourages discussion of the overall system, not just at the 
level of the code that is being produced but at the level of the 
system itself. Each member of such a team has to explain to 
the others how the system fits together, and just that act of 
explanation requires thinking about the design. Even better, 
the others can then help to make the overall design better; the 
give-and-take of a small-group programming session is much 
the same as that found in a good design session because it is, 
in fact, a design session.  
What is important here is the required communication 
between the participants. Having to express a design will 
often uncover problems with the design, and can certainly 
show areas where the design (and, therefore, the 
communication of the design) is unclear or inconsistent. 
While it is true that writing down the design of a system is a 
form of documentation that can help people who want to 
learn or understand the system, the greatest benefit of such a 
written design is to the designer who must do the writing. 
The very act of writing the design document helps to clarify 
the design itself. In the same way, having to communicate 
the design during group programming helps to clarify and 
simplify the design. 
The process of small group development also provides an 
opportunity for the members of the group to serve their 
design apprenticeship. While the group may not consist of an 
acknowledged master and a set of apprentices, the constant 
discussion of the design even with a peer group can help in 
the development of taste and craftsmanship. While there is 
always the possibility that bad taste will be reinforced and 
bad habits encouraged, the process of peer-mentoring is 
better than no form of design feedback at all. 
Whether it be to a group of peers or a master, the real point is 
that the design needs to be expressed to someone else. It is 
very difficult to mask the weaknesses of a design when you 
are communicating that design to someone else who is 
intimately involved in the implementation of the design. 
Simple designs can be communicated easily; complex 
designs are hard to explain. Just as writing down a design 
will often show flaws or weaknesses in the design, 
explaining a design to a peer will often improve the design. 
Working on an open-source project also provides engineers 
both a forum for the discussion of design and a mechanism 
for learning through an apprenticeship. The first of these is 
supplied by the mailing lists that are central to many open 
source projects. On these lists there is constant discussion of 
the design alternatives, philosophies, and trade-offs that are 
faced by the overall project. Newer or less experienced 
engineers can ask questions that will be discussed and 
answered by the overall community. Like the discussion that 
goes on between the members of a pair-programming team, 
such electronic discussions allow the engineers to try out 
ideas, have those ideas criticized or amplified, and generally 
participate in the design process of a large project. The 



 15 

discussions tend to be at a different time-scale than those 
held face-to-face with a pair-programming partner, and often 
involve a much larger group of participants. But they are still 
forums that require discussion of the design. Better still, they 
are forums that require that the participants communicate the 
design in a clear and persuasive way. Just as the act of 
communication between two programmers can help to 
clarify and simplify the design of a system, the act of 
communicating a design to the other members of an open 
source project will help to clarify and simplify the design of 
the open source system. 
These discussions often replicate, at least electronically, the 
master/apprentice relationship that is so central to becoming 
an accomplished designer. Such relationships are established 
in spite of the mythology that has grown up around the way 
open source projects are run. The establishment of this sort 
of mentoring happens because of the reality of the way that 
open source projects work, a reality that is very different 
from the folk wisdom that has grown up around such 
projects. 

Working on an open-source project also provides 
engineers both a forum for the discussion of design 
and a mechanism for learning through an 
apprenticeship.  

 

The folk wisdom of open source, best exemplified by the 
writings of Eric Raymond [7], holds that open source 
projects are chaotic, highly democratic undertakings in 
which the marketplace of ideas sorts out the good ideas from 
the bad, the code is written by anyone, and there is no 
hierarchy. In actual fact, most of the successful open source 
projects are run as semi-benign dictatorships in which a very 
small group of people controls all of the code that is put into 
the project. These people are the committers of the project, 
and no code is allowed into the source repository until it 
meets their standards.  
It is true that anyone can offer code to the committers to see 
if it can be included into the project. But most of the code 
will go through a very detailed reading by the committers, 
and only be accepted when it is found to be good by the 
standards set by this group. Not surprisingly, most of these 
committers are just the kinds of master craftsmen of code 
that you would want supervising the apprenticeship of those 
learning system design. The apprenticeship is not as direct, 
with little or no face-to-face discussion, but the overall 
process is the same. The apprentice will try to solve 
problems, offer his or her solution, and be told to try again, 
generally with some discussion as to the reasons for needing 
to try again, until the code and the design is right. The 
communication may be electronic rather than face-to-face, 
but the process is the same as it was 20 years ago; one of 
trial-and-error, of frustration and trying again, and of failure 
and enlightenment, or at least increased mastery.  

This is a process that benefits both the apprentice and the 
master. The apprentice benefits in obvious ways, learning 
how to be a better craftsman and gaining a better 
understanding of how to build and design a system. The 
master benefits by using the apprentice as an idea magnifier. 
By having others doing some of the work, the master is freed 
to concentrate on those parts of the design or the code that 
only he or she can do. The end result is that the kinds of 
systems that can be built are more significant, and the ways 
of approaching design are conveyed.  
This ability to learn, to teach, and to tackle hard technical 
problems without the oversight or interference of 
management is also, I believe, one of the prime reasons for 
the popularity of open source projects among engineers. 
Such projects are places where technical decisions can be 
made on technical grounds, and where the decision making 
powers are given to those who have shown technical ability 
in the past. The fact that the end result of such developments 
is innovative software that is often superior to that produced 
by the projects that are the day jobs of the very people who 
write the open source software may be ironic, but it should 
not be surprising. 

This ability to learn, to teach, and to tackle hard 
technical problems without the oversight or 
interference of management is also, I believe, one of 
the prime reasons for the popularity of open source 
projects among engineers. Such projects are places 
where technical decisions can be made on technical 
grounds, and where the decision making powers 
are given to those who have shown technical ability 
in the past.  

 

In an important sense, both agile methods and open source 
can be seen as reactions to the difficulty of doing system 
design in either the academic or the industrial world. One 
solution to this could have been confronting the managers, 
professors, and funding agencies that have made it 
increasingly more difficult to do system design in the 
traditional environments. But this other solution is both more 
indirect and, in many ways, more in keeping with the ethos 
of software design. Rather than trying to change the set of 
constraints that frame the problem, designers and those who 
wish to learn design have simply designed around the 
problem. By adopting agile methods, we have found a 
mechanism that allows us to discuss and learn design without 
having to tell our management that this is what we are doing. 
By working in open source, we have created an environment 
in which we can continue to do technical work framed in 
purely technical way. The fact that open source needs to be 
done on our own time is a minor inconvenience; most good 
software designers would prefer doing technical work to 
most other forms of recreation. In a meta-sense, the new 
venues for learning and teaching system design are 
themselves excellent examples of system design, in which a 



 16 

problem is solved in a fashion that is elegant, subtle, and 
pleases both the practitioner of the art and the consumer of 
the code. The end result is that the craft survives, thrives, and 
continues to evolve. 

6. ACKNOWLEDGMENTS 
I would like to thank Bob Sproull, Ivan Sutherland, Margo 
Seltzer and Ann Wollrath, all of whom have been generous 
with their time and ideas during discussions of much that is 
contained in this paper. Special thanks go to Brian Marick, 
whose care and comments during the shepherding of this 
paper have greatly improved the result. 

7. REFERENCES 
[1] ACM Curricula Recommendations, 

http://www.acm.org/education/curricula.html, 2005.  
[2] Brooks, F.P., The Mythical Man Month: Essays in 

Software Engineering, 20th Anniversary Edition, 
Addison-Wesley, Boston, MA, 1995 

[3] Brooks, F.P., The Design of Design, Turing Award 
Lecture, 
http://terra.cs.nps.navy.mil/DistanceEducation/online.sig
graph.org/2001/SpecialSessions/2000TuringLecture-
DesignOfDesign/session.html, 2000 

[4] Hoffman, Daniel M. and David M. Weiss (ed), 
Software Fundamentals: Collected Papers by David 
L. Parnas, Addison-Wesley, Boston, MA, 2001. 

[5] Kuhn, Thomas, The Structure of Scientific Revolutions, 
University of Chicago Press, Chicago, IL, 1962. 

[6] Lampson, Butler, Hints for Computer System Design. 
ACM Operating Systems Rev. 15, 5 (Oct. 1983), pp 33-
48 

[7] Raymond, Eric, The Cathedral and the Bazaar: 
Musings on Linux and Open Source by an 
Accidental Revolutionary, O’Reilly Media (2001). 

[8] Ryle, Glibert The Concept of Mind, University of 
Chicago Press, Chicago, IL, 1949. 

[9] Sutherland, Ivan, Technology and Courage, Sun 
Microsystems Laboratories Essay Series, Mt. View, CA, 
1996 

[10] Wing, Jeannette M., Computational Thinking, 
Communications of the ACM, Vol. 49, Issue 2, March, 
2006. 

 

 


	On System Design by Jim Waldo
	Title
	Copyright
	Notes from the Author
	Editor's Notes
	Abstract
	1. INTRODUCTION
	2. WHAT IS SYSTEM DESIGN?
	3. TRAINING IN SYSTEM DESIGN
	3.1 The Origin of Good Design
	3.2 Teaching by Doing
	3.3 Design and Curriculum
	3.4 The Intellectual Gene Pool
	3.5 Education and System Design

	4. WHERE SYSTEM DESIGN HAPPENS
	4.1 Industrial System Design
	4.2 Design and Intellectual Property
	4.3 Systems and Standards
	4.4 Academic System Design

	5. WHAT DOES IT ALL MEAN?
	6. ACKNOWLEDGMENTS
	7. REFERENCES




