Sensitivity to False Answers in Indirect Questions

Yimei Xiang

June 10-11, 2016

Harvard University yxiang@fas.harvard.edu

Attitudes and Questions, Carnegie Mellon University

1. Introduction

- Earlier works noticed two forms of exhaustivity involved in interpreting indirect questions: weak exhaustivity and strong exhaustivity
- Recent works start to consider the intermediate form of exhaustivity. (Klinedinst & Rothschild 2011, Spector & Egré 2015, Uegaki 2015, Cremers & Chemla 2016, Xiang 2016, Theiler et al. 2016)
- ► Compared with WE, IE is sensitive to false answers (FAs): FA-sensitivity
- (1) John knows who came.
 - ► Weakly exhaustive (WE): $\forall x \text{ [}x \text{ came } \rightarrow \text{ J bels } x \text{ came]}$
 - ▶ Intermediately exhaustive (IE): $\forall x \text{ [x came} \rightarrow J \text{ bels } x \text{ came]} \& \forall x \text{ [x didn't come} \rightarrow \text{not [J bels } x \text{ came]}$
 - ► Strongly exhaustive (SE):

 $\forall x \text{ [}x \text{ came} \rightarrow \text{J bels } x \text{ came} \text{] \& } \forall x \text{ [}x \text{ didn't come} \rightarrow \text{J bels } x \text{ didn't come} \text{]}$

Mention-all vs. mention-some

Mention-all (MA) questions

- (2) Who went to the party?(w: only John and Mary went to the party.)
 - a. John and Mary.
 - b. John did .../ $\rightsquigarrow I \, don't \, know \, who \, else \, did.$
 - b'. # John did.\ $\rightsquigarrow Only John did.$

Mention-some (MS) questions: questions admitting MS answers.

- (3) Where can we get gas?(w: there are only two accessible gas stations: Station A and B.)
 - a. Station A.\ MS answer
 b. Station A and/or Station B.\ MA answer

George (2011, 2013): in parallel to the IE readings of indirect MA questions, indirect MS questions also have readings sensitive to false answers.

Italian newspapers are available at	Newstopia?	PaperWorld?
Facts	~	×
John's belief	~	?
Mary's belief	~	v

(4) a. John knows where we can buy an Italian newspaper. [TRUE]b. Mary knows where we can buy an Italian newspaper. [FALSE]

To be theory neutral, for both MA-questions and MS-questions, I call the readings that are sensitive to false answers **"FA-sensitive readings"**.

The goal of this talk: To characterize the conditions of FA-sensitive readings

Con	ditions of FA-sensitive readings	
(5)	John knows Q.	
	a. John knows a complete true answer of Q.	Completeness
	b. John has no false belief about Q.	FA-sensitivity

2. Completeness

In the traditional view, only exhaustive answers can be complete. This view leaves no space for MS.

Completeness = Max-informativity

(Fox 2013)

Any **maximally informative (MaxI)** true answer counts as a complete true answer. A true answer is MaxI iff it isn't asymmetrically entailed by any of the true answers.

(6)
$$\operatorname{Ans}(\mathbf{Q})(w) = \{p : w \in p \in \mathbf{Q} \land \forall q [w \in q \in \mathbf{Q} \to q \not\subset p]\} \\ (\{p : p \text{ is a MaxI true member of } \mathbf{Q} \text{ in } w\})$$

- A question takes MS iff it can have multiple MaxI true answers:
 - (7) Who came? $Q_w = \{ \text{`came'}(a), \text{`came'}(b), \text{`came'}(a \oplus b) \}$
 - (8) Who can chair the committee? $Q_w = \{ \hat{c} \hat{c} \hat{a}, \hat{c} \hat{c} \hat{a}'(b) \}$
- This view allows: non-exhaustive answers to be good answers a question to take multiple good answers.

Completeness

- ... But, (9b) is predicted to be a partial answer.
 - (9) Who can serve on the committee?
 - a. Gennaro+Danny+Jim can serve.
 - b. Gennaro+Danny can serve.

 $\diamond \text{serve}'(g \oplus d \oplus j)$ $\Rightarrow \diamond \text{serve}'(g \oplus d)$

Intuitively, (9b) means: *it is possible to have only* $g \oplus d$ *serve on the committee*.

- ▶ Solution: the ◊-modal embeds a covert exhaustivity operator *O* associated with the *wh*-trace. (Xiang 2016a, 2016b)
 - (10) $\mathbf{0}(p) = p \land \forall q \in Alt(p) [p \not\subseteq q \to \neg q]$ (Chierchia et al. 2013) (*p* is true, any alternative of *p* that is not entailed by *p* is false.)

Local exhaustification provides a **non-monotonic** environment w.r.t. the *wh*-trace, preventing (9b) from being entailed by (9a):

(11) $\Diamond \mathbf{0}[\operatorname{serve}'(g \oplus d \oplus j)] \not\Rightarrow \Diamond \mathbf{0}[\operatorname{serve}'(g \oplus d)]$

Completeness

Who came?

Who can chair the committee?

ightarrow MaxI		$\Diamond O[f(a \oplus b \oplus c)]$	
ightarrow MaxI	$\Diamond O[f(b\oplus c)]$	$\Diamond O[f(a \oplus c)]$	$\Diamond O[f(a \oplus b)]$
ightarrow MaxI	$\Diamond O[f(c)]$	$\Diamond O[f(b)]$	$\Diamond O[f(a)]$

(12) **Completeness Condition** of John knows Q: $\lambda w. \exists \phi \in \operatorname{Ans}(Q)(w)[\operatorname{know}'_w(j, \phi)]$ (John knows a MaxI true answer of Q)

Completeness

- Other issues involved in Completeness and mention-some:
 - 1. Nominal short answers and free relatives. John went to where he could get help.
 - 2. Questions with collective predicates:

Which boys formed a team?

3. Mention-all readings of \Diamond -questions.

Who all/alles can chair the committee?

4. Uniqueness requirement of singular-marked questions:

Which professor can chair the committee?

5. ...

More fully fledged accounts based on max-informativity: Fox (2013), Xiang (2016b, to appear).

3. Sensitivity to false answers

Plan

- An observation: partial answers are involved in FA-sensitivity
- In the exhaustification-based approach and its problems
- My proposal

3.1 Partial answers in FA-sensitivity

FA-sensitivity is concerned with **all types of false answers**, not just those that can be complete.

Partial answers in FA-sensitivity

Answers that are always partial:

- (13) Who came?
 - a. And y or Billy. $\phi_a \lor \phi_b$
 - b. Andy didn't.

νa ∨ Ψb ¬Φa Disjunctive partial Negative partial

FA-sensitivity is concerned with false disjunctives: $\phi_b \lor \phi_c$

(14) John knows [who came]. [Judgment: FALSE]
Fact: *a* came; *bc* didn't come. John's belief: *a* and someone else came, who might be *b* or *c*.
(15) John knows [where we can get gas]. [Judgment: FALSE]
Fact: *a* sells gas; *bc* do not.

John's belief: a and somewhere else sell gas, which might be b or c.

FA-sensitivity is concerned with false denials

Italian papers are available at	<i>A</i> ?	B ?	<i>C</i> ?	FA-type
Facts	~	×	~	
Mary's belief	~	~	?	over-affirming (OA)
Sue's belief	~	?	×	over-denying (OD)

(16) **Sue** knows where one can buy an Italian newspaper.

TRUE/FALSE?

From MA questions, we cannot tell whether the requirement of **avoiding OD** is part of **FA-sensitivity** or simply an entailment of **Completeness**.

- (17) John knows who came.
 - a. $\forall x \ [x \ came \rightarrow John \ believes \ that \ x \ came]$
 - $\Rightarrow \forall x \ [x \ came \rightarrow not \ [John believes that x \ didn't \ come]].$
 - b. $\forall x \ [x \ didn't \ come \rightarrow not \ [John \ believes \ that \ x \ came]]$

Completeness Avoiding OD Avoiding OA

Klinedinst & Rothschild (2011)

abcd trying out for the swimming team: *ad* made the team, but *bc* didn't. For each set of predictions (A1-A4), identify whether it correctly predicted **who** made the swimming team.

	A	b	с	D	SE	IE	WE	Ans-type
A1	×	?	X	~	×	×	×	OD
A2	?	×	X	~	×	×	×	MS
A3	~	?	X	~	×		\checkmark	MA
A4	~	•	?	~	×	×	\checkmark	OA

I reanalyzed K&R's (2011) raw data and excluded ...

- non-native speakers;
- subjects rejected by MTurk;
- Subjects with missing responses.

Subjects were not chosen based on their responses.

Four places (*abcd*) at Central Square selling alcohol, among which only *ad* sold red wine. Susan asked **where she could buy a bottle of red wine at Central Square**. Identify whether an answer (A1 to A4) correctly answered Susan's question.

	A	b	С	D	Ans-type
A1	×	?	X	~	OD
A2	?	×	×	~	MS
A3	~	?	×	~	MA
A4	~	~	?	~	OA

Experiments: Results

In each experiment, each two answers were fit with a logistic mixed effect model. All the models, except the one for MS-MA in Exp-MS, reported a significant effect.

OD/OA < MS/MA in Exp-MS

- **Both OA and OD are involved in FA-sensitivity.**
- OD < OA in Exp-MA; OD > OA in Exp-MS
 - FA-sensitivity exhibits an asymmetry varying by Q-type.

3.2 Against the exhaustification-based approach

The exhaustification-based approach

The exh-based approach(Klinedinst & Rothschild 2011, Uegaki 2015)

- The ordinary value of an indirect question is its **Completeness** Condition.
- **②** FA-sensitivity is derived by **exhaustifying** Completeness.
- (18) $O[_p \text{ John knows } [_Q \text{ who came }]]$

(w: ab came, but c didn't.)

a. $p = \lambda w. \exists \phi \in \operatorname{Ans}(Q)(w)[\operatorname{know}'_w(j, \phi)] = \operatorname{know}'(j, \phi_a \land \phi_b)$ (John knows a **true** complete answer of Q)

b. Alt(p) = {
$$\lambda w. \exists \phi \in \alpha[bel'_w(j,\phi)] | \exists w'[\alpha = Ans(Q)(w')]$$
}
= { $\lambda w. \exists \phi \in Ans(Q)(w')[bel'_w(j,\phi)] | w' \in W$ }
= {
 $bel'(j,\phi_a), bel'(j,\phi_b), bel'(j,\phi_c), \\ bel'(j,\phi_a \land \phi_b \land \phi_c)$ }

(John believes ϕ , where ϕ is a **possible** complete answer of Q)

c.
$$O(p) = \mathbf{know}'(j, \phi_a \land \phi_b) \land \neg \mathbf{bel}'(j, \phi_c)$$

(John only believes the **TRUE** complete answer of Q.)

FA-sensitivity is a scalar implicature of Completeness.

The exhaustification-based approach: Extending to MS-questions

- (19) John knows [Q where we can get gas].
 (w: among the considered places abc, only ab sell gas.)
 - a. $\exists \phi \ [\phi \ is a true MS answer of Q] \ [O \ [John knows \phi]]$ Local exh
 - b. 0 [$\exists \phi$ [ϕ is a true MS answer of Q] [John knows ϕ]]

Local exhaustification

The truth conditions yielded by local exhaustification are too strong:

- John knows a true MS answer as to *where we can get gas*;
- Iohn doesn't believe any answer that is not entailed by this MS answer.

If what John believes is "we could get gas at a and somewhere else", (19) would be predicted to be false, contra the fact.

Global exh

Global exhaustification

Using **innocent exclusion** (Fox 2007), global exhaustification derives an inference close to FA-sensitivity. (D. Fox and A. Cremers p.c. independently)

- (20) O_{IE} [p John knows [Q where we can get gas]] (w: ab sell gas, but c doesn't.)
 - a. $p = \lambda w. \exists \phi \in \operatorname{Ans}(\mathbf{Q})(w)[\operatorname{know}'_w(j, \phi)] = \operatorname{know}'(j, \phi_a) \lor \operatorname{know}'(j, \phi_b)$

b.
$$\operatorname{Alt}(p) = \{\lambda w. \exists \phi \in \alpha[\operatorname{bel}'_w(j,\phi)] \mid \exists w'[\alpha = \operatorname{Ans}(Q)(w')]\}$$
$$= \left\{ \begin{array}{c} \operatorname{bel}'(j,\phi_a), & \operatorname{bel}'(j,\phi_a) \lor \operatorname{bel}'(j,\phi_b), & \dots \\ \operatorname{bel}'(j,\phi_b), & \operatorname{bel}'(j,\phi_a) \lor \operatorname{bel}'(j,\phi_c), \\ \operatorname{bel}'(j,\phi_c), & \operatorname{bel}'(j,\phi_b) \lor \operatorname{bel}'(j,\phi_c), \end{array} \right\}$$

c. $O_{\text{IE}}(p) = [\mathbf{know}'(j,\phi_a) \vee \mathbf{know}'(j,\phi_b)] \wedge \neg \mathbf{bel}'(j,\phi_c)$

Innocent exclusion

Innocent exclusion negates only innocently excludable alternatives.

(21) a.
$$O_{\text{IE}} = p \land \forall q \in \text{IExcl}(p)[\neg q]$$

b. $\text{IExcl}(p) = \{q : q \in \text{Alt}(p) \land \neg \exists q' \in \text{Excl}(p)[p \land \neg q \to q']\}$
where $\text{Excl}(p) = \{q : q \in \text{Alt}(p) \land p \not\subseteq q\}$

Problems with the exhaustification-based approach

First, FA-sensitivity is concerned with all types of false answers, not just those that can be complete.

To obtain the desired FA-sensitivity, exhaustification needs to operate on a special alternative set:

(22) O_{IE} [p John knows [Q where we can get gas]]
 (w: ab sell gas, but cd do not.)

a.
$$p = \operatorname{know}'(j, \phi_a) \vee \operatorname{know}'(j, \phi_b)$$

b.
$$\operatorname{Alt}(p) = \begin{cases} \operatorname{bel}'(j, \phi_c), \operatorname{bel}'(j, \phi_d), \dots & \operatorname{OA} \\ \operatorname{bel}'(j, \neg \phi_a), \operatorname{bel}'(j, \neg \phi_b), \dots & \operatorname{OD} \\ \operatorname{bel}'(j, \phi_c \vee \phi_d), \dots & \operatorname{Disj} \\ \dots & \\ \frac{\operatorname{bel}'(j, \phi_a \wedge \phi_b)}{\operatorname{bel}'(j, \phi_a \wedge \phi_b)} \dots & \operatorname{MA/MI} \end{cases}$$

Problems with the exhaustification-based approach

Second, FA-sensitivity inferences do not behave like scalar implicatures.

- 1. FA-sensitivity inferences are not cancelable.
 - (23) a. Did Mary invite some of the speakers to the dinner?
 - b. Yes. Actually she invited all of them.
 - (24) a. Does Mary know which speakers presented this morning?
 - b. Yes. #Actually she believes that Alexandre, B, and Carlotta all did.
- 2. FA-sensitivity inferences are easily generated in downward-entailing contexts.

 - (26) If M knows which speakers presented this morning, I will ... → If [M believes B+C did] ∧ not [M believes A did], I will...

Problems with the exhaustification-based approach

- **3.** FA-sensitivity inferences are not "mandatory" scalar implicatures: (27b) evokes an indirect scalar implicature, while (28b) doesn't.
- (27)a. Mary only invited the FEMALE_F speakers to the dinner. → Mary did not invite the male speakers to the dinner.
 - b. Mary only did **not** invite the FEMALE_F speakers to the dinner. → Mary invited the male speakers to the dinner.

b'. *O*
$$\neg \phi_{\text{female}} = \neg \phi_{\text{female}} \land \neg \neg \phi_{\text{male}} = \neg \phi_{\text{female}} \land \phi_{\text{male}}$$

- (28)a. Mary knows which speakers presented this morning. → not [Mary believes that A presented this morning] $\neg \text{bel}'(m, \phi_a)$ b. Mary does **not** know which speakers presented this morning. $bel'(m, \phi_a)$
 - $\not\rightarrow$ Mary believes that A presented this morning
 - b'. **0** not [Mary knows which speakers presented this morning]

 $\neg \phi_{male}$

Ømale

3.3 My analysis of FA-sensitivity

1. Characterizing FA-sensitivity

My view

- FA-sensitivity is an **independent** condition mandatorily involved in interpreting indirect questions.
- FA-sensitivity is concerned with all **Q-relevant** propositions, not just those that can be complete answers of Q.

Formalizations

- (29) John knows Q.
 - a. $\lambda w. \exists \phi \in Ans(Q)(w)[know'_w(j, \phi)]$ Completeness (John knows a MaxI true answer of Q.)
 - b. $\lambda w. \forall \phi \in \operatorname{Rel}(Q)[w \notin \phi \to \neg \operatorname{believe}'_w(j, \phi)]$ (John has no **Q-relevant** false belief.)

FA-sensitivity

If Q= {p,q}, then Rel(Q) = { $p,q,\neg p, p \lor q, p \land q, ...$ }

Q-relevance

 ϕ is **Q-relevant** iff ϕ is a union of some partition cells of Q.

- (30) $\operatorname{Rel}(\mathbf{Q}) = \{\bigcup X : X \subseteq \operatorname{Part}(\mathbf{Q})\}$
- (31) Defining partition:
 - a. Based on the **true** answers

$$Part(\mathbf{Q}) = \{\lambda w[\mathbf{Q}_w = \mathbf{Q}_{w'}] : w' \in W\}$$

b. Based on the MaxI true answers $Part(Q) = \{\lambda w[Ans(Q)(w) = Ans(Q)(w')] : w' \in W\}$

Example:

(32) Who came?

a.
$$\phi_a \lor \phi_b = c_1 \cup c_2 \cup c_3$$

b. $\neg \phi_a = c_3 \cup c_4$

<i>c</i> ₁	w: only ab came _w	
<i>c</i> ₂	w: only $a \operatorname{came}_w$	
с3	w: only $b \operatorname{came}_w$	
С4	w: nobody $came_w$	

w: Ans(Q)(w) = { ϕ_{ab} }
w: Ans(Q)(w) = $\{\phi_a\}$
$w: \operatorname{Ans}(\mathbf{Q})(w) = \{\phi_b\}$
$w: \operatorname{Ans}(\mathbf{Q})(w) = \emptyset$

The typology of interrogative-embedding predicates: (Adapted from Lahiri (2002), Spector & Egré (2015), and Uegaki (2015))

Types of factives

Emotive factives: *be surprised, be pleased, ...* Cognitive factives: *know, remember, discover, ...* Communication verbs: *tell*_[+fac], *predict*_[+fac], ...

1. In paraphrasing FA-sensitivity, *know* is replaced with its non-factive counterpart believe. (Spector & Egré 2015) Why?

(33) (*w*: *ab came*, *but c didn't*.) John knows who came. $\approx \operatorname{know}'(j, \phi_a \wedge \phi_b) \wedge \neg \operatorname{believe}'(j, \phi_c)$

Explanation: Presupposition accommodation makes the FA-sensitivity Condition suffer a presupposition failure or be tautologous.

(34) a. Global accommodation **Presupposition failure** $\lambda w. \forall \phi \in \operatorname{Rel}(Q)[w \notin \phi \to [\neg \operatorname{believe}'_w(j, \phi) \land w \in p]]$ b. Local accommodation **Tautology** $\lambda w. \forall \phi \in \operatorname{Rel}(Q)[w \notin \phi \to \neg[\operatorname{believe}'_w(j, \phi) \land w \in p]]$

Hence, in paraphrasing FA-sensitivity, the factive presupposition of *know* needs to be **"deactivated"**.

2. FA-sensitivity and factivity

2. Seemingly, emotive factives do not license FA-sensitive readings. Why?

- (35) John is surprised at who came.(w: ab came, but c didn't.)
 - a. \rightsquigarrow John is surprised that *ab* came.
 - b. $\not\rightarrow$ John isn't surprised that *c* came.
 - c. \rightsquigarrow Not that John is surprised that *c* came.

surprise' $(j, \phi_a \land \phi_b)$ \neg surprise' $(j, \phi_c)_{\phi_c}$ \neg [surprise' $(j, \phi_c) \land \phi_c$]

Explanation: FA-sensitivity collapses under factivity, due to local accommodation of the factive presupposition.

(36) John is surprised at Q. $\lambda w. \forall p \in \operatorname{Rel}(Q)[w \notin p \to \neg[\operatorname{surprise}'(j,p) \land w \in p]] = \operatorname{Tautology}$ (For any Q-relevant *p*, if *p* is false, then it is not the case that [John is surprised at *p* and *p* is true])

3. The factive presupposition of *surprise* isn't deactivated, (but instead locally accommodated), why?

Explanation: Factive presuppositions of emotive factives are strong and indefeasible, unlike those of cognitive factives. (Karttunen 1971; Stalnaker 1977)

- (37) a. If someone regrets that I was mistaken, I will admit that I was wrong.
 → The speaker was mistaken.
 - b. If someone discovers that I was mistaken, I will admit that I was wrong. √→ The speaker was mistaken.

As weak factives, communication verbs pattern like cognitive factives.

(38) (*w*: *ab* came, but c didn't.) John told Mary who came. $\approx \operatorname{told}'_{[+\operatorname{fac}]}(j,m,\phi_a \wedge \phi_b) \wedge \neg \operatorname{told}_{[-\operatorname{fac}]}'(j,m,\phi_c)$

4. Asymmetry of FA-sensitivity

Asymmetry of FA-sensitivity

The unacceptability of false answers varies:

- ► In MA-Qs, OA is more tolerated than OD. ($\hat{\beta} = 1.0952, p < .001$)
- ► In MS-Qs, OD is more tolerated than OA. ($\hat{\beta} = -0.7324, p < .005$)

Asymmetry of FA-sensitivity

What causes these asymmetries?

- An appealing idea: OD is less tolerated than OA in MA-Qs because OD even doesn't satisfy Completeness.
- This idea predicts: if a participant was tolerant of incompleteness, then his/her responses would not show any asymmetry w.r.t FA-sensitivity.
- Assessing this idea: ×

Subjects in Exp-MA tolerated of incompleteness (viz. who accepted MS&MA) also rejected OD significantly more than OA (binomial test: 89%, p < .05)

OD	MS	MA	OA	Ν
Х		\checkmark	Х	11
	\checkmark		\times	1
×	\checkmark	\checkmark		8
	\checkmark			8

 $\Rightarrow Regardless of whether Completeness was considered, the subjects in Exp-MA consistently rejected OD more than OA.$

Asymmetry of FA-sensitivity

My view: A false answer is tolerated if it is "not misleading".

Could we get gas at?	A	В	С
Fact	~	~	×
OA	~	?	~

When accepting a response *p*, the questioner would:

- update the answer space: removing the incompatible answers and adding the entailed answers.
- take any MaxI answer of the new answer space as a resolution and make decisions accordingly.

If none of these MaxI answers leads to an "improper decision", p could be tolerated.

An answer p is tolerated iff accepting p yields an answer space s.t. every MaxI member of this answer space entails a MaxI true answer.

MA-Q: OD is worse than OA

In MA-Qs, OD violates the Principle of Tolerance:

- Let all the answers be true. MaxI true answer: $f(a \oplus b \oplus c)$.
- ► Overly denying f(a) rules out all the shaded answers. MaxI member in the updated answer space: $f(b \oplus c)$.
- $\blacktriangleright f(b \oplus c) \not\Rightarrow f(a \oplus b \oplus c)$

An answer p is tolerated iff accepting p yields an answer space s.t. every MaxI member of this answer space entails a MaxI true answer.

MA-Q: OD is worse than OA

In MA-Qs, OA does not violate the Principle of Tolerance:

- Only let the unshaded answers be true. MaxI true answer: $f(b \oplus c)$.
- Overly affirming f(a) rules in all the shaded answers. The MaxI member in the updated answer space: $f(a \oplus b \oplus c)$.
- $\blacktriangleright f(a \oplus b \oplus c) \Rightarrow f(b \oplus c).$

An answer p is tolerated iff accepting p yields an answer space s.t. every MaxI member of this answer space entails a MaxI true answer.

In MS-Qs, **OD** does not violate the Principle of Tolerance:

- ▶ Let all the answers be true. All of them are MaxI true answers.
- ► Overly denying ◊O[f(a)] only rules out ◊O[f(a)] itself. MaxI members in the updated space: all the unshaded answers.
- ► Each of the remaining answers entails a MaxI true answer (i.e. itself).

An answer p is tolerated iff accepting p yields an answer space s.t. every MaxI member of this answer space entails a MaxI true answer.

In MS-Qs, OA violates the Principle of Tolerance:

- > Only let the unshaded answers be true. All unshaded answers are MaxI true.
- ► Overly affirming ◊O[f(a)] only rules in ◊O[f(a)] itself. MaxI members in the updated answer space: all the present answers.
- $\Diamond O[f(a)]$ does not entail any of the unshaded answers.

Conclusions

Completeness

Any MaxI true answer counts as a complete true answer.

(39) "John knows Q": $\lambda w. \exists \phi \in \operatorname{Ans}(Q)(w)[\operatorname{know}'_w(j, \phi)]$ (John knows a MaxI true answer of Q)

FA-sensitivity

- In FA-sensitivity is concerned with all types of false answers.
- PA-sensitivity is not derived by exhaustifications.
- Solution Factivity in paraphrasing FA-sensitivity:
 - Weak factivity is deactivated.

(40) "John knows Q": $\lambda w. \forall \phi \in \operatorname{Rel}(Q)[w \notin \phi \to \neg \operatorname{believe}'_w(j, \phi)]$

- Strong factivity is locally accommodated, yielding a tautology.
 - (41) "John is **surprised** at Q": $\lambda w. \forall p \in \operatorname{Rel}(Q)[w \notin p \to \neg[\operatorname{surprise}'(j,p) \land w \in p]]$

Conclusions

Asymmetries of FA-sensitivity

O The observations:

- ► In MA-Qs, OA is more tolerated than OD.
- ► In MS-Qs, OD is more tolerated than OA.

2 Principle of Tolerance

An answer p is tolerated iff accepting p yields an answer space s.t. every MaxI member of this answer space entails a MaxI true answer.

Against the pragmatic view of mention-some

The pragmatic view: the distribution of MS is purely restricted by pragmatics.

- Pragmatic approaches: (Groenendijk & Stokhof 1984; van Rooij 2004; a.o.) Complete answers must be exhaustive. MS answers are partial answers that are sufficient for the conversational goal behind the question.
- Post-structural approaches: (Beck & Rullmann 1999; George 2011: ch 2) MS is semantically licensed but pragmatically restricted. MS and MA are two independent readings derived via different operations on question roots.

mention-some = mention-one: each MS answer specifies only one option

- Unlike MS answers, mention-intermediate (MI) answers (viz. non-exhaustive answers that specify multiple choices) must be ignorance-marked.
 - (42) Who can chair the committee?(w: only Andy, Billy, and Cindy can chair; single-chair only.)
 - a. Andy.\
 - b. Andy and Billy .../
 - b'.#Andy and Billy. \rightsquigarrow Only John and Mary can chair.
 - c. Andy, Billy, and Cindy.\

Against the pragmatic view of mention-some

mention-some = mention-one (cont.)

- ► Indirect ◊-questions admit mention-one and MA readings, but not MI readings. While a conversational goal can be, e.g., "mention-3".
- (43) (*The dean wants to discuss plans for the committee with 3 chair candidates*) John knows who can chair the committee.
 - a. $\exists x [x \text{ can chair} \land \text{ John knows that } x \text{ can chair}]$ ($\sqrt{}$)
 - b. $\forall x \ [x \ can \ chair \rightarrow John \ knows \ that \ x \ can \ chair.]$ ($\sqrt{}$)
 - c. $\exists xyz \ [xyz \ each \ can \ chair \land John \ knows \ that \ xyz \ each \ can \ chair.]$

(#)

- (44) John agrees with Mary on who came.
 - a. $\forall x \text{ [Mary believes that } x \text{ came} \rightarrow \text{John believes that } x \text{ came]}$
 - b. $\forall x \text{ [[Mary believes that } x \text{ did } \mathbf{not} \text{ came}] \rightarrow \mathbf{not} \text{ [John believes that } x \text{ came}]]$

Did came?	A	В	С	D
Mary's belief	~	~	×	?
John's belief can be	~	~	X /?	✓/X/?

(45)
$$\mathscr{B}_{w}^{m}(Q) = \{p : p \in Q \land \text{believe}_{w}^{\prime}(m, p)\}$$

(The set of possible answers that Mary believes in *w*)

- (46) John agrees with Mary on Q.
 - a. $\lambda w. \exists \phi \in MaxI(\mathscr{B}_{w}^{m}(\mathbf{Q}))[believe'_{w}(j,\phi)]$ Completeness ($\lambda w.$ John believes_w a MaxI member of $\mathscr{B}_{w}^{m}(\mathbf{Q})$)
 - b. $\lambda w. \forall \phi \in \text{Rel}(Q)[\text{believe}'_w(m, \neg \phi) \rightarrow \neg \text{believe}'_w(j, \phi)]$ FA-sensitivity (John doesn't believe anything Q-relevant that contradicts Mary's belief.)

Agree

Puzzle: \Diamond -questions embedded under *agree* do not admit MS readings.

- (47) John agrees with Mary on [who can chair the committee].
 - a. $\forall x$ [Mary believes that $x \operatorname{can} \rightarrow \operatorname{John}$ believes that $x \operatorname{can}$]
 - a'. $\exists x \text{ [Mary believes that } x \text{ can } \land \text{ John believes that } x \text{ can} \text{ (too weak)}$
 - b. $\forall x \text{ [[Mary believes that } x \operatorname{can}\mathbf{n't}] \rightarrow \mathbf{not} \text{ [John believes that } x \operatorname{can}\text{]]}$

Explanation: Indirect questions with agree evoke an Opinionatedness Condition

- (48) **Opinionatedness & FA-sensitivity** \Rightarrow **MA**
 - a. $\lambda w. \forall \phi \in MaxI(\mathscr{B}_{w}^{m}(Q))[bel'_{w}(j,\phi) \lor bel'_{w}(j,\neg\phi)]$ Opinionatedness (John is opinionated about every MaxI belief of Mary on Q.)
 - b. $\lambda w. \forall \phi \in \operatorname{MaxI}(\mathscr{B}_w^m(\mathbf{Q}))[\neg \operatorname{bel}'_w(j, \neg \phi)]$

 \Leftarrow FA-sensitivity

c. $a\&b \Rightarrow \lambda w. \forall \phi \in MaxI(\mathscr{B}_{w}^{m}(\mathbf{Q}))[bel'_{w}(j,\phi)]$

References

Beck, S. and H. Rullmann. 1999. A flexible approach to exhaustivity in questions. *Natural Language Semantics* 7:249–298.

Chierchia, G., D. Fox, and B. Spector. 2013. The grammatical view of scalar implicatures and the relationship between semantics and pragmatics. In *Semantics: An International Handbook of Natural Language Meaning volume 3*, ed. Claudia Maienborn, Klaus von Heusinger, and Paul Portner. Berlin: Mouton de Gruyter.

Cremers, A. and E. Chemla. 2016. A psycholinguistic study of the different readings for embedded questions. *Journal of Semantics*.

Spector, B. and P. Egré. 2015. A uniform semantics for embedded interrogatives: *an* answer, not necessarily *the* answer. *Synthese* 92:1729–1784.

Stainaker, R. C. 1977. Pragmatic presuppositions. Semantics and philosophy 197-213.

Fox, D. 2007. Free choice and the theory of scalar implicatures. *Presupposition and implicature in compositional semantics*, ed. P. Stateva and U. Sauerland. Palgrave-Macmillan.

Fox, D. 2013. Mention-some readings of questions, class notes, MIT seminars.

George, B. R. 2011. *Question embedding and the semantics of answers*. Doctoral Dissertation, UCLA.

George, B. R., 2013. Knowing-wh, mention-some readings, and non-reducibility. *Thought: A Journal of Philosophy.*

References

Groenendijk, J. and M. Stokhof. 1984. <i>Studies in the semantics of questions and the pragmatics of answers</i> . Amsterdam: University of Amsterdam dissertation.
Karttunen, L. 1971. Some observations on factivity. <i>Research on Language & Social Interaction</i> 4:55–69.
Karttunen, L. 1977. Syntax and semantics of questions. L&P 1:3-44.
Klinedinst, N. and D. Rothschild. 2011. Exhaustivity in questions with non-factives. <i>Semantics and Pragmatics</i> 4:1-23.
Theiler, N., F. Roelofsen, and M. Aloni. 2016. A truthful resolution semantics for declarative and interrogative complements. Unpublished manuscript.
Uegaki, W. 2015. Interpreting questions under attitudes. Doctoral dissertation. MIT.
Xiang, Y. 2016a. Complete and true: A uniform analysis for mention-some and mention-all questions. <i>Proceedings of SuB 20.</i>
Xiang, Y. 2016b. <i>Interpreting questions with non-exhaustive answers</i> . Doctoral dissertation. Harvard.
Xiang, Y. To appear. Solving the dilemma between uniqueness and mention-some. <i>Proceedings of NELS 46.</i>
van Rooij, R. 2004. Questioning to Resolve Decision Problems. <i>Linguistics and Philosophy</i> 26: 727-763.