Compositional Semantics

Roadmap

- Preliminary notions: Truth conditions, Extension
- (Extensional) Compositional Semantics
 - The principle of compositionality
 - Semantic types
 - Lambda calculus
 - Composition rules: TN, NN, FA, PM
- Generalized quantifiers

1 Truth conditions

- To know the meaning of a sentence is to know its truth conditions, namely, the knowledge of the conditions under which a sentence is true, and those under which it’s false.

(1) Schema for truth conditions
The sentence “__________________” is true if and only if _____________.

Example:

(2) Mary lives in Cambridge is true if and only if Mary lives in Cambridge.

2 Extension

- The extension of an expression is dependent on the evaluation world. We add an evaluation world parameter $[\bullet]^w$ to the notations of extensions:

(3) General notation: $[X]^w$ (‘the extension of X in w’)

- $[\bullet]$ is called Interpretation function; it maps syntactic expressions to their denotation/meaning.
- The w in $[\bullet]^w$ is called the evaluation world.

Examples: (D_e denotes the set of entities)

(4) a. $[\text{Mary lives in Cambridge}]^w = 1$ iff Mary lives in Cambridge in w.
 b. $[\text{old}]^w = \{x : x \text{ is old in } w\}$

 $f : D_e \rightarrow \{0, 1\}$ such that
 for all $x \in D$, $f(x) = 1$ iff x is old in w. (As a set)

 $[\text{old}]^w = f : D_e \rightarrow \{0, 1\}$ such that
 for all $x \in D$, $f(x) = 1$ iff x is old in w. (As a characteristic function)

- The counterpart of extension is intension. The intension of X is a function which (i) takes a possible world as an argument, and (ii) returns the extension of X in that world. We will return to it later.
3 The principle of compositionality

- In any natural language, there are infinitely many sentences, and the brain is finite. So, for syntax, linguistic competence must involve some finitely describable means for specifying an infinite class of sentences.

A speaker of a language knows the meanings of those infinitely many sentences, and is able to understand a sentence he/she hears for the first time. So, for semantics, there must also be finite means for specifying the meanings of the infinite set of sentences of any natural language.

- In generative grammar, a central principle of formal semantics is that the relation between syntax and semantics is compositional.

(5) **The principle of compositionality (Fregean Principle):**

The meaning of a complex expression is determined by the meanings of its parts and the way they are syntactically combined.

The meaning of a sentence is the result of applying the unsaturated part of the sentence (a function) to the saturated part (an argument).

(6) Kitty meows.

\[
\begin{array}{c}
S \\
\text{(saturated)} \\
\text{Kitty} & \text{meows} \\
\text{(Saturated)} & \text{(Unsaturated)}
\end{array}
\]

- The meaning of the parts:

(7) a. \([\text{Kitty}]^w = \text{Kitty}\)
 b. \([\text{meows}]^w = \{x : x \text{ meows in } w\}\)
 c. \([\text{meows}]^w = f : D_x \rightarrow \{0, 1\} \text{ such that for every } x: f(x) = 1 \iff x \text{ meows in } w.\)

- If we think of predicates as denoting sets of entities, then the composition of "Kitty" and "meows" proceeds via set membership:

(8) \([\text{Kitty meows}]^w = 1 \iff [\text{Kitty}]^w \in [\text{meows}]^w\)

- If we think of predicates as denoting functions (from sets of entities to truth values), then the composition of "Kitty" and "meows" proceeds via functional application:

(9) \([\text{Kitty meows}]^w = [\text{meows}]^w([\text{Kitty}]^w) = 1 \iff \text{Kitty meows in } w.\)
4 Type theory (for Semantics)

• The categories of syntax correspond in a one-to-one fashion to **semantic types**. The basic types correspond to the objects that Frege takes to be saturated.

 - e for individuals, in De
 - t for truth values, in \{1, 0\}

From these basic types, we can recursively define complex types:

 - \langle e, t \rangle for intransitive verbs, predicative adjectives, and common nouns
 - \langle e, \langle e, t \rangle \rangle for transitive verbs

(10) **Types**

a. **Basic types**: e (individuals/entities) and t (truth values).

b. **Functional types**: If \(\alpha \) and \(\beta \) are types, then \(\langle \alpha, \beta \rangle \) is a type. A function of type \(\langle \alpha, \beta \rangle \) is one whose arguments/inputs are of type \(\alpha \) and whose values/outputs are of type \(\beta \).

(11) **Domains**

a. \(D_t = \{1, 0\} \)

b. \(D_e = \{x : x \text{ is an entity}\} \)

c. \(D_{\langle \alpha, \beta \rangle} = \{f \mid f : D_\alpha \rightarrow D_\beta\} \) (functions from things of type \(\alpha \) to things of type \(\beta \))

• **Syntactic categories and their semantic types** (an inclusive list)

<table>
<thead>
<tr>
<th>Syntactic category</th>
<th>English expressions</th>
<th>Semantic type (extensionalized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence</td>
<td></td>
<td>t</td>
</tr>
<tr>
<td>Proper name</td>
<td>John</td>
<td>e</td>
</tr>
<tr>
<td>e-type/referential NP</td>
<td>the king</td>
<td>e</td>
</tr>
<tr>
<td>Common noun</td>
<td>cat</td>
<td>\langle e, t \rangle</td>
</tr>
<tr>
<td>IV, VP</td>
<td>run</td>
<td>\langle e, t \rangle</td>
</tr>
<tr>
<td>TV</td>
<td>love, buy</td>
<td>\langle e, et \rangle</td>
</tr>
<tr>
<td>Predicative ADJ</td>
<td>happy, gray</td>
<td>\langle e, t \rangle</td>
</tr>
<tr>
<td>Predicate modifier</td>
<td>skillful, quickly</td>
<td>\langle et, et \rangle</td>
</tr>
<tr>
<td>Sentential modifier</td>
<td>perhaps</td>
<td>\langle t, t \rangle</td>
</tr>
<tr>
<td>Determiner</td>
<td>some, every, no</td>
<td>\langle et, \langle et, t \rangle \rangle</td>
</tr>
<tr>
<td></td>
<td>the</td>
<td>\langle et, e \rangle</td>
</tr>
</tbody>
</table>

Exercise: Identify the semantic type of *beautiful* in the following sentences:

(12) a. Jenny is a **beautiful** girl.

b. Jenny is a **beautiful** dancer.
Exercise: Classify the following words based on their semantic types:

not, if...then, student, John, Boston, a man, buy, fast, carefully, necessarily

• In most cases, with type assignments to expressions of natural language, we can determine the semantic types of new expressions/morphemes.

(13) Susan talked to Bob.

Exercise: Identify the semantic types of the underlined words/morphemes.

(14) Ann is pretty.
(15) Kitty meowed.
(16) Cambridge is in MA.

• But, be careful!

(i) some expressions can be type-flexible;
(ii) there can be covert elements in the LF;
(iii) there can be type-shifting operations;
(iv) two sister nodes might not hold a function-argument relation; ...