Review of Compositional Semantics

1 Review of Compositional Semantics

• Preliminary notions and concepts:
 – Truth conditions
 The sentence “______________” is true if and only if ____________.
 – Extension (of a sentence, 1-place predicate, 2-place predicate, ...)
 \([X]^w\) (‘the extension of \(X\) in \(w\)’)
 – The principle of compositionality

• Type theory
 – Types
 * Basic types: \(e\) for entities, \(t\) for truth values
 * Functional types: If \(\alpha\) and \(\beta\) are types, then \(\langle \alpha, \beta \rangle\) is a type.
 – Determine types of nodes in a tree:

<table>
<thead>
<tr>
<th>Syntactic category</th>
<th>Label</th>
<th>English expressions</th>
<th>Semantic type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence</td>
<td>S</td>
<td></td>
<td>(t)</td>
</tr>
<tr>
<td>Proper name</td>
<td>ProperN</td>
<td>John</td>
<td>(e)</td>
</tr>
<tr>
<td>e-type/referential NP</td>
<td>DP</td>
<td>the king</td>
<td>(e)</td>
</tr>
<tr>
<td>Common noun</td>
<td>CN</td>
<td>cat</td>
<td>(\langle e, t \rangle)</td>
</tr>
<tr>
<td>IV, VP</td>
<td>V(_{itr}), VP</td>
<td>run, love Kitty</td>
<td>(\langle e, t \rangle)</td>
</tr>
<tr>
<td>TV</td>
<td>V(_t)</td>
<td>love, buy</td>
<td>(\langle e, et \rangle)</td>
</tr>
<tr>
<td>Predicative ADJ</td>
<td>Adj</td>
<td>happy, gray</td>
<td>(\langle e, t \rangle)</td>
</tr>
<tr>
<td>Predicate modifier</td>
<td>Adj, Adv</td>
<td>skillful, quickly</td>
<td>(\langle et, et \rangle)</td>
</tr>
<tr>
<td>Sentential modifier</td>
<td></td>
<td>perhaps, not that</td>
<td>(\langle t, t \rangle)</td>
</tr>
<tr>
<td>Generalized quantifier</td>
<td>DP</td>
<td>someone, every cat</td>
<td>(\langle et, t \rangle)</td>
</tr>
<tr>
<td>Quantification</td>
<td></td>
<td>some, every, no, a</td>
<td>(\langle et, \langle et, t \rangle \rangle)</td>
</tr>
<tr>
<td>Determiner</td>
<td>D</td>
<td>the</td>
<td>(\langle et, e \rangle)</td>
</tr>
<tr>
<td>Definite determiner</td>
<td></td>
<td>who invited Andy</td>
<td>(\langle et, t \rangle)</td>
</tr>
<tr>
<td>Relative clause</td>
<td>REL</td>
<td></td>
<td>(\langle et, e \rangle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>(\langle et, et \rangle, or \langle et, \langle et, t \rangle \rangle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is</td>
<td>(\langle et, et \rangle, or \langle e, et \rangle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that</td>
<td>(\langle t, t \rangle, or \langle et, e \rangle)</td>
</tr>
</tbody>
</table>
• Lambda calculus
 – Schema of lambda terms:
 \(\lambda v[\beta.\alpha] \) read as “the function which maps every \(v \) such that \(\beta \) to \(\alpha \)”
 – Lambda reduction/conversion
 \((\lambda v.\alpha)(x) = \alpha'\) where \(\alpha' \) is like \(\alpha \) but with every free occurrence of \(v \) replaced by \(x \).
 – Semantic types of lambda terms
 If \(v \) is of type \(\sigma \) and \(\alpha \) is of type \(\tau \), then \(\lambda v.\alpha \) is of type \(\sigma, \tau \).
 – Defining semantics of natural languages expressions using \(\lambda \)-notations
 * Predicates: \(\text{run}, \text{hit}, \text{cat}, \text{gray}, \text{larger than}, \text{from} \)
 * Other functions: \(\text{not}, \text{and}, \text{fast} \)
 * Vacuous words: \(\text{is}, \text{a}, \text{that} \)
 (Note that these words are usually semantically ambiguous)

• Semantic composition
 – Syntactic rules and Tree diagrams
 (Requirement: with provided phrase structure rules, draw a tree diagram for a sentence)
 * Phrase structure rules
 · Branching rules: \(A \rightarrow B \ C \)
 · Non-branching rules: \(A \rightarrow B \)
 * Vocabulary
 – Composition rules:
 * Basic rules: Terminal Nodes, Non-branching Nodes, Functional Application,
 * Other rules: Predicate Modification, Predicate Abstraction
 – Type mismatch

• Determiners and generalized quantifiers
 – Definite determiner: \(\text{the} \)
 * Uniqueness requirement of \(\text{the} \)
 – Quantificational determiner: \(\text{some}, \text{every}, \text{no} \)
 * Restrictor and scope of a quantificational determiner
 – Generalized quantifier: \(\text{someone}, \text{every cat} \)
 * Why is it that generalized quantifiers are not entities?

• Quantifier raising, movement, scope ambiguity
 – What motivates quantifier raising?
 – Quantifier raising is a covert movement taking place at the logical form.
 – How do you represent movement in compositional semantics?
2 Explaining the interesting facts!

- In the first week of this class, we saw a number of interesting semantic phenomena. Now let’s see how the concepts and technicalities learned in this class explain those phenomena.

- **Fact 1**: Sometimes, an inference implied by a positive sentence is also implied by the corresponding negative sentence:

 (1) a. Andy’s cooking is always bad.
 b. Andy’s cooking is not always bad.
 Both ab imply: Andy’s cooking is (at least) sometimes bad.

 (2) a. Suzi knows that Andy’s cooking is bad.
 b. Suzi doesn’t know that Andy’s cooking is bad.
 Both ab imply: Andy’s cooking is bad.

 Your explanation:

- **Fact 2**: Sometimes, the same sentence has multiple readings (*scope ambiguity of quantifiers*):

 (3) Every shark attacked a pirate.

 √ Every shark attacked a (different) pirate. √ Every shark attacked the same pirate.

 Your explanation:
• **Fact 3:** Sometimes, a negative is not interpreted at where it is stated (**neg-raising**):

(4) John doesn’t believe that Mary won the race.

\[= \text{John believes that Mary didn’t win the race.} \]

Explanations:

`believe` triggers a presupposition that the agent is opinionated about the truth/falsehood of the embedded clause. The assertion and this presupposition together entail the NR reading.

(5) John doesn’t believe \(p \).

\[\text{not } [\text{John believes } p] \]

\[\text{John believes } p, \text{ or John believes } \neg p \]

\[\therefore \text{John believes } \neg p. \]

The unopinionated condition `John isn’t opinionated at \(p \)` is a stronger alternative of (??). Affirming the prejacent and denying this stronger alternative yield an NR reading.

(6) John doesn’t believe \(p \).

a. \(O \left[\neg \text{John believes } p \right] \)

b. \(\text{ALT}(S) = \{ \neg [\text{John believes } p], \neg [\text{John believe } p \text{ or John believes } \neg p] \} \)

c. \(\neg [\text{John believes } p] \land \neg [\text{John believe } p \text{ or John believes } \neg p] \)

\[= \neg [\text{John believes } p] \land [\text{John believe } p \text{ or John believes } \neg p] \]

\[= \text{John believes } \neg p \]

• **Fact 4:** Semantics interacts prosody.

(7) a. We only asked ANDY to hand in homework one.

\[\rightarrow \text{We didn’t ask Billy to hand in homework one.} \]

b. We only asked Andy to hand in homework ONE.

\[\rightarrow \text{We didn’t ask Andy to hand in homework two.} \]

The stressed item is focused and is associated with a set of focus-alternatives (just like that a scalar item is associated with a set of scalar alternatives). `Only` presupposes the truth of its prejacent, and negates the focus alternatives that are not entailed by the prejacent.

(8) a. only \(S \text{ we asked ANDY to hand in homework one} \)

b. Alt (S) = {we asked \(x \) to hand in homework one: \(x \in \{\text{Andy, Billy}\} \})

c. \(\neg [\text{we ask Billy to hand in homework one}] \)

(9) a. only \(S \text{ we asked Andy to hand in homework ONE} \)

b. Alt (S) = {we asked Andy to hand in homework \(x \): \(x \in \{\text{one, two}\} \})

c. \(\neg [\text{we ask Andy to hand in homework two}] \)