Measuring patient-perceived quality of care in US hospitals using Twitter.

Citation:

Hawkins JB, Brownstein JS, Tuli G, Runels T, Broecker K, Nsoesie EO, McIver DJ, Rozenblum R, Wright A, Bourgeois FT, et al. Measuring patient-perceived quality of care in US hospitals using Twitter. BMJ Qual Saf. 2015.

Date Published:

2015 Oct 13

Abstract:

BACKGROUND: Patients routinely use Twitter to share feedback about their experience receiving healthcare. Identifying and analysing the content of posts sent to hospitals may provide a novel real-time measure of quality, supplementing traditional, survey-based approaches. OBJECTIVE: To assess the use of Twitter as a supplemental data stream for measuring patient-perceived quality of care in US hospitals and compare patient sentiments about hospitals with established quality measures. DESIGN: 404 065 tweets directed to 2349 US hospitals over a 1-year period were classified as having to do with patient experience using a machine learning approach. Sentiment was calculated for these tweets using natural language processing. 11 602 tweets were manually categorised into patient experience topics. Finally, hospitals with ≥50 patient experience tweets were surveyed to understand how they use Twitter to interact with patients. KEY RESULTS: Roughly half of the hospitals in the US have a presence on Twitter. Of the tweets directed toward these hospitals, 34 725 (9.4%) were related to patient experience and covered diverse topics. Analyses limited to hospitals with ≥50 patient experience tweets revealed that they were more active on Twitter, more likely to be below the national median of Medicare patients (p<0.001) and above the national median for nurse/patient ratio (p=0.006), and to be a non-profit hospital (p<0.001). After adjusting for hospital characteristics, we found that Twitter sentiment was not associated with Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings (but having a Twitter account was), although there was a weak association with 30-day hospital readmission rates (p=0.003). CONCLUSIONS: Tweets describing patient experiences in hospitals cover a wide range of patient care aspects and can be identified using automated approaches. These tweets represent a potentially untapped indicator of quality and may be valuable to patients, researchers, policy makers and hospital administrators.