Publications

Submitted
Trevor David Rhone, Bethany Lusch, Marios Mattheakis, Dylan Sheils, Romakanta Bhattarai, Daniel T. Larson, Yoshiharu Krockenberger, and Efthimios Kaxiras. Submitted. “: Semi-supervised learning for materials discovery”.Abstract
We present an artificial intelligence implementation of semi-supervised
learning that is designed to accelerate materials discovery. The framework is composed
of an autoencoder neural network architecture, which learns a low-dimensional latent
representation of the input materials descriptors, and a multilayer feed-forward neural
network trained to map the latent representation to material properties, such as the
formation energy and magnetic moment. The framework learns a representation that
is appropriate for predicting these properties. Furthermore, because unlabeled data
can be used to improve the representation learned by the autoencoder, this coupled
structure is ideally suited to tackle learning tasks that are challenging due to a sparsity
of labeled data. As a concrete example, we study the performance of this approach
when applied to the search for novel two-dimensional magnetic materials.
2024
Ariel Norambuena, Marios Mattheakis, Francisco J. Gonzalez, and Raul Coto. 1/3/2024. “Physics-informed neural networks for quantum control.” Phys. Rev. Lett. , 132, Pp. 010801 . Publisher's VersionAbstract

Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and features of quantum systems. In addition to steering the system, quantum control has delivered powerful applications for various atomic, optical, mechanical, and solid-state systems. In recent years, traditional control techniques based on optimization processes have been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs). We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and minimizing the power of the control. Furthermore, we illustrate the flexibility of PINNs to solve the same problem under changes in parameters and initial conditions, showing advantages in comparison with standard control techniques.

pinns_quantum_control_prl2023.pdf
2023
Ziyan Zhu, Marios Mattheakis, Weiwei Pan, and Efthimios Kaxiras. 10/2023. “HubbardNet: Efficient Predictions of the Bose-Hubbard Model Spectrum with Deep Neural Networks.” Phys. Rev. Research , 5, Pp. 043084. Publisher's VersionAbstract

We present a deep neural network (DNN) -based model (HubbardNet) to variationally find the ground-state and excited-state wave functions of the one-dimensional and two-dimensional Bose-Hubbard model. Using this model for a square lattice with M sites, we obtain the energy spectrum as an analytical function of the on-site Coulomb repulsion, U, and the total number of particles, N, from a single training. This approach bypasses the need to solve a new Hamiltonian for each different set of values (U,N) and generalizes well even for out-of-distribution (U,N). Using HubbardNet, we identify the two ground-state phases of the Bose-Hubbard model (Mott insulator and superfluid). We show that the DNN-parametrized solutions are in excellent agreement with results from the exact diagonalization of the Hamiltonian, and it outperforms exact diagonalization in terms of computational scaling. These advantages suggest that our model is promising for efficient and accurate computation of exact phase diagrams of many-body lattice Hamiltonians.

2212.13678_hubbardnet.pdf
Artificial intelligence guided studies of van der Waals magnets
Trevor David Rhone, Romakanta Bhattarai, Haralambos Gavras, Bethany Lusch, Misha Salim, Marios Mattheakis, Daniel T. Larson, Yoshiharu Krockenberger, and Efthimios Kaxiras. 4/2023. “Artificial intelligence guided studies of van der Waals magnets.” Advanced Theory and Simulations, Pp. 2300019. Publisher's VersionAbstract
A materials informatics framework to explore a large number of candidate van der Waals (vdW) materials is developed. In particular, in this study a large space of monolayer transition metal halides is investigated by combining high-throughput density functional theory calculations and artificial intelligence (AI) to accelerate the discovery of stable materials and the prediction of their magnetic properties. The formation energy is used as a proxy for chemical stability. Semi-supervised learning is harnessed to mitigate the challenges of sparsely labeled materials data in order to improve the performance of AI models. This approach creates avenues for the rapid discovery of chemically stable vdW magnets by leveraging the ability of AI to recognize patterns in data, to learn mathematical representations of materials from data and to predict materials properties. Using this approach, previously unexplored vdW magnetic materials with potential applications in data storage and spintronics are identified.
Marios Mattheakis, Hayden Joy, and Pavlos Protopapas. 2/2023. “Unsupervised Reservoir Computing for Solving Ordinary Differential Equations.” International Journal on Artificial Intelligence Tools, 32, 1. Publisher's VersionAbstract

There is a wave of interest in using physics-informed neural networks for solving differen-
tial equations. Most of the existing methods are based on feed-forward networks, while
recurrent neural networks solvers have not been extensively explored. We introduce a
reservoir computing (RC) architecture, an echo-state recurrent neural network capable
of discovering approximate solutions that satisfy ordinary differential equations (ODEs).
We suggest an approach to calculate time derivatives of recurrent neural network outputs
without using back-propagation. The internal weights of an RC are fixed, while only a lin-
ear output layer is trained, yielding efficient training. However, RC performance strongly
depends on finding the optimal hyper-parameters, which is a computationally expensive
process. We use Bayesian optimization to discover optimal sets in a high-dimensional
hyper-parameter space efficiently and numerically show that one set is robust and can
be transferred to solve an ODE for different initial conditions and time ranges. A closed-
form formula for the optimal output weights is derived to solve first-order linear equa-
tions in a one-shot backpropagation-free learning process. We extend the RC approach
by solving nonlinear systems of ODEs using a hybrid optimization method consisting of
gradient descent and Bayesian optimization. Evaluation of linear and nonlinear systems
of equations demonstrates the efficiency of the RC ODE solver.

2108.11417.pdf
2022
Marios Mattheakis, David Sondak, Akshunna S. Dogra, and Pavlos Protopapas. 6/30/2022. “Hamiltonian neural networks for solving equations of motion.” Phys. Rev. E, 105, Pp. 065305. Publisher's VersionAbstract

There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton’s equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic H ́enon-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network in order to achieve the same order of the numerical error in the predicted phase space trajectories.

 

hamiltoniannetworkssolvingode_pre.pdf
Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, and Stephen Roberts. 6/10/2022. “One-Shot Transfer Learning of Physics-Informed Neural Networks.” In ICML, workshop AI4Science. Publisher's VersionAbstract
Solving differential equations efficiently and accurately sits at the heart of progress in many areas of scientific research, from classical dynamical systems to quantum mechanics. There is a surge of interest in using Physics-Informed Neural Networks (PINNs) to tackle such problems as they provide numerous benefits over traditional numerical approaches. Despite their potential benefits for solving differential equations, transfer learning has been under explored. In this study, we present a general framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations. This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network. We demonstrate the efficacy of the proposed deep learning approach by solving several real-world problems, such as first- and second-order linear ordinary equations, the Poisson equation, and the time-dependent Schrodinger complex-value partial differential equation.
2110.11286.pdf
Mattia Angelia, Georgios Neofotistos, Marios Mattheakis, and Efthimios Kaxiras. 1/2022. “Modeling the effect of the vaccination campaign on the Covid-19 pandemic.” Chaos, Solitons and Fractals, 154, Pp. 111621. Publisher's VersionAbstract

Population-wide vaccination is critical for containing the SARS-CoV-2 (Covid-19) pandemic when combined with restrictive and prevention measures. In this study we introduce SAIVR, a mathematical model able to forecast the Covid-19 epidemic evolution during the vaccination campaign. SAIVR extends the widely used Susceptible-Infectious-Removed (SIR) model by considering the Asymptomatic (A) and Vaccinated (V) compartments. The model contains sev- eral parameters and initial conditions that are estimated by employing a semi-supervised machine learning procedure. After training an unsupervised neural network to solve the SAIVR differ- ential equations, a supervised framework then estimates the optimal conditions and parameters that best fit recent infectious curves of 27 countries. Instructed by these results, we performed an extensive study on the temporal evolution of the pandemic under varying values of roll-out daily rates, vaccine efficacy, and a broad range of societal vaccine hesitancy/denial levels. The concept of herd immunity is questioned by studying future scenarios which involve different vaccination efforts and more infectious Covid-19 variants.

2108.13908.pdf
Anwesh Bhattacharya, Marios Mattheakis, and Pavlos Protopapas. 2022. “Encoding Involutory Invariance in Neural Networks.” In IJCNN at IEEE World Congress on Computational Intelligence. Publisher's VersionAbstract

In certain situations, Neural Networks (NN) are trained upon data that obey underlying physical symmetries. However, it is not guaranteed that NNs will obey the underlying symmetry unless embedded in the network structure. In this work, we explore a special kind of symmetry where functions are invariant with respect to involutory linear/affine transformations up to parity p = ±1. We develop mathe- matical theorems and propose NN architectures that ensure invariance and universal approximation properties. Numerical experiments indicate that the proposed mod- els outperform baseline networks while respecting the imposed symmetry. An adaption of our technique to convolutional NN classification tasks for datasets with inherent horizontal/vertical reflection symmetry has also been proposed.

2106.12891.pdf
Marios Mattheakis, Gabriel R. Schleder, Daniel T. Larson, and Efthimios Kaxiras. 2022. “First principles physics-informed neural network for quantum wavefunctions and eigenvalue surfaces.” In NeurIPS Workshop on Machine Learning and Physical Sciences. https://arxiv.org/pdf/2211.04607.pdf. Publisher's VersionAbstract

Physics-informed neural networks have been widely applied to learn general para- metric solutions of differential equations. Here, we propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems. We apply our method to solve the hydrogen molecular ion. This is an ab initio deep learning method that solves the Schrödinger equation with the Coulomb potential yielding realistic wavefunctions that include a cusp at the ion positions. The neural solutions are continuous and differentiable functions of the interatomic distance and their derivatives are analytically calculated by applying automatic differentiation. Such a parametric and analytical form of the solutions is useful for further calculations such as the determination of force fields.

2211.04607.pdf
Ziyan Zhu, Marios Mattheakis, Weiwei Pan, and Efthimios Kaxiras. 2022. “HubbardNet: Efficient Predictions of the Bose-Hubbard Model Spectrum with Deep Neural Networks.” In NeurIPS Workshop on Machine Learning and Physical Sciences. Publisher's VersionAbstract

We present a deep neural network (DNN)-based model, the HubbardNet, to vari- ationally solve for the ground state and excited state wavefunctions of the one- dimensional and two-dimensional Bose-Hubbard model on a square lattice. Using this model, we obtain the Bose-Hubbard energy spectrum as an analytic function of the Coulomb parameter, U , and the total number of particles, N , from a single training, bypassing the need to solve a new hamiltonian for each different input. We show that the DNN-parametrized solutions have excellent agreement with exact di- agonalization while outperforming exact diagonalization in terms of computational scaling, suggesting that our model is promising for efficient, accurate computation of exact phase diagrams of many-body lattice hamiltonians.

Henry Jin, Marios Mattheakis, and Pavlos Protopapas. 2022. “Physics-Informed Neural Networks for Quantum Eigenvalue Problems.” In IJCNN at IEEE World Congress on Computational Intelligence. Publisher's VersionAbstract
Eigenvalue problems are critical to several fields of science and engineering. We expand on the method of using unsupervised neural networks for discovering eigenfunctions and eigenvalues for differential eigenvalue problems. The obtained solutions are given in an analytical and differentiable form that identically satisfies the desired boundary conditions. The network optimization is data-free and depends solely on the predictions of the neural network. We introduce two physics-informed loss functions. The first, called ortho-loss, motivates the network to discover pair-wise orthogonal eigenfunctions. The second loss term, called norm-loss, requests the discovery of normalized eigenfunctions and is used to avoid trivial solutions. We find that embedding even or odd symmetries to the neural network architecture further improves the convergence for relevant problems. Lastly, a patience condition can be used to automatically recognize eigenfunction solutions. This proposed unsupervised learning method is used to solve the finite well, multiple finite wells, and hydrogen atom eigenvalue quantum problems.
2022_pinn_quantum.pdf
Hayden Joy, Marios Mattheakis, and Pavlos Protopapas. 2022. “RcTorch: a PyTorch Reservoir Computing Package with Automated Hyper-Parameter Optimization.” arXiv paper. Publisher's VersionAbstract

Reservoir computer (RC) are among the fastest to train of all neural networks, especially when they are compared to other recurrent neural networks. RC has this advantage while still handling sequential data exceptionally well. However, RC adoption has lagged other neural network models because of the model’s sensitivity to its hyper-parameters (HPs). A modern unified software package that automatically tunes these parameters is missing from the literature. Manually tuning these numbers is very difficult, and the cost of traditional grid search methods grows exponentially with the number of HPs considered, discouraging the use of the RC and limiting the complexity of the RC models which can be devised. We address these problems by introducing RcTorch, a PyTorch based RC neural network package with automated HP tuning. Herein, we demonstrate the utility of RcTorchby using it to predict the complex dynamics of a driven pendulum being acted upon by varying forces. This work includes coding examples. Example Python Jupyter notebooks can be found on our GitHub repository https://github.com/blindedjoy/RcTorch and documentation can be found at https://rctorch.readthedocs.io/.

2207.05870.pdf
Raphael Pellegrin, Blake Bullwinkel, Marios Mattheakis, and Pavlos Protopapas. 2022. “Transfer Learning with Physics-Informed Neural Networks for Efficient Simulation of Branched Flows.” In NeurIPS Workshop on Machine Learning and Physical Sciences. Publisher's VersionAbstract
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving differential equations and, more generally, to applying deep learning to problems in the physical sciences. We adopt a recently developed transfer learning approach for PINNs and introduce a multi-head model to efficiently obtain accurate solutions to nonlinear systems of ordinary differential equations with random potentials. In particular, we apply the method to simulate stochastic branched flows, a universal phenomenon in random wave dynamics. Finally, we compare the results achieved by feed forward and GAN-based PINNs on two physically relevant transfer learning tasks and show that our methods provide significant computational speedups in comparison to standard PINNs trained from scratch.
2021
Shaan Desai, Marios Mattheakis, David Sondak, Pavlos Protopapas, and Stephen Roberts. 9/2021. “Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems.” Phys Rev. E, 104, Pp. 034312. Publisher's VersionAbstract
Accurately learning the temporal behavior of dynamical systems requires models with well-chosen learning biases. Recent innovations embed the Hamiltonian and Lagrangian formalisms into neural networks and demonstrate a significant improvement over other approaches in predicting trajectories of physical systems. These methods generally tackle autonomous systems that depend implicitly on time or systems for which a control signal is known apriori. Despite this success, many real world dynamical systems are non-autonomous, driven by time-dependent forces and experience energy dissipation. In this study, we address the challenge of learning from such non-autonomous systems by embedding the port-Hamiltonian formalism into neural networks, a versatile framework that can capture energy dissipation and time-dependent control forces. We show that the proposed \emph{port-Hamiltonian neural network} can efficiently learn the dynamics of nonlinear physical systems of practical interest and accurately recover the underlying stationary Hamiltonian, time-dependent force, and dissipative coefficient. A promising outcome of our network is its ability to learn and predict chaotic systems such as the Duffing equation, for which the trajectories are typically hard to learn.
2107.08024.pdf
Shaan Desai, Marios Mattheakis, and Stephen Roberts. 9/2021. “Variational Integrator Graph Networks for Learning Energy Conserving Dynamical Systems.” Phys. Rev. E, 104, Pp. 035310. Publisher's VersionAbstract
Recent advances show that neural networks embedded with physics-informed priors significantly outperform vanilla neural networks in learning and predicting the long term dynamics of complex physical systems from noisy data. Despite this success, there has only been a limited study on how to optimally combine physics priors to improve predictive performance. To tackle this problem we unpack and generalize recent innovations into individual inductive bias segments. As such, we are able to systematically investigate all possible combinations of inductive biases of which existing methods are a natural subset. Using this framework we introduce Variational Integrator Graph Networks - a novel method that unifies the strengths of existing approaches by combining an energy constraint, high-order symplectic variational integrators, and graph neural networks. We demonstrate, across an extensive ablation, that the proposed unifying framework outperforms existing methods, for data-efficient learning and in predictive accuracy, across both single and many-body problems studied in recent literature. We empirically show that the improvements arise because high order variational integrators combined with a potential energy constraint induce coupled learning of generalized position and momentum updates which can be formalized via the Partitioned Runge-Kutta method.
2004.13688.pdf
Tiago A. E. Ferreira, Marios Mattheakis, and Pavlos Protopapas. 2021. “A New Artificial Neuron Proposal with Trainable Simultaneous Local and Global Activation Function”.Abstract
The activation function plays a fundamental role in the artificial neural net-work learning process. However, there is no obvious choice or procedure todetermine the best activation function, which depends on the problem. Thisstudy proposes a new artificial neuron, named Global-Local Neuron, with atrainable activation function composed of two components, a global and alocal. The global component term used here is relative to a mathematicalfunction to describe a general feature present in all problem domains. Thelocal component is a function that can represent a localized behavior, like atransient or a perturbation. This new neuron can define the importance ofeach activation function component in the learning phase. Depending on theproblem, it results in a purely global, or purely local, or a mixed global and local activation function after the training phase. Here, the trigonometric sinefunction was employed for the global component and the hyperbolic tangentfor the local component. The proposed neuron was tested for problems wherethe target was a purely global function, or purely local function, or a com-position of two global and local functions. Two classes of test problems wereinvestigated, regression problems and differential equations solving. The experimental tests demonstrated the Global-Local Neuron network’s superiorperformance, compared with simple neural networks with sine or hyperbolictangent activation function, and with a hybrid network that combines thesetwo simple neural networks.
2101.06100.pdf
2020
Alessandro Paticchio, Tommaso Scarlatti, Marios Mattheakis, Pavlos Protopapas, and Marco Brambilla. 12/2020. “Semi-supervised Neural Networks solve an inverse problem for modeling Covid-19 spread.” In 2020 NeurIPS Workshop on Machine Learning and the Physical Sciences. NeurIPS. Publisher's VersionAbstract

Studying the dynamics of COVID-19 is of paramount importance to understanding the efficiency of restrictive measures and develop strategies to defend against up- coming contagion waves. In this work, we study the spread of COVID-19 using a semi-supervised neural network and assuming a passive part of the population remains isolated from the virus dynamics. We start with an unsupervised neural network that learns solutions of differential equations for different modeling param- eters and initial conditions. A supervised method then solves the inverse problem by estimating the optimal conditions that generate functions to fit the data for those infected by, recovered from, and deceased due to COVID-19. This semi-supervised approach incorporates real data to determine the evolution of the spread, the passive population, and the basic reproduction number for different countries.

2020_covid_2010.05074.pdf
Henry Jin, Marios Mattheakis, and Pavlos Protopapas. 12/2020. “Unsupervised Neural Networks for Quantum Eigenvalue Problems.” In 2020 NeurIPS Workshop on Machine Learning and the Physical Sciences. NeurIPS. Publisher's VersionAbstract
Eigenvalue problems are critical to several fields of science and engineering. We present a novel unsupervised neural network for discovering eigenfunctions and eigenvalues for differential eigenvalue problems with solutions that identically satisfy the boundary conditions. A scanning mechanism is embedded allowing the method to find an arbitrary number of solutions. The network optimization is data-free and depends solely on the predictions. The unsupervised method is used to solve the quantum infinite well and quantum oscillator eigenvalue problems.
2020_eigenvalues_2010.05075.pdf
Marios Mattheakis. 8/26/2020. “Riding Waves in Neuromorphic Computing.” APS Physics 12 (132), Pp. 1-3. Publisher's VersionAbstract
An artificial neural network incorporating nonlinear waves could help reduce energy consumption within a bioinspired (neuromorphic) computing device.
physics.13.132.pdf

Pages