Quantal Analysis

The experiment:

epp = end-plate potential (general term is epsp for excitatory post-synaptic potential)
mepp = miniature end-plate potential (general term is mepsp) = quantal unit

Quantal hypothesis: Single, spontaneous quantal events (mepps) represent the building blocks of for the synaptic potentials evoked by stimulation (epps).

\[m = \text{“quantal content”} = \text{mean number of quanta (a.k.a. vesicles) that are released to make up the end-plate potential (epp)} \]

There are two ways of calculating \(m \).

First method: (this is essentially a restatement of the hypothesis!)

\[m_1 = \frac{epp}{mepp} \]

- \(epp \) = mean amplitude of epp response (the post-synaptic response to one or usually more quanta being released)
- \(mepp \) = mean amplitude of miniature epp (in response to one quanta released)

Second method: (probabilistic)

Failures and variability in EPP amplitude implied probabilistic nature of transmission

Katz and colleagues considered models in which there were \(n \) quanta (vesicles) available for release with probability \(p \).

\[m_2 = n \times p \]

One special case that accounts for situations where \(n \) is very large, and \(p \) is very small is Poisson statistics. After a little bit of math, you can arrive at:

\[m_2 = \ln \left(\frac{\text{trials}}{\text{failures}} \right) \]
If \(m_1 = m_2 \), then transmitter release from vesicles obeys Poisson statistics.

Some definitions:

Quantal content (m): (see definition on first page) = quantal number: the number of quanta that are released, measured by the size of the epp in mV. It is modulated pre-synaptically by changing transmitter release.

Quantal size: the size of 1 quanta, measured as the smallest post-synaptic depolarization (mepp) in mV, i.e. the response to a single vesicle being released. It is modulated post-synaptically by changing the response to transmitter release.

<table>
<thead>
<tr>
<th>Perturbation</th>
<th>mepp</th>
<th>epp</th>
<th>quantal content (m)</th>
<th>quantal size</th>
<th>pre or post?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease ([Ca^{2+}]_{ext})</td>
<td>⇓</td>
<td>⇑</td>
<td>⇓</td>
<td>⇓</td>
<td>pre</td>
</tr>
<tr>
<td>Increase # receptors on post-synaptic terminal</td>
<td>↑</td>
<td>↑</td>
<td>⇓</td>
<td>↑</td>
<td>post</td>
</tr>
<tr>
<td>Add botulinum toxin</td>
<td>⇓</td>
<td>⇑</td>
<td>⇓</td>
<td>⇓</td>
<td>pre</td>
</tr>
<tr>
<td>Increase # voltage-gated (Ca^{2+}) channels on pre-synaptic terminal</td>
<td>⇓</td>
<td>↑</td>
<td>↑</td>
<td>⇓</td>
<td>pre</td>
</tr>
<tr>
<td>Add serotonin to the bath (provided the pre-synaptic cell responds to serotonin)*</td>
<td>⇓</td>
<td>↑</td>
<td>↑</td>
<td>⇓</td>
<td>pre, facilitation</td>
</tr>
</tbody>
</table>

* serotonin (5-HT) can have different roles. In class, we saw that a particular 5-HT receptor, a GPCR, leads to a signaling cascade where the formation of cAMP activates protein kinase A, which in this case leads to the closing of K+ channels. As a result, the post-synaptic cell’s response is longer (see slide 20 of lecture 8 for all the steps.)