Econ 2110, fall 2016, Part IVb
Asymptotic Theory:
\(\delta \)-method and \(M \)-estimation

Maximilian Kasy

Department of Economics, Harvard University
Example

- Suppose we estimate the average effect of class size on student exam grades, using the project STAR data.
- What is the variance of our estimator?
- Can we form a confidence set for the size of the effect?
- Can we reject the null hypothesis of a zero average effect?
- Also if exam scores are not normally distributed?
Example

- Suppose we estimate the top 1% income share using data on the number of individuals in different tax brackets,
- assuming that top incomes are Pareto distributed.
- Suppose we calculate the implied optimal top tax rate.
- Can we form a 95% confidence interval for this optimal tax rate?
Takeaways for this part of class

- How we get our formulas for standard deviations in many settings.
- When and why we can expect asymptotic normality for many estimators (and what that means).
- When we might expect problems to arise for asymptotic approximations.
Roadmap

- IVa
 - Types of convergence
 - Laws of large numbers (LLN) and central limit theorems (CLT)

- IVb
 - The delta method
 - \(M \)- and \(Z \)-Estimators
 - Special \(M \)-Estimators
 - Ordinary least squares (OLS)
 - Maximum likelihood estimation (MLE)
 - Confidence sets
Part IVb

The delta method

M- and Z-Estimators
 Consistency
 Asymptotic normality

Special M-Estimators
 Least squares
 Maximum likelihood

Confidence sets
The delta method

- Suppose we know the asymptotic behavior of sequence X_n,
- we are interested in $Y_n = g(X_n)$, and
- g is “smooth.”
- Often a Taylor expansion of g around the probability limit of X_n yields the answer,
- where we can ignore higher order terms in the limit.

$$Y_n = g(\beta) + g'(\beta) \cdot (X_n - \beta) + o(\|X_n - \beta\|).$$

- This idea is called the delta method.
Theorem (Delta method)

Assume that

\[r_n \cdot (X_n - \beta) \xrightarrow{d} X \]

for some sequence \(r_n \to \infty \) and some random variable \(X \).

Let \(Y_n = g(X_n) \) for a function \(g \) which is differentiable at \(\beta \).

Then

\[r_n \cdot (Y_n - g(\beta)) \xrightarrow{d} g'(\beta) \cdot X. \]
Proof:

- By differentiability of g,

$$Y_n = g(\beta) + g'(\beta) \cdot (X_n - \beta) + o(\|X_n - \beta\|).$$

- Rearranging gives

$$r_n \cdot (Y_n - g(\beta)) = r_n \cdot g'(\beta) \cdot (X_n - \beta) + r_n \cdot o(\|X_n - \beta\|).$$

- The second term vanishes asymptotically, since $r_n \cdot (X_n - \beta)$ converges in distribution.

- The continuous mapping theorem applied to matrix multiplication by $g'(\beta)$ now yields the claim.
Leading special case

Let X_n be a sequence of random variables such that

$$\sqrt{n}(X_n - b) \rightarrow^d \mathcal{N}(0, \sigma^2).$$

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable at a.

Then

$$\sqrt{n}(g(X_n) - g(b)) \rightarrow^d \mathcal{N}(0, (g'(b))^2 \sigma^2).$$
There are important cases where the delta method provides poor approximations. Examples: near $\beta = 0$, for

1. $g(X) = |X|
2. g(X) = 1/X
3. g(X) = \sqrt{X}$

Relevant for:

1. weak instruments
2. inference under partial identification / moment inequalities
Practice problem

- Suppose X_i are iid with mean 1 and variance 2, and $n = 25$.
- Let $Y = \bar{X}^2$.
- Provide an approximation for the distribution of Y.
- Now suppose X_i has mean 0 and variance 2.
- Provide an approximation for the distribution of Y.
Many interesting objects β can be written in the form

$$\beta_0 = \arg\max_{\beta} E[m(\beta, X)].$$

(1)

This defines a mapping from the probability distribution of X to a parameter β.

In our decision theory notation:

$$\beta_0 = \beta(\theta)$$
Example - Least squares

- The coefficients β_0
- of the best linear predictor

\[\hat{Y} = X \cdot \beta_0 \]

- minimize the average squared prediction error,

\[\beta_0 = \arg\min_\beta E[(Y - X \cdot \beta)^2]. \]

- Thus

\[m(\beta, X, Y) = (Y - X \cdot \beta)^2. \]
Example - Maximum likelihood

- Suppose Y is distributed according to the density
 \[Y \sim f(Y, \beta_0). \]

- Then β_0 maximizes the expected log likelihood,
 \[\beta_0 = \arg\max_{\beta} E[\log(f(Y, \beta))]. \]

- We will show this later.

- Thus
 \[m(\beta, X) = \log(f(Y, \beta)). \]
M-Estimator

- Use E_n to denote the sample average, e.g.

$$E_n[X] = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- We can define an estimator for β which solves the analogous conditions
- replacing the population expectation by a sample average,
- that is

$$\hat{\beta} = \arg\max_{\beta} E_n[m(\beta, X)]. \quad (2)$$

- Such an estimator is called an M-estimator (for “maximizer”).
Examples continued

1. **Least squares:**
 ordinary least squares (OLS) estimator
 \[\hat{\beta} = \arg\min_{\beta} E_n[(Y - X \cdot \beta)^2] \]

2. **Maximum likelihood:**
 maximum likelihood estimator (MLE)
 \[\hat{\beta} = \arg\max_{\beta} E_n[\log(f(Y, \beta))] \]
Z-Estimator

- If \(m \) is differentiable and \(\beta \) is an interior maximizer, equation (1) implies the first order conditions

\[
\frac{\partial}{\partial \beta} E[m(\beta, X)] = E[m'(\beta_0, X)] = 0.
\]

- If we directly define the estimator via

\[
E_n[m'(\hat{\beta}, X_i)] = 0, \tag{3}
\]

then \(\hat{\beta} \) is called a Z-estimator (for “zero”).
Practice problem

Find the first order conditions for MLE and for OLS
Solution:

1. **Least squares:**

 \[E_n[\hat{e} \cdot X] = 0 \]

 where

 \[\hat{e} = Y - X \cdot \hat{\beta} \]

 is the regression residual.

2. **Maximum likelihood:**

 \[E_n \left[S(Y, \hat{\beta}) \right] = 0 \]

 where

 \[S(Y, \beta) := \frac{\partial}{\partial \beta} \log(f(Y, \beta)) \]

 is called the score.
Consistency

- Basic requirement for good estimators:
 - That they are close to the population estimand with large probability as sample sizes get large:

\[P(||\hat{\beta} - \beta_0|| < \epsilon) \rightarrow 1 \quad \forall \epsilon. \]

- Thus:

\[\hat{\beta} \rightarrow^p \beta_0 \]

- This property is called consistency.
Theorem (Consistency of M-Estimators)

M-estimators are consistent if

1. \[\sup_{\beta} \| E_n[m(\beta, X)] - E[m(\beta, X)] \| \to^p 0 \]

2. \[\sup_{\beta : \|\beta - \beta_0\| > \epsilon} E[m(\beta, X)] < E[m(\beta_0, X)]. \]

- The first condition holds in many cases by some “uniform law of large numbers.”
- The second condition states that the maximum is “well separated.”
Figure: Proof of consistency
Sketch of proof:

- By assumption (2), for every ε there is a δ, such that if

$$\sup_{\beta} \| E_n[m(\beta, X)] - E[m(\beta, X)] \| < \delta$$

then $\| \hat{\beta} - \beta_0 \| < \varepsilon$.

- By assumption (1),

$$\sup_{\beta} \| E_n[m(\beta, X)] - E[m(\beta, X)] \| < \delta$$

happens with probability going to 1 as $n \to \infty$.
Asymptotic normality

What is the (approximate) distribution of M-estimators?

Consistency just states that they converge to a point.

But if we “blow up” the scale appropriately?

For instance by \sqrt{n}?

Then we get convergence to a normal distribution!
Theorem

Under suitable differentiability conditions, M-estimators and Z-estimators are asymptotically normal,

\[\sqrt{n}(\hat{\beta} - \beta_0) \xrightarrow{d} \mathcal{N}(0, V) \]

for some \(V \).
Figure: Proof of asymptotic normality
Sketch of proof:

- follows by arguments similar to our derivation of the delta method.
- if m is twice differentiable, by the intermediate value theorem

 $$0 = E_n[m'(\hat{\beta}, X)] = E_n[m'(\beta_0, X)] + E_n[m''(\tilde{\beta}, X)] \cdot (\hat{\beta} - \beta_0)$$

 for some $\tilde{\beta}$ between $\hat{\beta}$ and β_0.
- Rearranging yields

 $$\sqrt{n}(\hat{\beta} - \beta_0) = -\left(E_n[m''(\tilde{\beta}, X)]\right)^{-1} \cdot \sqrt{n}E_n[m'(\beta_0, X)].$$

- Consistency of $\hat{\beta}$ and a uniform law of large numbers for m''' imply

 $$\left(E_n[m''(\tilde{\beta}, X)]\right)^{-1} \rightarrow^p (E[m''(\beta_0, X)]^{-1}. $$
The central limit theorem implies
\[\sqrt{n}E_n[m'(\beta_0, X)] \rightarrow^d N(0, \text{Var}(m'(\beta_0, X))). \]

Slutsky’s theorem then yields the asymptotic distribution of \(\hat{\beta} \) as
\[\sqrt{n}(\hat{\beta} - \beta_0) \rightarrow^d N(0, V) \]
where
\[V = (E[m''(\beta_0, X)])^{-1} \cdot \text{Var}(m'(\beta_0, X)) \cdot (E[m''(\beta_0, X)])^{-1}. \]
Estimators of the asymptotic variance

- Asymptotic variance: “sandwich” form
- Estimators for this variance: sample analogs of both components
- For instance:
 \[\hat{V} = \left(E_n[m''(\hat{\beta}, X)] \right)^{-1} \cdot E_n \left[(m'(\hat{\beta}, X))^2 \right] \cdot \left(E_n[m''(\hat{\beta}, X)] \right)^{-1} \]

- This is the kind of variance estimator you get when you type , robust after some estimation commands in Stata.
Least squares

- Recall OLS:
 \[\hat{\beta} = \text{argmin}_\beta E_n[(Y - X \cdot \beta)^2] \]

- First order condition:
 \[E_n[e \cdot X] = 0 \]
 where
 \[e := Y - X \cdot \hat{\beta} \]

- In our general notation:
 \[m(Y, X, \beta) = e^2 = (Y - X \cdot \beta)^2 \]
 \[m'(Y, X, \beta) = -2e \cdot X \]
 \[m''(Y, X, \beta) = 2 \cdot XX^t \]
Apply the asymptotic results for general M-estimators

$\hat{\beta}$ is consistent for β_0, the “best linear predictor,”

$$\beta_0 = \arg\min_{\beta} E[(Y - X \cdot \beta)^2].$$

$\hat{\beta}$ is asymptotically normal

$$\sqrt{n} \cdot (\hat{\beta} - \beta_0) \xrightarrow{d} N(0, V)$$
Asymptotic variance

\[V = \left(\mathbb{E}[m''(\beta_0, X)] \right)^{-1} \cdot \text{Var}(m'(\beta_0, X)) \cdot \left(\mathbb{E}[m''(\beta_0, X)] \right)^{-1} \]

\[= \mathbb{E}[XX^t]^{-1} \cdot \mathbb{E}[e^2 XX^t] \cdot \mathbb{E}[XX^t]^{-1} \]

“heteroskedasticity robust variance estimator for ordinary least squares:”

\[\frac{1}{n} \cdot \mathbb{E}_n[XX^t]^{-1} \cdot \mathbb{E}_n[\hat{e}^2 XX^t] \cdot \mathbb{E}_n[XX^t]^{-1} \quad (5) \]

Factor of \(1/n \) to get variance of \(\hat{\beta} \) rather than \(\sqrt{n} \cdot \hat{\beta} \)
Lemma

- Suppose \(Y \sim f(y, \beta_0) \),
- where \(f \) denotes a family of densities indexed by \(\beta \).
- Then
 \[
 E[\log(f(Y, \beta_0))] \geq E[\log(f(Y, \beta))].
 \]
 (6)
- The inequality is strict if \(f(Y, \beta_0) \neq f(Y, \beta) \) with positive probability.
Sketch of proof:

▶ Want to show:

\[
0 \geq \int \log(f(y, \beta)) f(y, \beta_0) dy - \int \log(f(y, \beta_0)) f(y, \beta_0) dy
\]

\[
= \int \log \left(\frac{f(y, \beta)}{f(y, \beta_0)} \right) f(y, \beta_0) dy.
\]

▶ Jensen’s inequality, applied to the concave function \(\log\):

\[
\int \log \left(\frac{f(y, \beta)}{f(y, \beta_0)} \right) f(y, \beta_0) dy
\]

\[
\leq \log \left(\int \frac{f(y, \beta)}{f(y, \beta_0)} f(y, \beta_0) dy \right)
\]

\[
= \log(1) = 0.
\]
Terminology for maximum likelihood

- **Log likelihood:**
 \[
 L_n(\beta) = n \cdot E_n[m(Y, \beta)] = \sum_i \log(f(Y_i, \beta))
 \]

- **Score:**
 \[
 S_i(\beta) = m'(Y_i, \beta) = \frac{\partial}{\partial \beta} \log(f(Y_i, \beta))
 \]

- **Information:**
 \[
 I(\beta) = -E[m''(Y, \beta)] = -E[\partial S/\partial \beta]
 \]
Lemma

If \(Y_i \sim f(y, \beta_0) \), then

\[
\text{Var}(S(\beta_0)) = I(\beta_0) = -E[\partial S(\beta_0)/\partial \beta].
\]

Proof:

Differentiate \(0 = E[S] = \int S(y, \beta_0)f(y, \beta_0)\,dy \) with respect to \(\beta_0 \) to get

\[
0 = \int S'\,f\,dy + \int Sf'\,dy = E[S'] + E[S^2].
\]

But:

Parametric models are usually wrong.
So don’t trust this equality.

If it holds, the asymptotic variance for the MLE simplifies to

\[
V = E[S']^{-1} \cdot E[S^2] \cdot E[S']^{-1} = I(\beta_0)^{-1}.
\]
Confidence sets

- **Confidence set** C: a set of βs, which is calculated as a function of data Y

- Confidence set C for β of **level** α:

 \[P(\beta_0 \in C) \geq 1 - \alpha. \]

 for all distributions of Y (i.e., all θ) and corresponding β_0.

- In this expression β_0 is fixed and C is random.

- Confidence set C_n for β of **asymptotic level** α:

 \[\lim_{n \to \infty} P(\beta \in C_n) \geq 1 - \alpha. \]
Confidence sets for M-estimators

- can use asymptotic normality to get asymptotic confidence sets

Suppose

\[
\sqrt{n}(\hat{\beta} - \beta_0) \to^d N(0, \hat{V})
\]

\[
\hat{V} \to^p V
\]

Define

\[
\tilde{\beta} := \sqrt{n} \cdot \hat{V}^{-1/2} \cdot (\hat{\beta} - \beta_0).
\]

Slutsky’s theorem \(\Rightarrow\)

\[
\tilde{\beta} \to^d N(0, I),
\]

and therefore

\[
\|\tilde{\beta}\|^2 \to^d \chi_k^2,
\]

where \(k = \text{dim}(\beta).\)
Let $\chi^2_{k,1-\alpha}$ be the $1-\alpha$ quantile of the χ^2_k distribution.

Define

$$C_n = \left\{ \beta : \| \sqrt{n} \cdot V^{-1/2} \cdot (\hat{\beta} - \beta) \|^2 \leq \chi^2_{k,1-\alpha} \right\}. \quad (9)$$

We get

$$P(\beta_0 \in C_n) \to 1 - \alpha.$$

C_n is a confidence set for β of asymptotic level α.

C_n is an ellipsoid.