Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive-Compulsive Disorder

Citation:

Zhiqiang Sha, Kale E Edmiston, Amelia Versace, Jay C Fournier, Simona Graur, Tsafrir Greenberg, João Paulo Lima Santos, Henry W Chase, Richelle S Stiffler, Lisa Bonar, Robert Hudak, Anastasia Yendiki, Benjamin D Greenberg, Steven Rasmussen, Hesheng Liu, Gregory Quirk, Suzanne Haber, and Mary L Phillips. 2020. “Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive-Compulsive Disorder.” Biol Psychiatry Cogn Neurosci Neuroimaging, 5, 4, Pp. 438-447.

Abstract:

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors. Neuroimaging studies have implicated altered connectivity among the functional networks of the cerebral cortex in the pathophysiology of OCD. However, there has been no comprehensive investigation of the cross-talk between the cerebellum and functional networks in the cerebral cortex. METHODS: This functional neuroimaging study was completed by 44 adult participants with OCD and 43 healthy control participants. We performed large-scale data-driven brain network analysis to identify functional connectivity patterns using resting-state functional magnetic resonance imaging data. RESULTS: Participants with OCD showed lower functional connectivity within the somatomotor network and greater functional connectivity among the somatomotor network, cerebellum, and subcortical network (e.g., thalamus and pallidum; all p < .005). Network-based statistics analyses demonstrated one component comprising connectivity within the somatomotor network that showed lower connectivity and a second component comprising connectivity among the somatomotor network, and motor regions in particular, and the cerebellum that showed greater connectivity in participants with OCD relative to healthy control participants. In participants with OCD, abnormal connectivity across both network-based statistics-derived components positively correlated with OCD symptom severity (p = .006). CONCLUSIONS: To our knowledge, this study is the first comprehensive investigation of large-scale network alteration across the cerebral cortex, subcortical regions, and cerebellum in OCD. Our findings highlight a critical role of the cerebellum in the pathophysiology of OCD.