Synergistic Role of Quantitative Diffusion Magnetic Resonance Imaging and Structural Magnetic Resonance Imaging in Predicting Outcomes After Traumatic Brain Injury

Citation:

Arman Avesta, Anastasia Yendiki, Vincent Perlbarg, Lionel Velly, Omid Khalilzadeh, Louis Puybasset, Damien Galanaud, and Rajiv Gupta. 2022. “Synergistic Role of Quantitative Diffusion Magnetic Resonance Imaging and Structural Magnetic Resonance Imaging in Predicting Outcomes After Traumatic Brain Injury.” J Comput Assist Tomogr, 46, 2, Pp. 236-243.

Abstract:

OBJECTIVE: This study aimed to assess if quantitative diffusion magnetic resonance imaging analysis would improve prognostication of individual patients with severe traumatic brain injury. METHODS: We analyzed images of 30 healthy controls to extract normal fractional anisotropy ranges along 18 white-matter tracts. Then, we analyzed images of 33 patients, compared their fractional anisotropy values with normal ranges extracted from controls, and computed severity of injury to white-matter tracts. We also asked 2 neuroradiologists to rate severity of injury to different brain regions on fluid-attenuated inversion recovery and susceptibility-weighted imaging. Finally, we built 3 models: (1) fed with neuroradiologists' ratings, (2) fed with white-matter injury measures, and (3) fed with both input types. RESULTS: The 3 models respectively predicted survival at 1 year with accuracies of 70%, 73%, and 88%. The accuracy with both input types was significantly better (P < 0.05). CONCLUSIONS: Quantifying severity of injury to white-matter tracts complements qualitative imaging findings and improves outcome prediction in severe traumatic brain injury.