A localized spacetime Penrose inequality and horizon detection with quasi-local mass

Abstract:

Our setting is a simply connected bounded domain with a smooth connected boundary, which arises as an initial data set for the general relativistic constraint equations satisfying the dominant energy condition. Assuming the domain to be admissible in a certain precise sense, we prove a localized spacetime Penrose inequality for the Liu-Yau and Wang-Yau quasi-local masses and the area of an outermost marginally outer trapped surface (MOTS). On the basis of this inequality, we obtain sufficient conditions for the existence and non-existence of a MOTS (along with outer trapped surfaces) in the domain, and for the existence of a minimal surface in its Jang graph, expressed in terms of various quasi-local mass quantities and the boundary geometry of the domain.
 

Publisher's Version

Last updated on 09/15/2020