Talk at Johns Hopkins University

November 16, 2016

I will be giving a talk on Enabling Advanced Visualization and Autonomous Instrument Tracking in Cardiac Interventions at the LCSR on December 7, 2016.

Catheters play a key role in diagnosing and treating cardiac arrhythmia. Intracardiac echo (ICE) catheters enable real-time 2D ultrasound image acquisition from within the heart, however, manually steering ICE catheters inside a beating heart is a complex and time consuming task. The clinical use of ICE catheters is therefore limited to only a few critical tasks, such as septal puncture. At the Harvard Biorobotics Lab, we built a robotic system that can automatically steer four degree-of-freedom catheters, enabling real-time tracking of instruments within the heart and 3D visualization of cardiac tissue. In this talk, I will walk you through the design process in preparing our system for in vivo trials, and present results from our latest live animal experiment. I will describe the control strategies we employed to accurately steer these flexible manipulators in the presence of external disturbances (e.g. respiratory motion) and unmodeled motion of the catheter body. Finally, I will describe the GPU-accelerated image processing pipeline we used to generate 3D volumetric images of the heart in real-time from the 2D images acquired by the ICE catheter.