A Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters

Citation:

P. M. Loschak, A. Degirmenci, Y. Tenzer, C. M. Tschabrunn, E. Anter, and R. D. Howe, “A Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters,” ASME Journal of Mechanisms and Robotics, vol. 8, no. 5, pp. 051016-051016-9, 2016.

Date Published:

2016

Abstract:

In this paper, we present the design, fabrication, and testing of a robot for automatically positioning ultrasound (US) imaging catheters. Our system will point US catheters to provide real-time imaging of anatomical structures and working instruments during minimally invasive procedures. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a four-degree-of-freedom (4DOF) robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables 3DOF for pitch, yaw, and roll of the imager. This transmission is translated by the 4DOF. An accuracy analysis calculated the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5 deg, and the translational joint must be accurate within 1.4 mm. Motion tests then validated the accuracy of the robot. The average resulting errors in positioning of the rotational joints were 0.04–0.22 deg. The average measured backlash was 0.18–0.86 deg. Measurements of average translational positioning and backlash errors were negligible. The resulting joint motion errors were well within the required specifications for accurate robot motion. The output of the catheter was then tested to verify the effectiveness of the handle motions to transmit torques and translations to the catheter tip. The catheter tip was navigated to desired target poses with average error 1.3 mm and 0.71 deg. Such effective manipulation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.

Publisher's Version

Last updated on 07/13/2016