Generation of Motion of Drops with Interfacial Contact

Citation:

Manoj K. Chaudhury, Aditi Chakrabarti, and Susan Daniel. 2015. “Generation of Motion of Drops with Interfacial Contact.” Langmuir, 31, 34, Pp. 9266–9281.

Abstract:

A liquid drop moves on a solid surface if it is subjected to a gradient of wettability or temperature. However, the pinning defects on the surface manifested in terms of a wetting hysteresis, or first-order nonlinear friction, limit the motion in the sense that a critical size has to be exceeded for a drop to move. The effect of hysteresis can, however, be mitigated by an external vibration that can be either structured or stochastic, thereby creating a directed motion of the drop. Many of the well-known features of rectification, amplification, and switching that are generic to electronics can be engineered with such types of movements. A specific case of interest is the random coalescence of drops on a surface that gives rise to self-generated noise. This noise overcomes the pinning potential, thereby generating a random motion of the coalesced drops. Randomly moving coalesced drops themselves exhibit a directed diffusive flux when a boundary is present to eliminate them by absorption. With the presence of a bias, the coalesced drops execute a diffusive drift motion that can have useful applications in various water and thermal management technologies.