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Abstract

Knowhow in societies accumulates as it gets transmitted from

group to group, and from generation to generation. However, we

lack of a unified quantitative formalism that takes into account the

structured process for how this accumulation occurs, and this has

precluded the development of a unified view of human development

in the past and in the present. Here, we summarize a paradigm to

understand and model this process. The paradigm goes under the

general name of the Theory of Economic Complexity (TEC). Based

on it, we present a combination of analytical, numerical and empirical

results that illustrate how to characterize the process of development,

providing measurable quantities that can be used to predict future

developments. The emphasis is the quantification of the collective

knowhow an economy has accumulated, and what are the directions

in which it is likely to expand. As a case study we consider data

on trade, which provides consistent data on the technological diver-

sification of 200 countries across more than 50 years. The paradigm

represented by TEC should be relevant for anthropologists, sociolo-

gists, and economists interested in the role of collective knowhow as

the main determinant of the success and welfare of a society.
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1 Introduction

The Theory of Economic Complexity (TEC) promises to become a competing

alternative to understand the evolution and development of human societies.

TEC is the basis of the Scrabble Theory of Economic Development (STED).

While the TEC paradigm has inspired a lot of work in the last decade address-

ing important questions in economic development and economic geography,

here we limit our discussion to the general mathematical and methodological

formalisms implied by it.

The idea underpinning TEC (and STED) is that socioeconomic devel-

opment is the result of accumulating, coordinating and deploying increasing

amounts of knowhow in a society (Hidalgo et al., 2007; Hidalgo and Haus-

mann, 2009; Hausmann and Hidalgo, 2011). This idea is rooted in three

characteristics about human biology: humans are limited in their capacity

to reason (“bounded rationality”), in their capacity to learn (this “bounded

learnability” partly inducing specialization), and in their capacity to transmit

knowledge (giving rise to the notion of “tacit knowledge”). These limitations

are the main forces that drive people to come together in teams of individuals

in order to combine their individual tacit knowhow.1 The process of accu-

mulating and coordinating capabilities into increasingly complex productive

endeavors has driven cultural evolution of societies in the past Henrich (2015),

but is of relevance since still today is what drives the economic development

of nations, regions and cities.

TEC assumes that complex production processes are those that combine

a large multiplicity of different, but complementary, capabilities. Places (e.g.,

cities) that are productive are those in which capabilities are abundant and

1Coming together to collaborate with one another is in contrast coming together to learn

from one another. The latter, as we will see, plays a lesser role in economic development,

in spite of the fact that learning certainly happens and is an externality that economists

have studied extensively.
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can combine with relative ease (Gomez-Lievano et al., 2016; Neffke, 2017).

In brief, economic development is a process of collective learning (in contrast

to, or in addition to, a collective process of individual learning).

The assumption of bounded learnability has a number of implications

for how technology moves and concentrates in space. While it is hard for

individuals to learn, collectives (firms, cities, countries) on the other hand

can learn by attracting people. Hence, the diffusion of technology does not

move necessarily because of ideas flowing into people heads, but because of

people with ideas migrating. Capabilities embodied in the brain of people

will move where they can combine with other capabilities in a productive

manner. Precisely because ideas do not “spillover” easily from person to

person, there will be a disproportionate accumulation of capabilities in few

places. The theory thus suggests why technologies accumulate slowly, and

why they are unequally distributed in space.

In the next section we create a simple mathematical model of economic

complexity that codifies these ideas mathematically. The third section is

devoted to developing some frameworks to think about the implications for

the movement of capabilities and the diffusion of technology.

2 Simple model of economic complexity

Let places (e.g., cities) be indexed by c, economic activities be indexed by

p (e.g., industry specific output or product p), and firms by i. Given these

(cities, products, and firms) let us try to derive an expression for the proba-

bility that a firm i is able to produce product p in city c:

Pr(Xi,c,p = 1) = ?,

where Xi,c,p is simply a variable that takes the value of 1 if the firm i is able

to operate successfully in the city, and 0 if not.
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We will assume that an entrepreneur will be able to run a firm i, that

is, she will be able to operate in city c and produce the industry-specific

product p, depending on whether she is able to put together the “right”

knowhow. Assume this implies combining Mp different and complementary

capabilities. We will leave these capabilities unspecified. The important part

here is that capabilities are all the ingredients needed to produce the product

p. These include, in principle, knowhow of finance, legal issues, engineering,

research and development, sales and marketing. Thus, we will typically think

of “capabilities” as “professional or job occupations”, although they can also

include public services that a production process may need as a necessary

requirement.

The parameter Mp represents, in this view, the “complexity” of the eco-

nomic activity associated with the production of p. The more capabilities

are needed, the larger the value of Mp, and the more complex the activity.

Notice that this approach differs from the conventional production process

assumed in economics, whereby the emphasis is on the substitutability of a

few production factors (e.g., capital and labor). Instead, we are assuming

that (i) there is no substitutability between capabilities, and that (ii) the

number of factors is not two, but Mp � 1. The reason we need to think

probabilistically in this model comes from this assumption about the large

multiplicity of capabilities (Gomez-Lievano et al., 2016).

Let si be the probability that the entrepreneur of firm i has any random

capability of the Mp capabilities required by the business.2 This probability

can be interpreted as a measure of the entrepreneur’s individual knowhow.

For example, she may be trying to open a firm that will manufacture p =

shoes, which let us assume requires Mp = 10 different capabilities, and si

represents the fact that she has the capacity to easily act both as a designer

2In other words, the number of capabilities the entrepreneur is expected to have is, on

average, siMp.
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and a manager, so si ≈ 2/10 = 0.2. The larger the parameter si is, the

better equipped is the entrepreneur in operating the business individually,

the less she needs a team of people supporting her as a consequence, and

the less dependent she will be of the city she lives in and on what the city

offers to her. Notice, however, that while si can be interpreted as “the level

of schooling”, it does not track the depth of knowledge but the breadth: It is

about how many different things she could know how to do individually. The

probability she will be able to operate successfully the firm, all on her own, is

s
Mp

i . Since si is a number between 0 and 1, the more complex the economic

activity, the probability she will be successful will decrease exponentially.

But how does the city change the probability of the entrepreneur to be able

to run her business, Pr(Xi,c,p = 1)?

Of the Mp capabilities required to produce product p, suppose the city c

“provides” Dc capabilities to the entrepreneur i (where 0 ≤ Dc ≤ Mp). In

other words, through the family, friends, colleagues and, in general, public

and private services, which she is typically exposed to on a regular basis by

living in city c, the entrepreneur could in principle be able to get and complete

the remaining 8/10’s missing skills and capabilities outside her expertise,

which she expects to require to run her firm. Presumably, the bigger the

city, the more diverse, and the larger Dc will be, and the easier it will be to

get those capabilities.

The problem, note, is that the entrepreneur will only get all the Mp

capabilities she needs if the Dc capabilities offered by the city contain the

capabilities that she does not have given si. The only situation in which the

entrepreneur will be able to run her business is if she requires none of the

capabilities the city does not have.

Let us say this again. By living in city c, the entrepreneur can be sure

she has Dc of the Mp capabilities. These are a given, in a sense, and she

does not need to worry (too much!) about them. The challenge she faces is
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rather with getting the Mp−Dc capabilities not offered by the city, which she

cannot take for granted. These are capabilities that she will need to bring to

the business on her own, without the help of the city. Necessarily, solving the

challenge of lacking Mp −Dc capabilities will depend on her own individual

knowhow. She has a probability si of having any of those capabilities.

Let us compute the probability that she will be able to get them all and

operate her firm

Pr(firm i in c produces p | city facilitates Dc of the Mp capabilities),

which we can write more concisely as Pr(Xi,c,p = 1 | Dc). According to the

reasoning above, this probability is equal to

Pr(Xi,c,p = 1 | Dc) = s
Mp−Dc

i . (1)

Equation (1) is the product si × si × · · · × si because it is the probability of

having the first capability times the probability of having the second, and so

on, until we have the probability of getting each of the missing capabilities

not offered by the city.

In reality, however, Dc is not a fixed number. Cities are messy places,

they change from neighborhood to neighborhood and from day to day, and

no person knows the city as a whole completely. Hence, if our entrepreneur is

very unlucky she may get Dc = 0, or she can be super lucky and get Dc = Mp.

To take this stochasticity into account, we can think instead of the probability

that the city provides any of the capabilities. Let us denote this probability

by rc. The expected number of capabilities required to produce p that the

city can offer on average is E [Dc] = rcMp. Thinking of Dc probabilistically,

means thinking of Dc in this context as a “binomially distributed random

variable” with parameters Mp and rc.

To correctly compute the probability that our entrepreneur will be able

to manage her business we need to average Equation (1) over all the possible
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number of capabilities the city may offer:

Pr(Xi,c,p = 1) =

Mp∑
D=0

Pr(Xi,c,p = 1 | D) Pr(D)

=

Mp∑
D=0

s
Mp−D
i

(
Mp

D

)
rDc (1− rc)Mp−D

=

Mp∑
D=0

(
Mp

D

)
rDc (si(1− rc))Mp−D

= (rc + si(1− rc))Mp . (2)

For clarity, let us denote this probability as an explicit function of the pa-

rameters involved, Pr(Xi,c,p = 1) ≡ f(Mp, si, rc). Using the properties of

exponentials and logarithms, Equation (2) can be simplified to yield the fol-

lowing expression:

f(Mp, si, rc) ≈ e−Mp(1−si)(1−rc). (3)

2.1 Insights

Equation (3) contains several insights. First, let us recall the meaning of the

terms again:

1. Mp: This is the number of capabilities required to produce the industry-

specific product p. We can refer to it as the “complexity” of the prod-

uct.

2. 1 − si: This is the manager-specific probability of lacking any one of

the capabilities required in production processes. Conversely, si can be

referred to as a measure of “individual knowhow”.

3. 1 − rc: This is the city-specific probability of lacking any one of the

capabilities required in production processes. Conversely, rc can be
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referred to as a measure of “collective knowhow” and represents a mea-

sure of input availability, which in turn represents a measure of urban

diversity.

Not surprisingly, increasing any of these three terms will decrease the prob-

ability that firm i will exist. But the crucial observation is that they involve

exponential changes. That is to say, small changes in any of these three

terms can in principle have (exponentially) large effects on the success of

firms, specially if the value of those variables is already high. But let’s study

the partial rates of change separately, in order to compare them:

Technological improvement of production process of p:

∂f/∂(−Mp)

f
= (1− si)(1− rc), (4)

Individual learning for entrepreneur i:

∂f/∂(Mpsi)

f
= (1− rc), (5)

Collective learning for city c:

∂f/∂(Mprc)

f
= (1− si). (6)

The partial derivatives have the term Mp because we want them to reflect

“changes in the number of capabilities”. Hence, ∂(−Mp) represents the re-

duction of the number of capabilities required to produce p, ∂(Mpsi) rep-

resents the increase in the average number of capabilities known by the in-

dividual i, and ∂(Mprc) represents the increase in the average number of

capabilities present in city c. In other words, the probability the firm will

be successful, f(Mp, si, rc), will increase according to Equation (4) if the

complexity of p decreases (through technology improvements), Equation (5)

tells us that it will increase if the individual knowhow of the entrepreneur i
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increases (individual learning), and Equation (6) that it will increase if the

collective knowhow of the city c increases (collective learning).

Let us study in detail the magnitude of these rates of change. On the

one hand, we have Mp which is supposed to be large, Mp � 1. On the other

hand, si and rc are probabilities and are therefore between 0 and 1. However,

since the city is a collective, the probability it provides an input is larger than

the probability an individual has it, so rc � si. Conversely, 1− rc � 1− si.
Consequently, we have that 0 < (1 − rc)(1 − si) < 1 − rc � 1 − si. The

implication is that these rates have the following order:

0 <
∂f/∂(−Mp)

f
<
∂f/∂(Mpsi)

f
� ∂f/∂(Mprc)

f
(7)

Thus, the effect of a technology improvement is smaller than the effect of

individual learning which is much smaller than the effect of collective learning

Effect of tech. improvement < Effect of individual learning� Effect of collective learning.

Increasing the collective knowhow of a city (e.g., through immigration, di-

rect foreign investments, etc.) has a significant effect on the probability of

entrepreneur i being able to operate a business which produces product p.

Figure 1 illustrates these effects.

Of course, the comparison in Equation (7) has several problems and hinges

on highly simplifying assumptions. For example, the comparison assumes

that a linear (infinitesimal) change in the three variables is comparable among

them. In other words, it does not take into account the cost of these changes.

But one can play a bit with the equations, make some assumptions, and it

is easy to see that this result holds for a wide range of situations.

A second intuition is that the effects of collective learning is differentially

distributed across people and economic activities. The combined effect can be

summarized by noticing that cities with a large body of collective knowhow

will make “difficult” activities easier. And the difficulty can be because

10



Figure 1: Comparing the different ways of increasing the probability of operating a firm

in city c that produces product p. The increase in probability represented by the change

from lightblue to darkblue is, in each case, due to a change that represents that production

is one capability more easy. Hence, a technological improvement is when Mp is reduced

by 1, individual learning is when si is increased by 1/Mp, and collective learning is when

rc is increased by 1/Mp. For each panel, one of the parameters is explicitly shown to

vary across the x-axis, another parameter is changed in order to represent the change in

probability (either by a technological improvement in the left panels, individual learning

in the middle panels, and collective learning in the right columns), and another parameter

is implicitly kept constant, correspondingly at values Mp = 8, si = 0.2, or rc = 0.8.

the activity is itself very complex, or because the entrepreneur lacks several

capabilities, or both. Equation (6) shows these two effects clearly given it is

a function of both Mp and si.

Intuitively, thus, it is easy to see that increases in collective knowhow

have a reinforcing effect and suggest a virtuous cycle: a place with a relative

large body of collective knowhow will attract more people and facilitate more

complex economic activities, which themselves will increase the body of col-

lective knowhow in that place. This process will thus propel a run-away cycle
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of collective learning that will concentrate economic activities and wealth in

a relatively compact region of space: a “city”. The more complex the activ-

ities, the more concentrated they will be across places. This explains why

complex innovations tend to happen in large diverse cities (Gomez-Lievano

et al., 2016).

2.2 The distributional implications of multiplicativity

versus additivity

Our model assumes that a large set of inputs must be combined to generate

an output. The output will not be produced, however, if any of the inputs is

missing. This is a specific form of a production function called the Leontief

production function. By using a Leontief function we are assuming that the

presence of an output follows a logic of complementarity. Mathematically,

complementarity meant taking products of probabilities. Thus, it can also

be said that outputs follow a logic of multiplicativity. This logic allowed us

to calculate the consequences of our model, summarized in Equation (3).

We can claim that the logic of multiplicativity between inputs for deter-

mining the presence of an output, in turn, implies that the presence of an

input follows a logic of additivity between outputs. To see this, let us put

both “logics” in words. On the one hand, we say that to observe a unit of

output of a given product X we need input A and input B and input C, and

so on, such that we list all the inputs required to produce X. On the other

hand, this allows us to say that if we observe the presence of input A it is

because output X is present or output Y is present or output Z is present,

and so on, as we list all the products that require input A as a necessary

factor of production. Thus, concatenating conditions with “and”’s is akin to

multiplying probabilities while concatenating conditions with “or”’s is akin

to adding probabilities. Consequently, outputs follow a logic of multiplica-

12



tive processes while inputs follow a logic of additive processes. This suggests

that magnitudes of production across outputs should be distributed with

lognormal-like distributions while the values of presence of inputs should be

distributed with normal-like distributions.3

3 The structure and dynamics of collective

learning

We have stated that the process of collective learning is based on the accu-

mulation of productive capabilities. We now turn our attention to how places

acquire these capabilities. The question that arises is what type of process

describes collective learning?

In the last decade, observations have shown that there is a particular way

for how cities, regions, and countries diversify their economic activities. The

finding behind these observations consists of the fact that since economic

activities are the result of combining capabilities, some economic activities

use very similar sets of capabilities. This means that the probability of

producing a product p increases if a place also produces products p′ which

use similar capabilities. A pair of products which use similar capabilities are

referred to as “related”, which is why this particular way of diversification

has been recently referred to as the “principle of relatedness” (Hidalgo et al.,

2007; Neffke and Henning, 2013; Hidalgo et al., 2018).

In addition to the principle of relatedness, there is another phenomenon,

analogous to it, which has been found to occur widely: learning typically

comes from imitation. Imitating others is a successful learning strategy for

individuals, for example, when the cost of individually carrying out the re-

search to find the solution to a problem is too costly. That imitation is

3These two logics, of course, are then guided by economic forces of supply and demand.
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the basis of learning is foundational in the field of cultural evolution. The

importance is not only because it is empirically supported by experiments

that show that humans are super-imitators (in contrast to other mammals),

but because it is the aspect of human biology that explains the existence of

culture. This line of scholarly work has shown that similar cultural traits

are acquired by populations that are culturally similar. While this sounds

circular and obvious, note that this type of collective learning did not have

to occur in this way: a particular society could tend to acquire traits found

in the societies that are the most dissimilar to it. Yet this is not what is

observed, and the most likely explanation is precisely because learning is

costly. The consequence of this is that learning from societies that are “cul-

turally close” is a less-risky form of collective learning. We can call this the

“principle of collective imitation”.

The principle of relatedness and the principle of collective imitation can

both be used to predict which new products a place will be able to produce in

the future, based on a matrix that tells which pairs of products are related,

and another matrix which tells us the similarity between places.

Let us express these two principles mathematically:

Principle of relatedness:

Mc,p(t+ 1) =
∑
p′

Mc,p′(t)
φ(p′, p)∑
p′′ φ(p′′, p)

=
∑
p′

Mc,p′(t)P (p′, p) where
∑
p′

P (p′, p) = 1. (8)

Here, Mc,p(t) can be thought of a measure of production of product p by

place c at time t. The term φ(p′, p) is measure of relatedness between

products (e.g., similarity in their production processes), such that it

is large if p′ and p share several capabilities. We will discuss how to

construct this matrix later. For now, let us just remark on the fact that
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we have assumed that the principle of relatedness implies a weighted

average of the products a place c is already producing, weighted by

their similarity to p. We can write it in matrix form as

M(t+ 1) = M(t) ·P, (9)

where the elements of each specific column in P add up to 1. In other

words, P is column-normalized. Such matrix is called a “left-stochastic

matrix”.

Principle of collective imitation:

Mc,p(t+ 1) =
∑
c′

χ(c, c′)∑
c′′ χ(c, c′′)

Mc′,p(t)

=
∑
c′

C(c, c′)Mc′,p(t) where
∑
c′

C(c, c′) = 1. (10)

The term χ(c, c′) is measure of similarity between places (e.g., cultural

similarity). We will also discuss how to construct this matrix later.

Again, let us just remark on the fact that we have assumed that the

principle of collective imitation can be modeled as a weighted average

of the production of the specific product p across places c′, weighted

by their similarity to c. We can write it in matrix form as

M(t+ 1) = C ·M(t), (11)

where the elements of each specific row in C add up to 1. In other

words, C is row-normalized. Such matrix is called a “right-stochastic

matrix”.

3.1 Some comments about stochastic matrices

Stochastic matrices get their name from the fact that they are the main

object one uses to model a wide variety of random processes. A random
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process is a sequence of random variables, and one typically assumes there

are some “rules” for how a random variable at a given time-step t changes

into a new random variable at time t+1. Despite their name, stochastic ma-

trices appear in different instances not necessarily attached to any stochastic

process. Equations (9) and (11) are one such example. Once a stochastic

matrix appears, however, it does open the door to thinking about the process

in more probabilistic terms. Hence, it is useful for us to make the following

two distinctions:

Multiplying a row vector on the left of P (a left-stochastic matrix):

Computes weighted averages,

~x(t+ 1)T = ~x(t)T ·P.

In this specific instance, the elements of the vector ~x(t)T are usually a

property, measure or characteristic that varies across products. This

type of dynamics describes a phenomenon in mathematics called “con-

sensus dynamics”.

Multiplying a column vector on the right of P (same matrix as above):

Propagates/diffuses the values of the vector,

~n(t+ 1) = P · ~n(t).

Here, the elements of the vector ~n(t) are some sort of count of some

sort of particle, agent, or object across products. In general, one refers

to such quantity as a “mass” occupying each product. For example, it

could represent the number of people employed in the production of a

product, and the elements of the stochastic matrix P could represent

probabilities of transitioning from a product to another product. In

this equation, “mass” is conserved, so that
∑

p np(t) =
∑

p np(t + 1).

This type of dynamics is called “diffusion dynamics”.
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Since C is right-stochastic (as opposed to P which is left-stochastic), these

two comments above apply for C identically except swapping every “left” for

every “right”: multiplying on the right of C represents a consensus dynamics,

but multiplying on the left represents a diffusion process.4

3.2 Implications and insights

Equation (9) and Equation (11) represent a simple first approximation for

the process of collective learning, supported by empirical observations. As

we explained, the processes of relatedness and collective imitation are two

types of processes that belong to the class of consensus dynamics (DeGroot,

1974).5

The paradigm of economic complexity tells us that the equation of col-

lective learning across places and products is

M(t+ 1) = M(t) ·P + C ·M(t). (12)

These dynamics describe what drives diversification across most countries

and most products, although not all of them. In particular, it describes

the process of “catching-up” of places that are not fully diversified, but it

does not explain the process of innovation that drives the production of

completely new products by the most advanced economies. Hence, it is

useful to remember that there may be an external driving force which we

haven’t talked about, which we will denote by U(t). This force may as

4For a useful review of the main differences between diffusion and consensus dynamics,

and how dynamical processes are constrained by the community structure on networks,

see Schaub et al. (2018), and references therein.
5If c producing p is analogous to having a positive opinion (while not producing it

is having a negative opinion), one can think of Equation (9) as a process of consensus

happening between products within places, and of Equation (11) as a process of consensus

happening between countries for given products.
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well be endogenous to the capabilities and products a places already has

(diversification begets innovation). For now, we re-express our equation as:

M(t+ 1) = M(t) ·P︸ ︷︷ ︸
relatedness

+ C ·M(t)︸ ︷︷ ︸
imitation

+ U(t)︸︷︷︸
innovation

. (13)

Equations similar to those of consensus dynamics are used in many “rec-

ommender” systems such as those at the base of platforms like Netflix and

Amazon to suggest products to their customers. They are in effect predicting

which items (i.e., “products”) will be, most probably, watched/bought (i.e.,

“produced”) by which users (i.e., “countries”). This algorithmic approach

is called “collaborative filtering” in the machine learning literature. It turns

out we are doing the same in the framework of economic complexity.6

Expressing the principle of relatedness and the principle of collective im-

itation in matrix form as in Equation (12) reveals a few important mathe-

matical properties that have economic and practical value.

But before we comment on some of the implications, it must be said that

these equations may not be the correct ultimate description of the process.

In fact, many underlying micro-processes may give rise to the same macro-

processes.7 These are questions that should be resolved by determining (i)

what is it that is flowing as places diversify (e.g., information vs. people

vs. firms), (ii) what is the correct production function (i.e., in the last

section we assumed a Leontief production function based on a multiplicity

of capabilities, but this may be an extreme special case), and (iii) whether

6The principles of relatedness and collective imitation can be combined, in principle,

into a single term: M(t + 1) = C ·M(t) · P. This assumes some interaction between

product relatedness and country similarity which we will not analyze here.
7Think, as an analogy, of the Central Limit Theory in statistics: the mean of many

random variables tends to be approximately normally distributed, regardless of the original

statistical distribution of the random variables being averaged. In the same way, different

mechanisms operating at the level of ideas, people and firms may give rise, effectively, to

the same dynamical equations of “collective consensus”.

18



capabilities precede the output or the output precede the capabilities. At this

point, however, we can analyze the consequences of describing the process of

collective learning using general equations such as Equation (12).

As a first observation, simple matrix representations such as Equation (12)

suggest few “low-dimensional” quantities exist which can serve as summary

statistics of the process. For us, then, it mean few quantities may exist that

summarize the information of the whole process of collective learning. To

understand why this is the case, we need to recall what “eigenvalues” and

“eigenvectors” are.

In general, any given matrix A can be multiplied on the right by a column-

vector ~v, and that multiplication will result on another column-vector ~w =

A · ~v. However, there are some special vectors that when multiplied by the

matrix A just shrink or get expanded by a number, A ·~v = a~v, where a is the

shrinking/expanding factor. The matrix A and all these multiplications have

a physical meaning: v is a point in space (a space which can have several

dimensions), and the multiplication by A moves the point somewhere else

in the space. Hence A describes in a sense the “flow” in a space because

it determines how each point will move where. The eigenvectors point in

directions where points just move to or away from the origin in a linear way.

For us, then, matrix P determines how the vector of production of a

specific country will “move” (it will diversify) in the “Product Space”, while

C determines how a specific product will diffuse across countries, i.e., how

the vector that tells us where the product is being produce will “move” in

the “Country Space”. The eigenvectors of these matrices will tell us the

dominant axis or directions of movement.

Let us define the eigenvectors we need to describe these axis where coun-

tries and products are flowing into.
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Since M(t) is multiplying P on the left, we need P’s left-eigenvectors:

~ψTk ·P = λk ~ψ
T
k , (14)

where λ1 = 1 ≥ |λk| ≥ 0 (this is a property of all stochastic matrices).

Analogously for C, M(t) is multiplying C on the right, so we need C’s right-

eigenvectors:

C · ~ϕk = γk~ϕk, (15)

where γ1 = 1 ≥ |γk| ≥ 0.

To illustrate why eigenvalues are useful, let us first take a row vector of

M(t) representing the country c, and let’s denote it by ~mc(t)
T . An element

p of this vector is just Mc,p(t). Every vector can be represented as a linear

combination of the eigenvectors of a matrix. Let us apply this decomposition,

such that ~mc(t)
T =

∑
k ck(t)

~ψTk , where c(t) are just the linear coefficients

multiplying the eigenvectors. Let us see what is going on when we multiply

on the right by P:

~mc(t+ 1)T = ~mc(t)
T ·P

=

(∑
k

ck(t)~ψ
T
k

)
·P

=
∑
k

ck(t)~ψ
T
k ·P

=
∑
k

λkck(t)~ψ
T
k

≈ λ1c1(t)~ψ
T
1 + λ2c2(t)~ψ

T
2 .

The approximation comes from the (very!) important property that the

eigenvalues λk, for k ≥ 2, are (typically) in magnitude smaller than unity, so

they increasingly shrink the eigenvector components of ~mc(t)
T that are not

aligned with the dominant (and subdominant) left-eigenvectors ~ψT1 and ~ψT2 .
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Let us take a specific element p of ~mc(t+ 1)T (i.e., a product):

Mc,p(t+ 1) ≈ λ1a1(t)ψp,1 + λ2a2(t)ψp,2.

If we do the same but for a column vector p of M(t), ~mp(t) that gets

multiplied on the left by C, we arrive at:

Mc,p(t+ 1) ≈ γ1p1(t)ϕc,1 + γ2p2(t)ϕc,2.

Put together, we have,

Mc,p(t+ 1) ≈ λ1c1(t)ψp,1 + λ2c2(t)ψp,2 + γ1p1(t)ϕc,1 + γ2p2(t)ϕc,2. (16)

Some theorems and properties of stochastic matrices tell us that ψp,1

do not actually vary across products p, and thus ψp,1 ≡ 1,∀p.8 Similarly,

ϕc,1 ≡ 1. Now, the coefficients of the eigenvector decompositions are re-

ally dot-products: ck(t) ≡ ~mc(t)
T · ~ψk are country c-specific variables, while

pk(t) ≡T ~ϕTk · ~mp(t) are product p-specific variables. In particular, they tell

us how aligned the rows/columns of M(t) are with each of the correspond-

ing eigenvectors. For example, c2(t) = ~mc(t)
T · ~ψ2 tells us how aligned is

the country with the sub-dominant eigenvector of P, and p2(t) = ~ϕT2 · ~mp(t)

how aligned is the presence of that product across countries with the sub-

dominant eigenvector of C. Since we have assumed that M(t) is a matrix of

0’s and 1’s, then “aligned” just means “summed”. Thus, it can be seen that

c1(t) is equal to the diversity of the country, dc(t), while p1(t) is the ubiquity

of the product, up(t). Moreover, c2(t) therefore is the sum of the elements

8Recall that P is column-normalized. That is, ~1T · P = ~1T . As can be seen, this

equation, which expresses the fact that the values of each column of P add-up to one, also

expresses an eigenvalue-eigenvector relation. Specifically, since we know that the largest

eigenvalue of a stochastic matrix is λ1 = 1, the normalization equation also says that

the left-eigenvector associated with the dominant eigenvalue λ1 = 1 is the vector of ones.

Hence, ~ψT
1 = (1, 1, . . . , 1).
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ψp,2 of the products produced by country c, and p2(t) is the sum of the values

of ϕc,2 of the countries where p is produced.

Equation (12) reduces to the following terms:

Mc,p(t+ 1) ≈ λ1dc(t) + γ1up(t) + λ2c2(t)PCIp + γ2p2(t)ECIc,

where we will refer ψp,2 = PCIp as the “Product Complexity Index” value

of product p, while ϕc,2 = ECIp as the “Economic Complexity Index” value

of country c. These indices reveal whether the production of a product p

by country c is “aligned” according to what other countries are producing,

and what other products the country is producing. But note how some

products and some countries can induce the alignment more strongly on

other countries, through the coefficients c2(t) and p2(t).
9 These coefficients

are determined by the products and/or countries with high PCI and ECI,

respectively. Can we expect these products and countries to be the most

knowledge-intensive or knowledge-endowed? Under certain conditions, in-

deed we can, and this has been empirically demonstrated. The conditions

under which this assumption holds is when the matrices of similarities be-

tween products and countries to have no clear clusters or communities, which

is precisely the situation when the approximations we used only required con-

sidering the sub-dominant eigenvectors.

Mealy et al. (2017) recently examined in detail the interpretation of the

original ECI and PCI (proposed in Hausmann et al. (2011)) as indices to clus-

ter countries and products in two groups. Among other things, they show

that the reason ECI correlates with measures of economic performance is

9As we will see, depending on a specific definition of P and C, we have that ECIc =

~mc(t)
T · ~PCI/dc, i.e., ECI of a country is the average PCI of the products it produces.

This can simplify even further the equation into:

Mc,p(t+ 1) = dc(t) + up(t) + (λ2dc(t) + γ2up(t))PCIpECIc.
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because it captures patterns of product specialization (some products induce

economic more than others). In addition, Mealy et al. (2017) show mathe-

matical connections to other dimensionality reduction techniques based on

similarity matrices.

The general conclusion of looking at collective learning in low dimensions

is that to a first approximation the appearance of a product p in country c in

the next time-step, Mc,p(t+1), is positively determined by the diversity of the

country, the ubiquity of the product, the alignment of the production basket

vector of c with the vector of product complexities and the alignment of the

presences of p across countries with the vector of economic complexities.

3.3 Does diffusion of inputs implies consensus of out-

puts?

So far we have argued two main points: First, that economic development

ought to be understood through the lens of a collective learning process be-

cause changes in the collective knowhow of a place have the largest effect on

the probability of successful productive activities, as compared to improve-

ments in technology or individual learning; Second, we have argued that the

process of collective learning is the process of accumulation of capabilities,

which manifests itself as a diversification process in the space of outputs.

The important point about this is that the accumulation of capabilities oc-

curs slowly and is enabled by the fact that products share capabilities and

countries resemble each other. This whole process of collective learning can

be described by a simple equation called the “consensus dynamics” equation.

The first point was encoded in our model of economic complexity, in Sec-

tion 2. A previous and simpler version of that model (Hidalgo and Hausmann,

2009; Hausmann and Hidalgo, 2011) considered products and countries, and
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was stated as

M(t) = C(t)� P . (17)

The matrix C(t) is a matrix of countries and the capabilities they are en-

dowed with (which changes with time), while P is the matrix of products (as

columns) and the capabilities required to produce them (which we assume

are approximately constant). The operator � is a “Leontief operator” such

that a country produces a product only if the capabilities required by the

product are a subset of the capabilities in the country.

The production process represented by Equation (17) can be written using

conventional matrix multiplication as follows: M(t) = bC(t) · (P · A−1)c ,
where b x c is the “floor” function that rounds down number x to the largest

integer less than x, and A is a diagonal matrix whose elements is the number

of capabilities required per product (i.e., the capability-based complexity).

The operation of rounding down is difficult to treat mathematically, but here

it can in turn be re-expressed using some exponents. To see this, let us look

at a specific element of this operation: Mc,p(t) = b
∑

a Cc,aPa,p/
∑

a′ Pa′,pc.
Note how this sum is accumulating the fraction of capabilities a required

by p. It is only when the country has accumulated one hundred percent

of the capabilities that the Leontief operator allows c to produce p. One

can assume a CES production function, and express this more generally

as
(∑

a Cρc,aPa,p/
∑

a′ Pa′,p
)1/ρ

, where −∞ < ρ < 1, with 1/(1 − ρ) being

the elasticity of substitution between the factors of production Cc,a. The

CES formula, however, breaks down if we assume the production factors Cc,a

are binary. Hence, to model a range of production functions that go from

arithmetic average to Leontief, it is more useful to write it as

M(t) =
(
C(t) · (P · A−1)

)ρ
, (18)

where ρ now ranges from 1 (arithmetic average which implies full substi-
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tutability between factors) to ∞ (Leontief function and zero substitutabil-

ity).

If C(t) represents the counts of people employed across countries c’s and

with capabilities a’s, one possible diffusion process could be written as

C(t+ 1) = Fc′←c · C(t) · Fa→a′ , (19)

where we have assumed that the transition probability that takes people in

the cell (c, a) to the cell (c′, a′) is separable Pr(c′, a′|c, a) = Pr(c′|c) Pr(a′|a).

In Equation (19) we represent the probability Pr(c′|c) as the value Fc′←c and

Pr(a′|a) as the value Fa→a′ . You can see that the matrix Fc′←c must be a

left-stochastic matrix while Fa→a′ a right-stochastic matrix.

A question to investigate is: what is the process that describes M(t)

and its changes in time if one assumes (i) a production function such as

Equation (18), and (ii) a diffusion process of the capabilities in the space of

C(t) such as Equation (19)? Do we retrieve the consensus dynamics that we

proposed earlier?

The question may seem esoteric. But it goes to the heart of some of the

assumptions of TEC: that individual learning is limited and that collective

learning is mainly driven by accumulation of capabilities carried by individ-

uals. In other words, the basic assumptions of TEC would suggest that since

people are conserved, their capabilities diffuse. But at the level of collectives,

what we observe is not diffusion but collective learning. Hence, we should be

able to postulate a diffusion process that respects the conservation of “mass”

(i.e., the number of brains in the system), and a production function such

that collective learning can be described by a process of related diversification

and collective imitation. Currently, this is still an open question.
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4 Diffusion Maps

In the previous sections, we used the fact that the eigenvalues of stochastic

matrices are bound between −1 and 1 to reach Equation (16) from Equa-

tion (12). Presently, we said that the process of collective learning could be

described to a first order approximation by taking into account the effect

only of the dominant and sub-dominant eigenvalues and their corresponding

eigenvectors. The validity of such approximation, however, depends on the

actual distribution of eigenvalues, and how fast they decay.

The approximations using the largest eigenvalues to represent economic

diversification through few eigenvectors is a form of dimensionality reduc-

tion. This particular way of reducing dimensions is directly of the dynamics

we have postulated about collective learning. These eigenspaces are called

“Diffusion Maps” (Lafon and Lee, 2006; Coifman and Lafon, 2006). Two ma-

jor advantages emerge over traditional dimensionality reduction techniques

(such as principal component analysis or classical multidimensional scaling):

on the one hand, diffusion maps can account for nonlinear dependencies be-

tween observations, and the other, they preserve local structures. Since we

have claimed that collective learning is a slow process and that, in addition,

it is one that is structured by spaces of relatedness and similarity, we need a

representation of the data that preserves the local structures, and therefore

induces a local geometry.

In what follows we will explore some of the implications from this ap-

proach (see also Mealy et al., 2017 for the connection between diffusion maps

and other dimensionality reduction techniques in the context of TEC).

4.1 Consensus dynamics and clustering

The distribution of eigenvalues, the so called “spectrum” of a matrix, is

determined by the number of communities in the matrix of similarities. If
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the nodes of the network are organized in well-defined K clusters, then there

are K−1 relatively large, nontrivial, eigenvalues, in addition to the dominant

eigenvalue with value equal to 1. Thus, a heuristic that can be used to infer

the number of communities in a network is to count the number of eigenvalues

before we observe a large “gap” between pairs of consecutive eigenvalues. In

practice, one can take the values larger than 0.1.10 Second, the eigenvectors

(both left- and right-eigenvectors) associated with those K − 1 nontrivial

eigenvalues reveal the structure of the clusters. Hence, if the clusters are

well-defined, even carrying out a simple K-means clustering on the matrix

ΦC×K−1 where the columns are the K − 1 right-eigenvectors of C would

identify the K clusters (or, if one is interested in the products, one takes

ΨP×K−1 where the columns are the K − 1 left-eigenvectors of P).11 Let us

see mathematically how this works.

Recall that the principle of collective imitation posited that there exists

a similarity matrix χ(c, c′) that tells us the direct pairwise influence that

country c′ has on country c. That is, if country c′ produces one unit of

product p, then this will have a direct influence on c such that it will add

χ(c, c′)/
∑

c′′ χ(c, c′′) units to its production of p. Since c′ may influence

another country c′′, and c′′ in turn may influence c, then the net influence

of c′ on c can be higher than its direct influence. We want to represent

the process of collective imitation in low dimensions, and this requires us to

define a metric that takes into account the full connectivity of the points

defined by χ(c, c′).

The framework of diffusion maps requires two assumptions: (i) symmetry

χ(c, c′) = χ(c′, c) and (ii) pointwise positivity χ(c, c′) ≥ 0 for all c and c′.

10In physics, one compares the distribution of observed eigenvalues with those eigen-

values of a random matrix. For a few special cases of random matrices there are closed

analytical formulas. This branch of physics is called Random Matrix Theory.
11The Economic Complexity Index (ECI) is just one of these dimensions.
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Given the matrix of similarities χ(·, ·), the idea is to state that two points

(say, countries) c and c′ should be considered to be “close” not only if χ(c, c′)

is high but, more generally, if they are connected by many short paths in the

network defined by χ(·, ·).
Let dc =

∑
c′ χ(c, c′), and let πc = dc/

∑
c′ dc′ . From the symmetry prop-

erty we get that πcC(c, c′) = πc′C(c′, c). Therefore, the symmetry of χ(c, c′) is

important because it implies that C(c, c′) = χ(c, c′)/
∑

c′′ χ(c, c′′) is a (right)

stochastic matrix which defines a reversible Markov chain, which in turn

implies nice properties about its eigenvalue/eigenvector decomposition,

C · ~ϕk = γk~ϕk

and

~ξTk ·C = γk~ξ
T
k ,

where 1 = γ1 > |γ2| ≥ |γ3| ≥ . . . ≥ 0. We normalize the eigenvectors such

that
∑

c ξ
2
c,k/ξc,1 = 1 and

∑
c ϕ

2
c,kξc,1 = 1. Eigenvectors are related according

to

ϕc,l =
ξc,l
ξc,1

, for all c.

Thus, we have that left and right eigenvectors are orthonormal ~ξTk · ~ϕl = δk,l.

As has been explained previously, multiplying on the left of a right-

stochastic matrix propagates probabilities. For us, this is simply a mathemat-

ical abstraction about a random diffusion process defined by C. According

to such a process, the probability of a random walker of being across different

nodes (i.e., countries c) at a time t given an initial probability ~π(t = 1)T = ~πT1

is ~π(t+ 1)T = ~πT1 ·Ct. We have that the long-term stationary distribution is

directly given by the vector limt→∞ ~π(t)T = ~ξT1 = ~πT (i.e., the left-eigenvector

associated with the eigenvalue γ1 = 1 is the stationary distribution and is,

at the same time, proportional to the diversity of countries).
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Let us define the “diffusion distance” (Coifman et al., 2005) as follows:

D2
t (c, c

′) = ‖C(c, ·)− C(c′, ·)‖21/π

=
∑
c′′

(Ct(c, c
′′)− Ct(c′, c′′))2

π
, (20)

where Ct(c, c
′) is an element of the matrix Ct. As can be seen, this type

of distance adds up all the contributions from several paths relating c and

c′ and, as a consequence, is robust to noise in the specific measurements of

χ(·, ·).
The spectral decomposition of Ct(c, c

′) is

Ct(c, c
′) =

∑
k

γtkϕc,kξc′,k. (21)

Replacing this spectral representation in Equation (20) of the diffusion dis-

tance yields

D2
t (c, c

′) =
∑
k≥2

γ2tk (ϕc,k − ϕc′,k)2 . (22)

Note that the term for k = 1 disappears from the sum because ~ϕ1 = ~1.

If there are K communities or clusters of countries, there will be K sig-

nificantly large eigenvalues. If that is the case, Equation (22) can be approx-

imated using only K − 1 terms:

D2
t (c, c

′) ≈
K∑
k=2

γ2tk (ϕc,k − ϕc′,k)2

=
∥∥∥~Φt(c)− ~Φt(c)

∥∥∥2 , (23)

where ~Φt(c) is a the vector of coordinates of a point c located in a euclidean

space of K − 1 dimensions, where a given coordinate k is Φt,k(c) = γtkϕc,k.

We proposed that collective learning can be described by consensus dy-

namics, and we use stochastic matrices to express the mathematical equations
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of these dynamics. In this framework, right-eigenvectors and left-eigenvectors

contain information about the community structure of these networks of

similarities. However, the framework of diffusion maps reveals that right-

eigenvectors (in the case of C, and left-eigenvector for P) are better at cap-

turing the information about communities. Hence, countries in the right-

eigenspace will flock together, and their movement in this euclidean space

will align more strongly with that of other countries in their community

(Coifman and Hirn, 2014). (We will show later that, in contrast, the left-

eigenvectors are better for measuring capabilities such that it is the distance

to the origin that will be related to the underlying number of capabilities).

These two spaces (the left and right eigenspaces) are related since the extent

to which a country is embedded in a community is itself a measure of the

number of capabilities it has.12

To get a grasp for how this framework is applied, we create three M

matrices. The first, we defined some set of countries by the products they

produce. In this way, we create regions of countries that specialize in certain

products. Thus, we created the matrix by putting Mc,p = 1 with a probability

of 0.6 if c and p belong to the same community, and with probability 0.1

if not. The second way is following the model of Hausmann and Hidalgo

(2011), using C and P to determine M. These underlying matrices are also

binary matrices, which can be thought of as the matrix of countries and the

capabilities they have on the one hand, and the matrix of products and the

capabilities they require to be produced on the other, such that M = C �P .

Finally, the third way to construct M is from real data. We choose the year

2015, 224 countries and 773 products (SITC4 codes).

Figure 2 shows the results from the matrix filled uniformly, with five

12A way to see this is by recalling Anna Karenina’s Principle: Richly diversified countries

tend to be all alike, while poorly diversified countries are poorly diversified in their own

way. Hence, we should expect a “club of rich countries” to emerge.
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communities. Figure 3 shows the results from the matrix created based on

an underlying structure of capabilities, with also five communities. Figure 4

show the results from real data.

Figure 2: Example of a matrix connecting countries with products with a uniform prob-

ability. The within-community probability was set at 0.6 and the between-community

probability at 0.1.

Figure 4 does not reveal any special structure. In order to see more struc-

ture, let us disentangle technology from geography. The goal here is to repre-

sent the process of collective imitation, but taking into account geographical

communities. In other words, we want to model the fact that countries in

a same geographical region tend to export to the same importers. We ac-

complish this by adding the dimension of the importers to the matrix M.13

Hence, we will work below with the information Mc,i,p, where c is the index

of the exporter country, i the importer, and p the product traded. We will

“flatten” (or “widen”) this three-dimensional matrix such that we make it a

two-dimensional matrix with a very wide set of columns Mc,(i−p), where rows

are the exporters c, but each column is a importer-product combination.

13Michele Coscia was who originally saw this, and made the connection between ECI

and clustering by considering the geographical dimension of importers.
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Figure 3: Example of a matrix connecting countries with products as it results from the

interaction between the matrix of countries and capabilities, with the matrix of products

and the capabilities required. Within each community we model a nested pattern in

which some countries have many capabilities and others only a few. We also include the

possibility in which some products can be produced countries regardless of the community

to which they belong.

The following figure (Fig. 5) shows this matrix. As can be observed, it

also displays a triangular pattern. We construct its corresponding C matrix,

and compute the eigenvalues to have an indication of how many clusters there

are. Finally, we plot the 3-dimensional left-eigenspace (top-row of figures in

the right 6-panel plot), and the 3-dimensional right-eigenspace.

The meaning of these clusters of countries, in the context of consensus

dynamics, is the following: diversification will occur first within the com-

munities, and then globally. Once a community has reached consensus, the

countries within the community will “flock” together in the same way.

32



Figure 4: The same exercise as in Figures 1 and 2, but with real data from 2015 using

only exporters and their products (see Fig. 5 for exporters vs. importer-products). As can

be seen, communities are less clear in this representation.

5 Methodological notes

5.1 Some comments about processing real data

Studying the process of collective learning at the level of countries has some

benefits in contrast to studying it at the level of cities. In particular, by

studying trade between countries, one can look at the capacity of different

societies to produce products and compete at a worldwide scale. Different

countries rely on different institutions, have different laws, and political sys-

tems. But since the World is big, competition is fierce and the number of

potential buyers is so large, the ability to produce something competitively

is an accurate indication of the number of capabilities that a country has.

To identify capabilities in a place, and study how capabilities flow across

countries, or how countries acquire the ability to diversify, it would be useful

to know what a place produces consistently, significantly and systematically.

In brief, we should identify if a place c is producing a product p “competi-

tively”. How?
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Figure 5: Real data from the matrix of exporters (rows) vs importer-products (columns).

The density of eigenvalues provides a sense of the number of communities of exporters by

counting the number of large eigenvalues. The density of the distribution of values of ECI

is a further indication of the number of communities. However, the communities become

clear on the left-eigenspace (each dot is an exporter), which is shown on the three row-

panels. We color the five continents of the exporters, supporting the idea that exporters

belong to the same geographical communities. The bottom row of 3 panels shows the

right-eigenspace, which we hypothesize provides a measure of the underlying capabilities

of exporters.

The fundamental idea is to compare the observed production against the

expected :

Measure of competitiveness =
Observed production

Expected production
. (24)

Mathematically, we write this as

Rc,p =
Xc,p

E [Xc,p]
, (25)

where E [·] is the expectation operator. Every expectation assumes, explicitly

or implicitly, a model of the world. To answer how competitive a place is,

we need to define a simple model of the world, a “null model”.
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A specific null model is to assume that countries should be expected to

produce a product in the same proportion to its total output, as the share

of that product of total worldwide production:

E [Xc,p] = Xc

(
Xp

Xtotal

)
.

This defines what is known as the measure of Revealed Comparative

Advantage (or Location Quotient in the context of urban economics and

regional science). If Xc,p represents the export value of country c in product

p:

Rc,p ≡
Xc,p/

∑
pXc,p∑

cXc,p/
∑

c,pXc,p

. (26)

This can be computed using matrix operations as R = XT (xc
−1 ·X · xp

−1),

where XT is the total sum of values of matrix X, xc is a square diagonal

matrix whose elements are the total exports by country, and xp is a square

diagonal matrix whose elements are the total exports by product.

The values of Xc,p are typically heavy-tailed distributed. That is to say,

their magnitude can range across several orders of magnitude. Recall, in

particular, that our null model predicts lognormally distributed measures of

output (see discussion in Section 2.2). The divisions and multiplications in

the particular definition of Equation (26) compound this variability, and Rc,p

have values that are sometimes even more skewed and extreme. However, one

is typically more interested in characterizing the competitiveness of places

with regard to their production processes using quantities that behave more

“mildly”. So how does one “tame” the values of matrices such as Rc,p?

One way is to simplify matters and create Mc,p = 1 if Rc,p > 1 and

0 otherwise. This binarization has several motivations, one of which is re-

ducing the noise. The threshold Rc,p = 1 is natural, since it separates the

“more-than-expected” from the “less-than-expected” values. However, this
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operation is also hiding potentially important information contained in the

specific variations below or above that threshold, not to mention the fact

that some values may be larger than the threshold but may not actually be

statistically significant.

A natural transformation is thus to take logarithms. The problem is that

many values of Xc,p, and consequently of Rc,p, are zero. Directly applying

logarithms is thus not appropriate. Adding a 1 before taking logarithms, al-

though often done, log1p(Rc,p) ≡ log(Rc,p+1), is also not appropriate because

adding 1 artificially creates a characteristic scale in a variable that, given its

broad statistical distribution, is in fact better described by a “scale-free”

distribution.14 One proposal is thus to implement the following piecewise

function:

R̃c,p =

0 , if Rc,p = 0,

1 +
(

r0−1
log(r0)

)
log(Rc,p) , otherwise,

(27)

where r0 ≡ minc,p (Rc,p|Rc,p > 0). This transformation is useful because it

maps

Rc,p = r0 ←→ R̃c,p = r0,

Rc,p = 0 ←→ R̃c,p = 0,

Rc,p = 1 ←→ R̃c,p = 1.

Thus, it respects the usual bounds of Rc,p but is distributed approximately

normal.

There is a more agnostic and general way of computing measures of “com-

petitiveness”. It is simply the observation that Equation (25) is attempting

to estimate a residual. Thus, one can simply create a regression model (linear

14What is really happening is that Rc,p has an intrinsic characteristic scale that is

approximately equal to 1, but its variation is multiplicative. Adding a 1 completely changes

the distribution, which is why log(1+Rc,p) is not a normally distributed random variable.
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or non-linear, depending on the needs), and retrieve the residuals of such re-

gression. The natural threshold to separate the “more-than-expected” from

the “less-than-expected” is 0. For example, one can generalize Equation (26)

as

Rc,p = yc,p − ŷc,p, (28)

where yc,p = log(Xc,p + 1) and ŷc,p is the OLS estimate that minimizes the

squared error according to a model

yc,p = β0 + β1 log(
∑
p

Xc,p) + β2 log(
∑
c

Xc,p) + εc,p.

Note that we can add a 1 to Xc,p because the characteristic scales of Xc,p are

so much larger than 1. Residuals from these type of regressions, Rc,p ≡ ε̂c,p,

can be generalized even further if one wants to complicate the model and

add variables to control for population size, geography, or presence of natural

resources (to name a few possibilities).

5.2 Some comments about Product/Country Spaces of

Relatedness/Similarity

Recall that the principles of relatedness and the collective imitation assume

there are some matrices of similarities. Where do we get those similarity

matrices, or how do we construct them?

Here are some possibilities and notes about ways to compute the related-

ness of products, which we encode in a similarity matrix relating every pair

p and p′. The same concepts could apply to the matrix of country-country

similarities.

• Hidalgo et al. (2007):

φ(p, p′) = min{Pr(p|p′),Pr(p′|p)} (29)
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where Pr(p|p′) can be set to mean the fraction of countries for which

Mc,p = 1 given they also have Mc,p′ = 1.

• More generally, one could simply attempt a variety of similarity mea-

sures between columns (see, for a review of measures, Cha, 2007). For

example, correlate the columns of the matrix R̃c,p:

φ(p, p′) = cor(
~̃
R(p),

~̃
R(p′)). (30)

• In general, one is typically trying to infer whether there is any statisti-

cal dependency between the production of products. A correlation only

measures linear dependency. Hence, the question is whether Pr(p, p′) is

just the product of the marginal probabilities Pr(p) Pr(p′) (which would

imply independence). If Pr(p, p′) is larger, then the products are pos-

itively dependent, if it is less, the products are negatively dependent.

This suggests a measure of dependence called a “pointwise mutual in-

formation” (one measure of particular interest would be Reshef et al.,

2011):

φ(p, p′) = log2

(
Pr(p, p′)

Pr(p) Pr(p′)

)
. (31)

We can take other more “formulaic” approaches. Thus, the original prod-

uct space can be “un-packed” mathematically as:

Pr(p|p′) =
Pr(p, p′)

Pr(p′)

=
N(p, p′)/Nc

N(p′)/Nc

=

∑
cMc,pMc,p′∑
cMc,p′

=

∑
cMc,pMc,p′

u(p′)
. (32)
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Symmetric matrix:

Φ = min
{
U−1 ·MT ·M , MT ·M ·U−1

}
.

Other options can be seen as generalizations of these combinations of matri-

ces15:

• Φ = MTM/Nc (symmetric [joint freq.])

• Φ = MT ·D−1 ·M (symmetric [“diversity normalized” joint freq.])

• Φ = MT ·D−2 ·M (symmetric [“averaged probabilities”])

• Φ = U−1 ·MT ·M ·U−1 (symmetric [mutual information])

5.3 Conventional calculation of ECI

The actual calculation of the ECI uses the similarity M ·U−1 ·MT , where

U is matrix whose diagonal values are the ubiquities of products. Let us see

why we use this specification.

Let matrix M have size C × P . This is a matrix that has been dis-

cretized so that Mc,p is 1 if the product p is exported in country c, and 0

otherwise. From this matrix, one creates two stochastic matrices. First, the

right-stochastic (i.e., row-stochastic or row-normalized) transition matrix of

“countries to products”,

R = D−1 ·M,

and second, the left-stochastic (i.e., column-stochastic or column-normalized)

transition matrix of “products to countries”,

L = M ·U−1,
15Alje van Dam and Koen Frenken have work-in-progress linking and generalizing mea-

sures of similarity
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where D is the matrix whose diagonal elements are the diversities of countries,

~d = M ·~1 and similarly for U, whose diagonal is ~u = MT ·~1, the vector that

contains the number of countries from which the product is exported (i.e., its

ubiquity). We use the notation diag (~x) to mean the matrix whose diagonal

is the vector ~x and the other values are zero, and ~1 to denote a vector of 1’s.

Two comments:

• The matrix R takes averages of when multiplied by a vector on the

right. Consider ~y a vector in which each element is a property of each

product. Then R · ~y is that average value of the property per country.

• The matrix L takes averages of when multiplied by a vector on the left.

This time, consider another general vector ~xT in which each element is

a property of each country. Then ~xT · L is that average value of the

property per product.

Recall that we are using “stochastic” matrices, not because we are modeling a

stochastic process, but because of the principles of relatedness and collective

imitation, which are based on averaging.

Let us construct the left-stochastic transition probability matrix of “coun-

tries to countries”,

C = R · LT = D−1 ·M ·U−1 ·MT .

As can be seen, this can be written as C = D−1S, where S has the elements

of country-country similarity χ(c, c′). Thus, this is one possible version of

the matrix implied in Equation (11).

For mathematical convenience, we will assume that the stochastic matrix

C is irreducible and aperiodic.16

16When C is constructed using real data, it is irreducible since all countries produce

at least one product that some other country also produces, and it is aperiodic since, by

construction, it has self-loops.
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Now, let ~li
T

and ~ri be the ith left-eigenvector and right-eigenvector, re-

spectively, so that the eigenvalues are ordered in decreasing value, 1 = γ1 ≥
γ2 ≥ · · · ≥ γC . The list of ECIs for countries is defined as the right sub-

dominant eigenvector, ~ECI ≡ ~r2:

C · ~ECI = λ2 ~ECI. (33)

Remember, we take the right-eigenvector because the matrix C is multiplied

on the right by M, which represents the phenomenon in which the production

of products across countries changes according to the principle of collective

imitation.

It is easy to prove that the vector ~d of the diversity of countries is or-

thogonal to the vector of ECIs, ~ECI, once you realize that ~d is actually the

dominant left-eigenvector (sometimes referred to as the “perron” eigenvec-

tor, or just simply, the stationary distribution of the discrete markov chain

defined by C). Thus, multiplying ~d on the left of C, and expanding C into

its components,

~dT ·C = ~dT · (R · LT ),

= ~dT · (D−1 ·M ·U−1 ·MT ),

= ~dT · (diag
(

1/~d
)
·M) · (diag (1/~u) ·MT ),

= (~1T ·M) · (diag (1/~u) ·MT ),

= ~uT · (diag (1/~u) ·MT ),

= ~1T ·MT ,

= (M ·~1)T ,

= ~dT . (34)

Thus, ~dT is a left-eigenvector of C associated with the eigenvalue γ1 = 1,

which (from the Perron-Frobenius theorem) one concludes that ~dT is the

dominant left-eigenvector. This means, given classical results from discrete
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markov chains, that the stationary distribution of the stochastic process de-

fined by C is π = ~d/
∑

c dc. Therefore, since left-eigenvectors are orthogonal

to right-eigenvectors, ~li
T
· ~rj ∝ δi,j, we conclude that

~dT · ~ECI = 0,

which is a result that had been noted before already by Kemp-Benedict

(2014).

All these same results apply to the product space matrix, P = RT · L,

except all “left”’s are swapped with “right”’s. Namely, the sub-dominant left-

eigenvector is the list of product complexity indices, PCIs, and the dominant

right-eigenvector is proportional to the list of ubiquities.

In the literature it is sometimes said that the economic complexity index

can be axiomatically defined by postulating that products have a complexity,

that the complexity of countries is the average complexity of the products it

exports, and that the complexity of the products as the average complexity

of the countries where it is exported. It is claimed that this uniquely defines

these two vectors. In other words, the claim is that ~xT · L = ~yT and R · ~y =

~x uniquely define the vectors ~xT and ~y, and that these correspond to the

economic complexity of countries and products, respectively. This is not

true, however. Any pair of the right/left-eigenvectors of the matrices C and

P have this precise property, and thus this does not uniquely define what

“complexity” means.17

Now, the values of ECI have been shown to be positively associated

with income levels and income growth of countries (Hidalgo and Hausmann,

2009). A clear and direct interpretation of the physical meaning of ECI has

17There an additional complication arising from the fact that M is not square. In

general, C is less than P , and this implies that P can have, at most, C linearly independent

columns, which in turn means that some products will have repeated values of “product

complexities”.
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been lacking, and this has obscured its connection to measures of collective

knowhow and economic growth. The reason for this confusion is born out,

first, from its flawed interpretation as a direct measure of knowhow, and

second, from the confusion about its uniqueness.
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