Astrophysics

Spandan Choudhury, Jaime E. Pineda, Paola Caselli, Adam Ginsburg, Stella S. R. Offner, Erik Rosolowsky, Rachel K. Friesen, Felipe O. Alves, Ana Chacón-Tanarro, Anna Punanova, Elena Redaelli, Philip Helen Kirk, C. Myers, Peter G. Martin, Yancy Shirley, Michael Chun-Yuan Chen, Alyssa A. Goodman, and James Di Francesco. 2020. “Ubiquitous NH\(_{3}\) supersonic component in L1688 coherent cores.” A&A, 640, Pp. L6. Publisher's VersionAbstract

Context. Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions.

Aims. We aim to study the ammonia (NH3) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail.

Methods. We used NH3 (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1′ to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores.

Results. For the first time, we detected a faint (mean NH3(1,1) peak brightness < 0.25 K in TMB), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths (ℳS ≥ 1). This component biases the estimate of the narrow dense core component’s velocity dispersion by ≈28% and the kinetic temperature by ≈10%, on average, as compared to the results from single-component fits.

Conclusions. Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from NH3 observations.

T. K. Sridharan, Shmuel Bialy, Raymond Blundell, Andrew Burkhardt, Thomas Dame, Sheperd Doeleman, Douglas Finkbeiner, Alyssa Goodman, and alia. 2020. “A Prospective ISRO-CfA Himalayan Sub-millimeter-wave Observatory Initiative.” arXiv, 2008, 07453. Publisher's VersionAbstract
The Smithsonian Astrophysical Observatory (SAO), a member of the Center for Astrophysics | Harvard and Smithsonian, is in discussions with the Space Applications Centre (SAC) of the Indian Space Research Organization (ISRO) and its partners in the newly formed Indian Sub-millimetre-wave Astronomy Alliance (ISAA), to collaborate in the construction of a sub-millimeter-wave astronomy observatory in the high altitude deserts of the Himalayas, initially at the 4500 m Indian Astronomical Observatory, Hanle. Two primary science goals are targeted. One is the mapping of the distribution of neutral atomic carbon, and the carbon monoxide (CO) molecule in higher energy states, in large parts of the Milky Way, and in selected external galaxies. Such studies would advance our understanding of molecular hydrogen present in the interstellar medium, but partly missed by existing observations; and characterize Galaxy-wide molecular cloud excitation conditions, through multi-level CO observations. Stars form in interstellar clouds of molecular gas and dust, and these observations would allow research into the formation and destruction processes of such molecular clouds and the life cycle of galaxies. As the second goal, the observatory would add a new location to the global Event Horizon Telescope (EHT) network, which lacks a station in the Himalayan longitudes. This addition would enhance the quality of the images synthesized by the EHT, support observations in higher sub-millimeter wave bands, sharpening its resolving ability, improve its dynamic imaging capability and add weather resilience to observing campaigns. In the broader context, this collaboration can be a starting point for a wider, mutually beneficial scientific exchange between the Indian and US astronomy communities, including a potential future EHT space component.
Kaustav K. Das, Catherine Zucker, Joshua S. Speagle, Alyssa Goodman, Gregory M. Green, and João Alves. 2020. “Constraining the distance to the North Polar Spur with Gaia DR2.” MNRAS, 498, Pp. 5863-5872.Abstract
The North Polar Spur (NPS) is one of the largest structures observed in the Milky Way in both the radio and soft X-rays. While several predictions have been made regarding the origin of the NPS, modelling the structure is difficult without precise distance constraints. In this paper, we determine accurate distances to the southern terminus of the NPS and towards latitudes ranging up to 55°. First, we fit for the distance and extinction to stars towards the NPS using optical and near-infrared photometry and Gaia Data Release 2 astrometry. We model these per-star distance–extinction estimates as being caused by dust screens at unknown distances, which we fit for using a nested sampling algorithm. We then compare the extinction to the Spur derived from our 3D dust modelling with integrated independent measures from XMM–Newton X-ray absorption and H I column density measures. We find that we can account for nearly 100 per cent of the total column density of the NPS as lying within 140 pc for latitudes >26° and within 700 pc for latitudes <11°. Based on the results, we conclude that the NPS is not associated with the Galactic Centre or the Fermi bubbles. Instead, it is likely associated, especially at higher latitudes, with the Scorpius–Centaurus association.
Milky Way

Astronomy Magazine Talks to the Team Who Discovered the Radcliffe Wave

December 1, 2020


Astronomy Magazine talks to the team from Harvard’s Radcliffe Institute for Advanced Study and Harvard-Smithsonian Center for Astrophysics (CfA) about their serendipitous discovery of the Radcliffe Wave, a massive interconnected stream of stellar nurseries, molecular clouds, and supernovae that snakes through the Milky Way galaxy - and how history, art and science came together to enable this paradigm-changing discovery.  Read the full article ...

Read more about Astronomy Magazine Talks to the Team Who Discovered the Radcliffe Wave
glue-ing Together the Universe, at Microsoft New England Research Division, Cambridge, MA , Friday, March 6, 2020:

Astronomers have a long history of visualization. Going back only as far as Galileo, discoveries were made using sketches of celestial objects moving over time. Today, Astronomy inquiries can, and often do, make use of petabytes of data at once. Huge surveys are analyzed statistically to understand tiny fluctuations that hint at the fundamental nature of the Universe, and myriad data sets, from telescopes across the globe and in space are brought together to solve problems ranging from the nature of black holes to the structure of the Milky Way to the origins of planets like Earth. In...

Read more about glue-ing Together the Universe
Pecan Pie Logo for "PRISEd Conversation 2020" with photo of Dr. Goodman

Blog Feature: Dr. Alyssa Goodman talks with the The Harvard College Program in Science and Engineering (PRISE)

September 23, 2020

Dr. Alyssa Goodman talks with Felicia Ho, PRISE, Harvard College '23 about Jacques Cousteau, data visualization, climate change, prediction science, and the wide arc of influences that have shaped her multifaceted career as the Robert Wheeler Wilson Professor of Applied Astronomy at Harvard. 

...

Read more about Blog Feature: Dr. Alyssa Goodman talks with the The Harvard College Program in Science and Engineering (PRISE)
Catherine Zucker, Rowan Smith, and Alyssa Goodman. 12/2019. “Synthetic Large-Scale Galactic Filaments: On Their Formation, Physical Properties, and Resemblance to Observations.” The Astrophysical Journal , 887, Pp. 186. Publisher's VersionAbstract
Using a population of large-scale filaments extracted from an AREPO simulation of a Milky Way─like galaxy, we seek to understand the extent to which observed large-scale filament properties (with lengths ≳100 pc) can be explained by galactic dynamics alone. From an observer’s perspective in the disk of the galaxy, we identify filaments forming purely due to galactic dynamics, without the effects of feedback or local self-gravity. We find that large-scale galactic filaments are intrinsically rare, and we estimate that at maximum approximately one filament per kpc2 should be identified in projection, when viewed from the direction of our Sun in the Milky Way. In this idealized scenario, we find filaments in both the arm and interarm regions and hypothesize that the former may be due to gas compression in the spiral potential wells, with the latter due to differential rotation. Using the same analysis pipeline applied previously to observations, we analyze the physical properties of large-scale galactic filaments and quantify their sensitivity to projection effects and galactic environment (i.e., whether they lie in the arm or interarm regions). We find that observed “Giant Molecular Filaments” are consistent with being non-self- gravitating structures dominated by galactic dynamics. Straighter, narrower, and denser “Bone-like” filaments, like the paradigmatic Nessie filament, have similar column densities, velocity gradients, and galactic plane heights (z ≈ 0 pc) to those in our simple model, but additional physical effects (such as feedback and self-gravity) must be invoked to explain their lengths and widths.
P. Udomprasert, H. Houghton, S. Sunbury, J. Plummer, E. Wright, A. Goodman, E. Johnson, H. Zhang, A. Vaishampayan, and K. Cho. 11/2019. “Visualizing Seasons and Moon Phases with WorldWide Telescope.” Advancing Astronomy for All: ASP 2018 ASP Conference Series, 524, Pp. 125. Publisher's VersionAbstract

WorldWide Telescope (WWT) is a powerful visualization program that allows users to connect Earth-based and space-based views of the Sun- Earth-Moon system. By blending hands-on physical activities with WWT's virtual models, students can visualize spatially complex concepts like seasons, Moon phases, and eclipses. In this workshop, we will demonstrate how WWT and the physical models are used together in our WWT ThinkSpace curriculum, developed with funding from the National Science Foundation. We will also present student learning outcomes based on written assessments and student interviews.

Ian W. Stephens, Tyler L. Bourke, Michael M. Dunham, Philip C. Myers, Riwaj Pokhrel, John J. Tobin, Héctor G. Arce, and et al. 12/2019. “Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—Full Data Release.” The Astrophysical Journal. Supplement Series, 245, Pp. 21. Publisher's VersionAbstract
We present the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, which uses the Submillimeter Array (SMA) interferometer to map the continuum and molecular lines for all 74 known Class 0/I protostellar systems in the Perseus molecular cloud. The primary goal of the survey is to observe an unbiased sample of young protostars in a single molecular cloud so that we can characterize the evolution of protostars. This paper releases the MASSES 1.3 mm data from the subcompact configuration (̃4″ or ̃1000 au resolution), which is the SMA’s most compact array configuration. We release both uv visibility data and imaged data for the spectral lines CO(2-1), 13CO(2-1), C18O(2-1), and N2D+(3-2), as well as for the 1.3 mm continuum. We identify the tracers that are detected toward each source. We also show example images of continuum and CO(2-1) outflows, analyze C18O(2-1) spectra, and present data from the SVS 13 star- forming region. The calculated envelope masses from the continuum show a decreasing trend with bolometric temperature (a proxy for age). Typical C18O(2-1) line widths are 1.45 km s-1, which is higher than the C18O line widths detected toward Perseus filaments and cores. We find that N2D+(3-2) is significantly more likely to be detected toward younger protostars. We show that the protostars in SVS 13 are contained within filamentary structures as traced by C18O(2-1) and N2D+(3-2). We also present the locations of SVS 13A’s high-velocity (absolute line-of-sight velocities >150 km s-1) red and blue outflow components. Data can be downloaded from https://da taverse.harvard.edu/dataverse/MASSES.
J.D. Soler, H. Beuther, M. Rugel, Y. Wang, P. C. Clark, S. C. O. Glover, P. F. Goldsmith, and et al. 2/2019. “Histogram of Oriented Gradients: A Technique for the Study of Molecular Cloud Formation.” Astronomy and Astrophysics, 622, Pp. A166. Publisher's VersionAbstract

We introduce the histogram of oriented gradients (HOG), a tool developed for machine vision that we propose as a new metric for the systematic characterization of spectral line observations of atomic and molecular gas and the study of molecular cloud formation models. In essence, the HOG technique takes as input extended spectral-line observations from two tracers and provides an estimate of their spatial correlation across velocity channels. We characterized HOG using synthetic observations of HI and 13CO (J = 1 → 0) emission from numerical simulations of magnetohydrodynamic (MHD) turbulence leading to the formation of molecular gas after the collision of two atomic clouds. We found a significant spatial correlation between the two tracers in velocity channels where vHI ≈ v13CO, almost independent of the orientation of the collision with respect to the line of sight. Subsequently, we used HOG to investigate the spatial correlation of the HI, from The HI/OH/recombination line survey of the inner Milky Way (THOR), and the 13CO (J = 1 → 0) emission from the Galactic Ring Survey (GRS), toward the portion of the Galactic plane 33°.75 ≤l ≤ 35°.25 and |b| ≤ 1°.25. We found a significant spatial correlation between the two tracers in extended portions of the studied region. Although some of the regions with high spatial correlation are associated with HI self-absorption (HISA) features, suggesting that it is produced by the cold atomic gas, the correlation is not exclusive to this kind of region. The HOG results derived for the observational data indicate significant differences between individual regions: some show spatial correlation in channels around vHI ≈ v13CO while others present spatial correlations in velocity channels separated by a few kilometers per second. We associate these velocity offsets to the effect of feedback and to the presence of physical conditions that are not included in the atomic-cloud-collision simulations, such as more general magnetic field configurations, shear, and global gas infall.

Aneta Siemiginowska, Gwendolyn Eadie, Ian Czekala, Eric Feigelson, Eric B. Ford, Vinay Kashyap, Michael Kuhn, and et al. 5/2019. “The Next Decade of Astroinformatics and Astrostatistics.” Bulletin of the American Astronomical Society, 51, Pp. 355. Publisher's VersionAbstract

Over the past century, major advances in astronomy and astrophysics have been driven by improvements in instrumentation. With the amassing of high quality data from new telescopes it is becoming clear that research in astrostatistics and astroinformatics will be necessary to develop new methodology needed in astronomy.

Pages