Publications

In Press
Park, C.F., et al. Automated neuron tracking inside moving and deforming animals using deep learning and targeted augmentation. Nature Methods (In Press).Abstract
Advances in functional brain imaging now allow sustained rapid 3D visualization of large numbers of neurons inside behaving animals. To decode circuit activity, imaged neurons must be individually segmented and tracked. This is particularly challenging when the brain itself moves and deforms inside a flexible body. The field has lacked general methods for solving this problem effectively. To address this need, we developed a method based on a convolutional neural network (CNN) Awith specific enhancements which we apply to freely moving Caenorhabditis elegans. For a traditional CNN to track neurons across images of a brain with different postures, the CNN must be trained with ground truth (GT) annotations of similar postures. When these postures are diverse, an adequate number of GT annotations can be prohibitively large to generate manually. We introduce ‘targeted augmentation’, a method to automatically synthesize reliable annotations from a few manual annotations. Our method effectively learns the internal deformations of the brain. The learned deformations are used to synthesize annotations for new postures by deforming the manual annotations of similar postures in GT images. The technique is germane to 3D images, which are generally more difficult to analyze than 2D images. The synthetic annotations, which are added to diversify training datasets, drastically reduce manual annotation and proofreading. Our method is effective both when neurons are represented as individual points or as 3D volumes. We provide a GUI that incorporates targeted augmentation in an end-to-end pipeline, from manual GT annotation of a few images to final proofreading of all images. We apply the method to simultaneously measure activity in the second-layer interneurons in C. elegans: RIA, RIB, and RIM, including the RIA neurite. We find that these neurons show rich behaviors, including switching entrainment on and off dynamically when the animal is exposed to periodic odor pulses.
Preprint
Submitted
Nejatbakhsh, A., et al. Extracting neural signals from semi-immobilized animals with deformable non-negative matrix factorization. bioRxiv (Submitted).Abstract
Extracting calcium traces from populations of neurons is a critical step in the study of the large-scale neural dynamics that govern behavior. Accurate activity extraction requires the correction of motion and movement-induced deformations as well as demixing of signals that may overlap spatially due to limitations in optical resolution. Traditionally, non-negative matrix factorization (NMF) methods have been successful in demixing and denoising cellular calcium activity in relatively motionless or pre-registered videos. However, standard NMF methods fail in animals undergoing significant non-rigid motion; similarly, standard image registration methods based on template matching can fail when large changes in activity lead to mismatches with the image template. To address these issues simultaneously, we introduce a deformable non-negative matrix factorization (dNMF) framework that jointly optimizes registration with signal demixing. On simulated data and real semi-immobilized C. elegans microscopy videos, dNMF outperforms traditional demixing methods that account for motion and demixing separately. Finally, following the extraction of neural traces from multiple imaging experiments, we develop a quantile regression time-series normalization technique to account for varying neural signal intensity baselines across different animals or different imaging setups. Open source code implementing this pipeline is available at https://github.com/amin-nejat/dNMF.
Preprint
2023
Hosu, B.G., Hill, W., Samuel, A.D. & Berg, H.C. Synchronized strobed phase contrast and fluorescence microscopy: The interlaced standard reimagined. Optics Express 31, 4, 5167-5180 (2023). Publisher's VersionAbstract
We propose a simple, cost-effective method for synchronized phase contrast and fluorescence video acquisition in live samples. Counter-phased pulses of phase contrast illumination and fluorescence excitation light are synchronized with the exposure of the two fields of an interlaced camera sensor. This results in a video sequence in which each frame contains both exposure modes, each in half of its pixels. The method allows real-time acquisition and display of synchronized and spatially aligned phase contrast and fluorescence image sequences that can be separated by de-interlacing in two independent videos. The method can be implemented on any fluorescence microscope with a camera port without needing to modify the optical path.
Full Text
Lin, A., et al. Functional imaging and quantification of multineuronal olfactory responses in C. elegans. Science Advances 9, 9, eade1249 (2023). Publisher's VersionAbstract
Many animals perceive odorant molecules by collecting information from ensembles of olfactory neurons, where each neuron uses receptors that are tuned to recognize certain odorant molecules with different binding affinity. Olfactory systems are able, in principle, to detect and discriminate diverse odorants using combinatorial coding strategies. We have combined microfluidics and multineuronal imaging to study the ensemble-level olfactory representations at the sensory periphery of the nematode Caenorhabditis elegans. The collective activity of C. elegans chemosensory neurons reveals high-dimensional representations of olfactory information across a broad space of odorant molecules. We reveal diverse tuning properties and dose-response curves across chemosensory neurons and across odorants. We describe the unique contribution of each sensory neuron to an ensemble-level code for volatile odorants. We show that a natural stimuli, a set of nematode pheromones, are also encoded by the sensory ensemble. The integrated activity of the C. elegans chemosensory neurons contains sufficient information to robustly encode the intensity and identity of diverse chemical stimuli.
Preprint
Pavarino, E.C., et al. Membrain: An interactive deep learning matlab tool for connectomic segmentation on commodity desktops. Frontiers in Neural Circuits 17, (2023). Publisher's VersionAbstract
Connectomics is fundamental in propelling our understanding of the nervous system's organization, unearthing cells and wiring diagrams reconstructed from volume electron microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever more precise automatic segmentation methods, which leverage sophisticated deep learning architectures and advanced machine learning algorithms. On the other hand, the field of neuroscience at large, and of image processing in particular, has manifested a need for user-friendly and open source tools which enable the community to carry out advanced analyses. In line with this second vein, here we propose mEMbrain, an interactive MATLAB-based software which wraps algorithms and functions that enable labeling and segmentation of electron microscopy datasets in a user-friendly user interface compatible with Linux and Windows. Through its integration as an API to the volume annotation and segmentation tool VAST, mEMbrain encompasses functions for ground truth generation, image preprocessing, training of deep neural networks, and on-the-fly predictions for proofreading and evaluation. The final goals of our tool are to expedite manual labeling efforts and to harness MATLAB users with an array of semi-automatic approaches for instance segmentation. We tested our tool on a variety of datasets that span different species at various scales, regions of the nervous system and developmental stages. To further expedite research in connectomics, we provide an EM resource of ground truth annotation from four different animals and five datasets, amounting to around 180 h of expert annotations, yielding more than 1.2 GB of annotated EM images. In addition, we provide a set of four pre-trained networks for said datasets. All tools are available from https://lichtman.rc.fas.harvard.edu/mEMbrain/. With our software, our hope is to provide a solution for lab-based neural reconstructions which does not require coding by the user, thus paving the way to affordable connectomics.
Preprint
Susoy, V. & Samuel, A.D. Evolutionarily conserved behavioral plasticity enables context- dependent mating in C. elegans. Current Biology 33, 20, 4532-4537.E3 (2023). Publisher's VersionAbstract
Behavioral plasticity helps humans and animals to achieve their goals by adapting their behaviors to different environments. Although behavioral plasticity is ubiquitous, many innate species-specific behaviors, such as mating, are often assumed to be stereotyped and unaffected by plasticity or learning, especially in invertebrates. Here, we describe a novel case of behavioral plasticity in the nematode C. elegans – under a different set of naturalistic conditions the male uses a unique, previously undescribed set of behavioral steps for mating. Under standard lab conditions (agar plates with bacterial food), the male performs parallel mating, a largely two-dimensional behavioral strategy where his body and tail remain flat on the surface and slide alongside the partner ‘s body from initial contact to copulation. But when placed in liquid medium, the male performs spiral mating, a distinctly three-dimensional behavioral strategy where he winds around the partner ’s body in a helical embrace. The performance of spiral mating does not require a long-term change in growing conditions but it does improve with experience. This experience-dependent improvement involves a critical period – a time window around the L4 to early adult stage, which coincides with the development of most male-specific neurons. We tested several wild isolates of C. elegans and other Caenorhabditis species and found that most were capable of parallel mating on surfaces and spiral mating in liquids. We suggest that two- and three-dimensional mating strategies in Caenorhabditis are plastic, conditionally expressed phenotypes conserved across the genus, and which can be genetically “fixed ” in some species.
Preprint
2022
Brugman, K.I., et al. Pezo-1 and trp-4 mechanosensors are involved in mating behavior in C. elegans. PNAS Nexus 1, 5, (2022). Publisher's VersionAbstract
Male mating in Caenorhabditis elegans is a complex behavior with a strong mechanosensory component. C. elegans has several characterized mechanotransducer proteins, but few have been shown to contribute to mating. Here, we investigated the roles of PEZO-1, a piezo channel, and TRP-4, a mechanotransducing TRPN channel, in male mating behavior. We show that pezo-1 is expressed in several male-specific neurons with known roles in mating. We show that, among other neurons, trp-4 is expressed in the Post-Cloacal sensilla neuron type A (PCA) sensory neuron, which monitors relative sliding between the male and the hermaphrodite and inhibits neurons involved in vulva detection. Mutations in both genes compromise many steps of mating, including initial response to the hermaphrodite, scanning, turning, and vulva detection. We performed pan-neuronal imaging during mating between freely moving mutant males and hermaphrodites. Both pezo-1 and trp-4 mutants showed spurious activation of the sensory neurons involved in vulva detection. In trp-4 mutants, this spurious activation might be caused by PCA failure to inhibit vulva-detecting neurons during scanning. Indeed, we show that without functional TRP-4, PCA fails to detect the relative sliding between the male and hermaphrodite. Cell-specific TRP-4 expression restores PCA's mechanosensory function. Our results demonstrate new roles for both PEZO-1 and TRP-4 mechanotransducers in C. elegans mating behavior.
Preprint
Lu, Y., et al. Extrasynaptic signaling enables an asymmetric juvenile motor circuit to produce symmetric undulation. Current Biology 31, 21, 4631-4644.E5 (2022). Publisher's VersionAbstract
In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.
Preprint
Mulcahy, B., et al. Post-embryonic remodeling of the c. elegans motor circuit. Current biology 32, 21, 4645–4659.e3 (2022). Publisher's VersionAbstract
During development, animals can maintain behavioral output even as underlying circuitry structurally remodels. After hatching, C. elegans undergoes substantial motor neuron expansion and synapse rewiring while the animal continuously moves with an undulatory pattern. To understand how the circuit transitions from its juvenile to mature configuration without interrupting functional output, we reconstructed the C. elegans motor circuit by electron microscopy across larval development. We observed the following: First, embryonic motor neurons transiently interact with the developing post-embryonic motor neurons prior to remodeling of their juvenile wiring. Second, post-embryonic neurons initiate synapse development with their future partners as their neurites navigate through the juvenile nerve cords. Third, embryonic and post-embryonic neurons sequentially build structural machinery needed for the adult circuit before the embryonic neurons relinquish their roles to post-embryonic neurons. Fourth, this transition is repeated region by region along the body in an anterior-to-posterior sequence, following the birth order of neurons. Through this orchestrated and programmed rewiring, the motor circuit gradually transforms from asymmetric to symmetric wiring. These maturation strategies support the continuous maintenance of motor patterns as the juvenile circuit develops into the adult configuration.
Preprint
Lin, A., et al. Imaging whole-brain activity to understand behaviour. Nature Reviews Physics 4, 292–305 (2022). Publisher's VersionAbstract
Until now, most brain studies have focused on small numbers of neurons that interact in limited circuits, allowing analysis of individual computations or steps of neural processing. During behaviour, however, brain activity must integrate multiple circuits in different brain regions. Whole-brain recording with cellular resolution provides a new opportunity to dissect the neural basis of behaviour, but whole-brain activity is mutually contingent on behaviour itself, especially for natural behaviours such as navigation, mating or hunting, which require dynamic interaction between the animal, its environment and other animals. Many of the signalling and feedback pathways that animals use to guide behaviour only occur in freely moving animals. Recent technological advances have enabled whole-brain recording in small behaving animals including the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the larval zebrafish Danio rerio. These whole-brain experiments capture neural activity with cellular resolution spanning sensory, decision-making and motor circuits, and thereby demand new theoretical approaches that integrate brain dynamics with behavioural dynamics. We review the experimental and theoretical methods used to understand animal behaviour and whole-brain activity, and the opportunities for physics to contribute to this emerging field of systems neuroscience.
Full Text
2021
Eschbach, C., et al. Circuits for integrating learned and innate valences in the insect brain. eLife 10, e62567 (2021). Publisher's VersionAbstract
Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in \textitDrosophila larva. The connectome revealed multiple \textitconvergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.
Preprint
Witvliet, D., et al. Connectomes across development reveal principles of brain maturation. Nature 596, 257–261 (2021). Publisher's VersionAbstract
From birth to adulthood, an animal’s nervous system changes as its body grows and its behaviours mature. The form and extent of circuit remodelling across the connectome is unknown. We used serial-section electron microscopy to reconstruct the full brain of eight isogenic C. elegans individuals across postnatal stages to learn how it changes with age. The overall geometry of the brain is preserved from birth to adulthood. Upon this constant scaffold, substantial changes in chemical synaptic connectivity emerge. Comparing connectomes among individuals reveals substantial connectivity differences that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. Over development, the central decision-making circuitry is maintained whereas sensory and motor pathways substantially remodel. With age, the brain progressively becomes more feedforward and discernibly modular. Developmental connectomics reveals principles that underlie brain maturation.Competing Interest StatementThe authors have declared no competing interest.
Preprint
Vogt, K., et al. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Science Advances 7, 1, (2021). Publisher's VersionAbstract
Animals exhibit different behavioral responses to the same sensory cue depending on their internal state at a given moment. How and where in the brain are sensory inputs combined with state information to select an appropriate behavior? Here, we investigate how food deprivation affects olfactory behavior in Drosophila larvae. We find that certain odors repel well-fed animals but attract food-deprived animals and that feeding state flexibly alters neural processing in the first olfactory center, the antennal lobe. Hunger differentially modulates two output pathways required for opposing behavioral responses. Upon food deprivation, attraction-mediating uniglomerular projection neurons show elevated odor-evoked activity, whereas an aversion-mediating multiglomerular projection neuron receives odor-evoked inhibition. The switch between these two pathways is regulated by the lone serotonergic neuron in the antennal lobe, CSD. Our findings demonstrate how flexible behaviors can arise from state-dependent circuit dynamics in an early sensory processing center.
Preprint
Susoy, V., et al. Natural sensory context drives diverse brain-wide activity during C. elegans mating. Cell 184, 20, P5122-5137.E17 (2021). Publisher's VersionAbstract
Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use continuous brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as each mating unfolds in its own sequence of component behaviors, the brain operates similarly between instances of each component, but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed, but change with behavioral dynamics. From the contribution of individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions within their natural context.Competing Interest StatementThe authors have declared no competing interest.
Preprint
Ji, N., et al. Corollary discharge promotes a sustained motor state in a neural circuit for navigation. eLife 10, e68848 (2021). Publisher's VersionAbstract
Animals exhibit behavioral and neural responses that persist on longer timescales than transient or fluctuating stimulus inputs. Here, we report that \textitCaenorhabditis elegans uses feedback from the motor circuit to a sensory processing interneuron to sustain its motor state during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for this corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal’s ability to sustain forward movements during thermotaxis. We propose that feedback from the motor circuit to the sensory processing circuit underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation.
Preprint
Hernandez-Nunez, L., et al. Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. Science Advances 7, 35, (2021). Publisher's VersionAbstract
Body temperature homeostasis is an essential function that relies upon the integration of the outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these diverse outputs to control body temperature are not understood. Here we discover a new set of Warming Cells (WCs), and show that the outputs of these WCs and previously described Cooling Cells (CCs1) are combined in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila. We find that WCs and CCs are opponent sensors that operate in synchrony above, below, and near the homeostatic set-point, with WCs consistently activated by warming and inhibited by cooling, and CCs the converse. Molecularly, these opponent sensors rely on overlapping combinations of Ionotropic Receptors to detect temperature changes: Ir68a, Ir93a, and Ir25a for WCs; Ir21a, Ir93a, and Ir25a for CCs. Using a combination of optogenetics, sensory receptor mutants, and quantitative behavioral analysis, we find that the larva uses flexible cross-inhibition of WC and CC outputs to locate and stay near the homeostatic set-point. Balanced cross-inhibition near the set-point suppresses any directed movement along temperature gradients. Above the set-point, WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling. Below the set-point, CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Our results demonstrate how flexible cross-inhibition between warming and cooling pathways can orchestrate homeostatic thermoregulation.Competing Interest StatementThe authors have declared no competing interest.
Preprint
2020
Nejatbakhsh, A., et al. Demixing Calcium Imaging Data in C. elegans via Deformable Non-negative Matrix Factorization. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 14–24 (2020). Publisher's VersionAbstract
Extracting calcium traces from the neurons of C. elegans is an important problem, enabling the study of individual neuronal activity and the large-scale dynamics that govern behavior. Traditionally, non-negative matrix factorization (NMF) methods have been successful in demixing and denoising cellular calcium activity in relatively motionless or pre-registered videos. However, in the case of C. elegans or other animal models where motion compensation methods fail to stabilize the effect of even mild motion in the imaging data, standard NMF methods fail to capture cellular footprints since these footprints are variable in time. In this work, we introduce deformable non-negative matrix factorization (dNMF), which models the motion trajectory of the underlying image space using a polynomial basis function. Spatial footprints and neural activity are optimized jointly with motion trajectories in a matrix tri-factorization setting. On simulated data, dNMF is demonstrated to outperform currently available demixing methods as well as methods that account for motion and demixing separately. Furthermore, we display the practical utility of our approach in extracting calcium traces from C. elegans microscopy videos. The extracted traces elucidate spontaneous neural activity as well as responses to stimuli. Open source code implementing this pipeline is available at https://github.com/amin-nejat/dNMF
Mi, L., et al. Learning Guided Electron Microscopy with Active Acquisition. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 77–87 (2020). Publisher's VersionAbstract
Single-beam scanning electron microscopes (SEM) are widely used to acquire massive datasets for biomedical study, material analysis, and fabrication inspection. Datasets are typically acquired with uniform acquisition: applying the electron beam with the same power and duration to all image pixels, even if there is great variety in the pixels' importance for eventual use. Many SEMs are now able to move the beam to any pixel in the field of view without delay, enabling them, in principle, to invest their time budget more effectively with non-uniform imaging.
Yemini, E., et al. NeuroPAL: A Neuronal Polychromatic Atlas of Landmarks for Whole-Brain Imaging in C. elegans. Cell 184, 1, 272-288 (2020). Publisher's VersionAbstract
Comprehensively resolving single neurons and their cellular identities from whole-brain fluorescent images is a major challenge. We achieve this in C. elegans through the engineering and use of a multicolor transgene called NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that allows comprehensive determination of neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. Here we showcase three studies that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover novel changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding and novel neuronal asymmetries for these stimuli. We present a software package that enables semi-automated determination of all neuronal identities based on color and positional information. The NeuroPAL framework and software provide a means to design landmark atlases for other tissues and organisms. In conclusion, we expect NeuroPAL to serve as an invaluable tool for gene expression analysis, neuronal fate studies, and for mapping whole-brain activity patterns.
Preprint
Choi, J., et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proceedings of the National Academy of Sciences 117, 26, 14636-14641 (2020). Publisher's VersionAbstract
Temperature is a key control parameter of biological processes, but measuring and controlling temperatures on a cellular-length scale in living organisms remains an outstanding challenge. Applying nanoscale-thermometry techniques to early embryos, we study cell divisions in a highly controlled manner using local laser heating and real-time in vivo temperature readout. Nitrogen-vacancy centers in nanodiamonds, incorporated into the cells, allow us to map out the temperature distribution of a locally heated embryo with submicrometer spatial resolution and high sensitivity. The simultaneous cell-division imaging under controlled laser heating is used to achieve cell-cycle timing control and inversion, providing insights into timing-regulation mechanisms during early embryogenesis. Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.

Pages