Publications by Year: 2018

Mulcahy, B., et al. A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System. Frontiers in Neural Circuits 12, 94 (2018). Publisher's VersionAbstract
The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond.
Humberg, T.-H., et al. Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues. Nature Communications 9, 1, 1260 (2018). Publisher's VersionAbstract
To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.
Hawk, J.D., et al. Integration of plasticity mechanisms within a single sensory neuron of C. elegans actuates a memory. Neuron 97, 2, 356-367 (2018). Publisher's VersionAbstract
Neural plasticity, the ability of a neuron to change its cellular properties in response to past experiences, underpins the nervous system’s capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. Here we show that in the nematode C. elegans two plasticity mechanisms, sensory adaptation and presynaptic plasticity, act within a single cell to encode thermosensory information and actuate a temperature-preference memory. Sensory adaptation enables the primary thermosensory neuron, AFD, to adjust the temperature range of its sensitivity to the local environment, thereby optimizing its ability to detect temperature fluctuations associated with migration. Presynaptic plasticity transforms this thermosensory information into a behavioral preference by gating synaptic communication between sensory neuron AFD and its postsynaptic partner, AIY. The gating of synaptic communication is regulated at AFD presynaptic sites by the conserved kinase nPKC epsilon Bypassing or altering AFD presynaptic plasticity predictably changes the learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct and modular neuroplasticity mechanisms function together within a single sensory neuron to encode multiple components of information required to enact thermotactic behavior. The integration of these plasticity mechanisms result in a single-cell logic system that can both represent sensory stimuli and guide memory-based behavioral preference.
He, L., Si, G., Huang, J., Samuel, A.D.T. & Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555, 7694, 103-106 (2018). Publisher's VersionAbstract
Stem cells of the Drosophila midgut sense mechanical signals in vivo through the stretch-activated ion channel Piezo, which is expressed on previously unidentified enteroendocrine precursor cells.