Publications by Year: 2019

Calarco, J.A. & Samuel, A.D.T. Imaging whole nervous systems: insights into behavior from brains inside bodies. Nature Methods 16, 14-15 (2019). Publisher's VersionAbstract
The development of systems combining rapid volumetric imaging with three-dimensional tracking has enabled the measurement of brain-wide dynamics in freely behaving animals such as worms, flies, and fish. These advances provide an exciting opportunity to understand the organization of neural circuits in the context of voluntary and natural behaviors. In this Comment, we highlight recent progress in this burgeoning area of research.
Budelli, G., et al. Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in Drosophila. Neuron 101, 738-747 (2019). Publisher's VersionAbstract
Thermosensation is critical for avoiding thermal extremes and regulating body temperature. While thermosensors activated by noxious temperatures respond to hot or cold, many innocuous thermosensors exhibit robust baseline activity and lack discrete temperature thresholds, suggesting they are not simply warm and cool detectors. Here, we investigate how the aristal Cold Cells encode innocuous temperatures in Drosophila. We find they are not cold sensors but cooling-activated and warming-inhibited phasic thermosensors that operate similarly at warm and cool temperatures; we propose renaming them “Cooling Cells.” Unexpectedly, Cooling Cell thermosensing does not require the previously reported Brivido Transient Receptor Potential (TRP) channels. Instead, three Ionotropic Receptors (IRs), IR21a, IR25a, and IR93a, specify both the unique structure of Cooling Cell cilia endings and their thermosensitivity. Behaviorally, Cooling Cells promote both warm and cool avoidance. These findings reveal a morphogenetic role for IRs and demonstrate the central role of phasic thermosensing in innocuous thermosensation.
Si, G., et al. Structured Odorant Response Patterns across a Complete Olfactory Receptor Neuron Population. Neuron 101, 1-13 (2019). Publisher's VersionAbstract
Summary Odor perception allows animals to distinguish odors, recognize the same odor across concentrations, and determine concentration changes. How the activity patterns of primary olfactory receptor neurons (ORNs), at the individual and population levels, facilitate distinguishing these functions remains poorly understood. Here, we interrogate the complete ORN population of the Drosophila larva across a broadly sampled panel of odorants at varying concentrations. We find that the activity of each ORN scales with the concentration of any odorant via a fixed dose-response function with a variable sensitivity. Sensitivities across odorants and ORNs follow a power-law distribution. Much of receptor sensitivity to odorants is accounted for by a single geometrical property of molecular structure. Similarity in the shape of temporal response filters across odorants and ORNs extend these relationships to fluctuating environments. These results uncover shared individual- and population-level patterns that together lend structure to support odor perceptions.