Publications

    Ay H, Koroshetz WJ, Benner T, Vangel MG, Wu O, Schwamm LH, Sorensen GA. Transient ischemic attack with infarction: a unique syndrome?. Ann Neurol 2005;57(5):679-86.Abstract
    It is debated whether transient symptoms associated with infarction (TSI) are best considered a minor ischemic stroke, a subtype of transient ischemic attack (TIA), or a separate ischemic brain syndrome. We studied clinical and imaging features to establish similarities and differences among ischemic stroke, TIA without infarction, and TSI. Eighty-seven consecutive patients with TIA and 74 patients with ischemic stroke were studied. All underwent diffusion-weighted imaging on admission. Symptom duration and infarct volume were determined in each group. Thirty-six patients (41.3%) with TIA had acute infarct(s). Although TIA-related infarcts were smaller than those associated with ischemic stroke (mean, 0.7 vs 27.3 ml; p < 0.001), there was no lesion size threshold that distinguished ischemic stroke from TSI. In contrast, the symptom duration probability density curve was not broad, but instead peaked early with only a few patients having symptoms for longer than 200 minutes. The probability density function for symptom duration was similar between TIA with or without infarction. The in-hospital recurrent ischemic stroke and TIA rate was 19.4% in patients with TSI and 1.3% in those with ischemic stroke. TIA with infarction appears to have unique features separate from TIA without infarction and ischemic stroke. We propose identifying TSI as a separate clinical syndrome with distinct prognostic features.
    Ozsunar Y, Grant EP, Huisman TAGM, Schaefer PW, Wu O, Sorensen GA, Koroshetz WJ, Gonzalez GR. Evolution of water diffusion and anisotropy in hyperacute stroke: significant correlation between fractional anisotropy and T2. AJNR Am J Neuroradiol 2004;25(5):699-705.Abstract
    BACKGROUND AND PURPOSE: We hypothesized that, in acute cerebral ischemic stroke, anisotropic diffusion increases if T2 signal intensity is not substantially elevated and decreases once T2 hyperintensity becomes apparent. Our purpose was to correlate fractional anisotropy (FA) measurements with the clinical time of stroke onset, apparent diffusion coefficients (ADC), and T2 signal intensity. METHODS: Tensor diffusion-weighted images (DWIs) of 25 patients were obtained within 12 hours of symptom onset. Trace DWIs, ADCs, FAs, and echo-planar T2-weighted images (T2WI) were generated. Stroke and contralateral normal volumes of interest (VOIs) were outlined on DWIs and projected onto the inherently coregistered ADC map, FA map, and echo-planar T2WI. Mean signal intensity of the ischemic and contralateral normal VOIs were compared for relatives change in ADC, FA, and signal intensity on T2WIs. RESULTS: A significant negative correlation was observed between FA and T2 signal-intensity change (r = -0.61, P =.00009). A trend of correlation between FA signal intensity and time of onset were found (r = -0.438, P =.025). No significant correlation was found between ADC and FA values (r = -0.302, P =.134). The mean ADC reduction in the ipsilateral ischemic volume was 31% +/- 11 compared with the contralateral normal side. CONCLUSION: Change in FA is inversely correlated with T2 signal intensity and, to a lesser extent, the time of onset, but it is not well correlated with ADC values in the acute stage.
    van Eijsden P, Notenboom RGE, Wu O, de Graan PNE, van Nieuwenhuizen O, Nicolay K, Braun KPJ. In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res 2004;1030(1):11-8.Abstract
    Temporal lobe epilepsy (TLE) is associated with febrile convulsions and childhood status epilepticus (SE). Since the initial precipitating injury, triggering epileptogenesis, occurs during this SE, we aimed to examine the metabolic and morphological cerebral changes during the acute phase of experimental SE noninvasively. In the rat lithium-pilocarpine model of SE, we performed quantified T(2)- and isotropic-diffusion-weighted (DW) magnetic resonance imaging (MRI) at 3 and 5 h of SE and acquired single-voxel (1)H MR spectra at 2, 4 and 6 h of SE. T(2) was globally decreased, most pronounced in the amygdala (Am) and piriformic cortex (Pi), in which also a significant decrease in apparent diffusion coefficient (ADC) was found. In contrast, ADC values increased transiently in the hippocampus (HC) and thalamus (Th). MR spectra showed a decrease in N-acetylaspartate (NAA) and choline (Cho) and an increase of lactate in a hippocampal voxel. The T(2) decrease, attributed to raised deoxyhemoglobin, and the presence of lactate both indicate a mismatch between oxygen demand and delivery. The ADC decrease, indicative of excitotoxicity, confirms that the amygdala and piriformic cortex are particularly vulnerable to lithium-pilocarpine-induced seizures. The transient ADC increase in the thalamus may reflect the breakdown of the blood-brain barrier (BBB), which is shown to occur in this region at these time points. Neuronal damage and failure of energy-dependent formation of NAA are likely causes of an observed decrease in NAA, while the decrease in Cho is possibly due to depletion of the cholinergic system. This study illustrates that relative hypoxia, excitotoxicity and concomitant neuronal damage associated with SE can be probed noninvasively with MR. These pathological phenomena are the first to contribute to the pathophysiology of spontaneous recurrent seizures in a later stage in this animal model.
    Huisman TAGM, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, Wu O, Sorensen GA. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 2004;25(3):370-6.Abstract
    BACKGROUND AND PURPOSE: Multiple biomarkers are used to quantify the severity of traumatic brain injury (TBI) and to predict outcome. Few are satisfactory. CT and conventional MR imaging underestimate injury and correlate poorly with outcome. New MR imaging techniques, including diffusion tensor imaging (DTI), can provide information about brain ultrastructure by quantifying isotropic and anisotropic water diffusion. Our objective was to determine if changes in anisotropic diffusion in TBI correlate with acute Glasgow coma scale (GCS) and/or Rankin scores at discharge. METHODS: Twenty patients (15 male, five Female; mean age, 31 years) were evaluated. Apparent diffusion coefficients (ADCs) and fractional anisotropy (FA) values were measured at multiple locations and correlated with clinical scores. Results were compared with those of 15 healthy control subjects. RESULTS: ADC values were significantly reduced within the splenium (Delta18%, P =.001). FA values were significantly reduced in the internal capsule (Delta14%; P <.001) and splenium (Delta16%; P =.002). FA values were significantly correlated with GCS (r = 0.65-0.74; P <.001) and Rankin (r = 0.68-0.71; P <.001) scores for the internal capsule and splenium. The correlation between FA and clinical markers was better than for the corresponding ADC values. No correlation was found between ADC of the internal capsule and GCS/Rankin scores. CONCLUSION: DTI reveals changes in the white matter that are correlated with both acute GCS and Rankin scores at discharge. DTI may be a valuable biomarker for the severity of tissue injury and a predictor for outcome.
    Grant PE, He J, Halpern EF, Wu O, Schaefer PW, Schwamm LH, Budzik RF, Sorensen AG, Koroshetz WJ, Gonzalez RG. Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 2001;221(1):43-50.Abstract
    PURPOSE: To determine the probability that regions of decreased apparent diffusion coefficient (ADC) return to normal without persistent symptoms or T2 change and the settings in which these ADC reversals occur. MATERIALS AND METHODS: Three hundred magnetic resonance (MR) imaging studies were selected at random from a database of 7,147 examinations to determine the probability of a pathologically decreased ADC. In cases with decreased ADC, the clinical history was recorded and, if available, follow-up MR imaging findings were evaluated. Five cases of ADC reversal became known during the same period and were evaluated to determine the initial ADC decrease, clinical outcome, and findings at follow-up imaging. RESULTS: Findings in 116 of 300 MR imaging studies revealed regions of decreased ADC. In 49 of 116 studies, follow-up MR imaging examinations were performed at least 4 weeks after the onset of symptoms; ADC did not reverse. Five cases of ADC reversal were identified in the same period, giving an estimated 0.2%-0.4% probability of ADC reversal. Clinical settings were venous sinus thrombosis and seizure (n = 3), hemiplegic migraine (n = 1), and hyperacute arterial infarction (n = 1). Both white matter (n = 3) and gray matter (n = 3) regions were involved. CONCLUSION: Reversal of ADC lesions is rare, occurs in complicated clinical settings, and can involve white or gray matter.
    Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG. Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med 2001;45(5):734-40.Abstract
    The brains of six healthy volunteers were scanned with a full tensor diffusion MRI technique to study the effect of a high b value on diffusion-weighted images (DWIs). The b values ranged from 500 to 5000 s/mm(2). Isotropic DWIs, trace apparent diffusion coefficient (ADC) maps, and fractional anisotropy (FA) maps were created for each b value. As the b value increased, ADC decreased in both the gray and white matter. Furthermore, ADC of the white matter became lower than that of the gray matter, and, as a result, the white matter became brighter than the gray matter in the isotropic DWIs. Quantitative analysis showed that these changes were due to nonmonoexponential diffusion signal decay of the brain tissue, which was more prominent in white matter than in gray matter. There was no significant change in relation to the b value in the FA maps. High b value appears to have a dissociating effect on gray and white matter in DWIs.
    Copen WA, Schwamm LH, González RG, Wu O, Harmath CB, Schaefer PW, Koroshetz WJ, Sorensen AG. Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 2001;221(1):27-34.Abstract
    PURPOSE: To determine whether the evolution of the core apparent diffusion coefficient (ADC) of water in ischemic stroke varies with patient age or infarct etiology. MATERIALS AND METHODS: One hundred forty-seven patients with stroke underwent 236 diffusion-weighted magnetic resonance imaging examinations. Etiologies of lesions were classified according to predefined criteria; in 224 images, the diagnosis of lacune could be firmly established or excluded. ADC was measured in the center of each lesion and in contralateral normal-appearing brain. A model was used to describe the time course of relative ADC (rADC), which is calculated by dividing the lesion ADC by the contralateral ADC, and to test for age- or etiology-related differences in this time course. RESULTS: Transition from decreasing to increasing rADC was estimated at 18.5 hours after stroke onset. In subgroup analysis, transition was earlier in nonlacunes than in lacunes (P =.02). There was a trend toward earlier transition in patients older than the median age of 66.0 years, compared with younger patients (P =.06). Pseudonormalization was estimated at 216 hours. Among nonlacunes, the rate of subsequent rADC increase was more rapid in younger patients than in older patients (P =.001). Within the smaller sample of lacunes, however, no significant age-related difference in this rate was found. CONCLUSION: Differences in ADC depending on the patient's age and infarct etiology suggest differing rates of ADC progression.
    Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 2001;32(4):933-42.Abstract
    BACKGROUND AND PURPOSE: Tissue signatures from acute MR imaging of the brain may be able to categorize physiological status and thereby assist clinical decision making. We designed and analyzed statistical algorithms to evaluate the risk of infarction for each voxel of tissue using acute human functional MRI. METHODS: Diffusion-weighted MR images (DWI) and perfusion-weighted MR images (PWI) from acute stroke patients scanned within 12 hours of symptom onset were retrospectively studied and used to develop thresholding and generalized linear model (GLM) algorithms predicting tissue outcome as determined by follow-up MRI. The performances of the algorithms were evaluated for each patient by using receiver operating characteristic curves. RESULTS: At their optimal operating points, thresholding algorithms combining DWI and PWI provided 66% sensitivity and 83% specificity, and GLM algorithms combining DWI and PWI predicted with 66% sensitivity and 84% specificity voxels that proceeded to infarct. Thresholding algorithms that combined DWI and PWI provided significant improvement to algorithms that utilized DWI alone (P=0.02) but no significant improvement over algorithms utilizing PWI alone (P=0.21). GLM algorithms that combined DWI and PWI showed significant improvement over algorithms that used only DWI (P=0.02) or PWI (P=0.04). The performances of thresholding and GLM algorithms were comparable (P>0.2). CONCLUSIONS: Algorithms that combine acute DWI and PWI can assess the risk of infarction with higher specificity and sensitivity than algorithms that use DWI or PWI individually. Methods for quantitatively assessing the risk of infarction on a voxel-by-voxel basis show promise as techniques for investigating the natural spatial evolution of ischemic damage in humans.
    Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31(5):1097-103.Abstract
    BACKGROUND AND PURPOSE: The heterogeneity of microvascular flows is known to be an important determinant of the efficacy of oxygen delivery to tissue. Studies in animals have demonstrated decreased flow heterogeneity (FH) in states of decreased perfusion pressure. The purpose of the present study was to assess microvascular FH changes in acute stroke with use of a novel perfusion-weighted MRI technique and to evaluate the ability of combined diffusion-weighted MRI and FH measurements to predict final infarct size. METHODS: Cerebral blood flow, FH, and plasma mean transit time (MTT) were measured in 11 patients who presented with acute (<12 hours after symptom onset) stroke. Final infarct size was determined with follow-up MRI or CT scanning. RESULTS: In normal brain tissue, the distribution of relative flows was markedly skewed toward high capillary flow velocities. Within regions of decreased cerebral blood flow, plasma MTT was prolonged. Furthermore, subregions were identified with significant loss of the high-flow component of the flow distribution, thereby causing increased homogeneity of flow velocities. In parametric maps that quantify the acute deviation of FH from that of normal tissue, areas of extreme homogenization of capillary flows predicted final infarct size on follow-up scans of 10 of 11 patients. CONCLUSIONS: Flow heterogeneity and MTT can be rapidly assessed as part of a routine clinical MR examination and may provide a tool for planning of individual stroke treatment, as well as in targeting and evaluation of emerging therapeutic strategies.
    Ay H, Buonanno FS, Rordorf G, Schaefer PW, Schwamm LH, Wu O, Gonzalez RG, Yamada K, Sorensen GA, Koroshetz WJ. Normal diffusion-weighted MRI during stroke-like deficits. Neurology 1999;52(9):1784-92.Abstract
    BACKGROUND: Diffusion-weighted MRI (DWI) represents a major advance in the early diagnosis of acute ischemic stroke. When abnormal in patients with stroke-like deficit, DWI usually establishes the presence and location of ischemic brain injury. However, this is not always the case. OBJECTIVE: To investigate patients with stroke-like deficits occurring without DWI abnormalities in brain regions clinically suspected to be responsible. METHODS: We identified 27 of 782 consecutive patients scanned when stroke-like neurologic deficits were still present and who had normal DWI in the brain region(s) clinically implicated. Based on all the clinical and radiologic data, we attempted to arrive at a pathophysiologic diagnosis in each. RESULTS: Best final diagnosis was a stroke mimic in 37% and a cerebral ischemic event in 63%. Stroke mimics (10 patients) included migraine, seizures, functional disorder, transient global amnesia, and brain tumor. The remaining patients were considered to have had cerebral ischemic events: lacunar syndrome (7 patients; 3 with infarcts demonstrated subsequently) and hemispheric cortical syndrome (10 patients; 5 with TIA, 2 with prolonged reversible deficits, 3 with infarction on follow-up imaging). In each of the latter three patients, the regions destined to infarct showed decreased perfusion on the initial hemodynamically weighted MRI (HWI). CONCLUSIONS: Normal DWI in patients with stroke-like deficits should stimulate a search for nonischemic cause of symptoms. However, more than one-half of such patients have an ischemic cause as the best clinical diagnosis. Small brainstem lacunar infarctions may escape detection. Concomitant HWI can identify some patients with brain ischemia that is symptomatic but not yet to the stage of causing DWI abnormality.
    Yoshiura T, Wu O, Sorensen AG. Advanced MR techniques: diffusion MR imaging, perfusion MR imaging, and spectroscopy. Neuroimaging Clin N Am 1999;9(3):439-53.Abstract
    Recent technical advances in MR imaging have enabled the authors to investigate early physiological changes in acute ischemic stroke lesion. Diffusion and perfusion MR imaging can provide clinically useful information not only for early detection of ischemia, but also for prediction of tissue outcome. MR spectroscopy is a potentially powerful tool to study acute stroke, but its clinical value has been limited due to long examination time and low spatial resolution.
    Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ, Weisskoff RM. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 1999;212(3):785-92.Abstract
    PURPOSE: To (a) determine the optimal choice of a scalar metric of anisotropy and (b) determine by means of magnetic resonance imaging if changes in diffusion anisotropy occurred in acute human ischemic stroke. MATERIALS AND METHODS: The full diffusion tensor over the entire brain was measured. To optimize the choice of a scalar anisotropy metric, the performances of scalar indices in simulated models and in a healthy volunteer were analyzed. The anisotropy, trace apparent diffusion coefficient (ADC), and eigenvalues of the diffusion tensor in lesions and contralateral normal brain were compared in 50 patients with stroke. RESULTS: Changes in anisotropy in patients were quantified by using fractional anisotropy because it provided the best performance in terms of contrast-to-noise ratio as a function of signal-to-noise ratio in simulations. The anisotropy of ischemic white matter decreased (P = .01). Changes in anisotropy in ischemic gray matter were not significant (P = .63). The trace ADC decreased for ischemic gray matter and white matter (P < .001). The first and second eigenvalues decreased in both ischemic gray and ischemic white matter (P < .001). The third eigenvalue decreased in ischemic gray (P = .001) and white matter (P = .03). CONCLUSION: Gray matter is mildly anisotropic in normal and early ischemic states. However, early white matter ischemia is associated with not only changes in trace ADC values but also significant changes in the anisotropy, or shape, of the water self-diffusion tensor.
    Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 1997;42(6):951-62.Abstract
    The precise characterization of cortical connectivity is important for the understanding of brain morphological and functional organization. Such connectivity is conveyed by specific pathways or tracts in the white matter. Diffusion-weighted magnetic resonance imaging detects the diffusivity of water molecules in three dimensions. Diffusivity is anisotropic in oriented tissues such as fiber tracts. In the present study, we used this method to map (in terms of orientation, location, and size) the "stem" (compact portion) of the principal association, projection, and commissural white matter pathways of the human brain in vivo, in 3 normal subjects. In addition, its use in clinical neurology is illustrated in a patient with left inferior parietal lobule embolic infarction in whom a significant reduction in relative size of the stem of the left superior longitudinal fasciculus was observed. This represents an important method for the characterization of major association pathways in the living human that are not discernible by conventional magnetic resonance imaging. In the clinical domain, this method will have a potential impact on the understanding of the diseases that involve white matter such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, head injury, and spinal cord injury.

Pages