Publications

    Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ, Weisskoff RM. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 1999;212(3):785-92.Abstract
    PURPOSE: To (a) determine the optimal choice of a scalar metric of anisotropy and (b) determine by means of magnetic resonance imaging if changes in diffusion anisotropy occurred in acute human ischemic stroke. MATERIALS AND METHODS: The full diffusion tensor over the entire brain was measured. To optimize the choice of a scalar anisotropy metric, the performances of scalar indices in simulated models and in a healthy volunteer were analyzed. The anisotropy, trace apparent diffusion coefficient (ADC), and eigenvalues of the diffusion tensor in lesions and contralateral normal brain were compared in 50 patients with stroke. RESULTS: Changes in anisotropy in patients were quantified by using fractional anisotropy because it provided the best performance in terms of contrast-to-noise ratio as a function of signal-to-noise ratio in simulations. The anisotropy of ischemic white matter decreased (P = .01). Changes in anisotropy in ischemic gray matter were not significant (P = .63). The trace ADC decreased for ischemic gray matter and white matter (P < .001). The first and second eigenvalues decreased in both ischemic gray and ischemic white matter (P < .001). The third eigenvalue decreased in ischemic gray (P = .001) and white matter (P = .03). CONCLUSION: Gray matter is mildly anisotropic in normal and early ischemic states. However, early white matter ischemia is associated with not only changes in trace ADC values but also significant changes in the anisotropy, or shape, of the water self-diffusion tensor.
    Sanchez Del Rio M, Bakker D, Wu O, Agosti R, Mitsikostas DD, Ostergaard L, Wells WA, Rosen BR, Sorensen G, Moskowitz MA, Cutrer FM. Perfusion weighted imaging during migraine: spontaneous visual aura and headache. Cephalalgia 1999;19(8):701-7.Abstract
    Using perfusion weighted imaging, we studied 28 spontaneous migraine episodes; 7 during visual aura (n = 6), 7 during the headache phase following visual aura (n = 3), and 14 cases of migraine without aura (n = 13). The data were analyzed using a region-of-interest-based approach. During aura, relative cerebral blood flow (rCBF) was significantly decreased (27% +/- 0.07) in occipital cortex contralateral to the affected hemifield. rCBV was decreased (15% +/- 0.12) and mean transit time increased (32% +/- 0.3), persisting up to 2.5 h into the headache phase. Other brain regions did not show significant perfusion changes. During migraine without aura, no significant hemodynamic changes were observed. In one patient who experienced both migraine with and without aura, perfusion deficits were observed only during migraine with aura. These findings suggest that decremental blood flow changes in occipital lobe are most characteristic of migraine with aura.
    Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 1997;42(6):951-62.Abstract
    The precise characterization of cortical connectivity is important for the understanding of brain morphological and functional organization. Such connectivity is conveyed by specific pathways or tracts in the white matter. Diffusion-weighted magnetic resonance imaging detects the diffusivity of water molecules in three dimensions. Diffusivity is anisotropic in oriented tissues such as fiber tracts. In the present study, we used this method to map (in terms of orientation, location, and size) the "stem" (compact portion) of the principal association, projection, and commissural white matter pathways of the human brain in vivo, in 3 normal subjects. In addition, its use in clinical neurology is illustrated in a patient with left inferior parietal lobule embolic infarction in whom a significant reduction in relative size of the stem of the left superior longitudinal fasciculus was observed. This represents an important method for the characterization of major association pathways in the living human that are not discernible by conventional magnetic resonance imaging. In the clinical domain, this method will have a potential impact on the understanding of the diseases that involve white matter such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, head injury, and spinal cord injury.

Pages