Publications by Year: 2002

Schaefer PW, Romero JM, Grant EP, Wu O, Sorensen GA, Koroshetz W, González GR. Diffusion magnetic resonance imaging of acute ischemic stroke. Semin Roentgenol 2002;37(3):219-29.
Yamada K, Wu O, Gonzalez GR, Bakker D, Østergaard L, Copen WA, Weisskoff RM, Rosen BR, Yagi K, Nishimura T, Sorensen GA. Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 2002;33(1):87-94.Abstract
BACKGROUND AND PURPOSE: Various calculation methods are available to estimate the transit-time on MR perfusion-weighted imaging (PWI). Each method may affect the results of PWI. Steno-occlusive disease in the parent vessels is another factor that may affect the results of the PWI. The purpose of this study was to elucidate the effect of the calculation methods and underlying vasculopathy on PWI. METHODS: From a pool of 113 patients who had undergone PWI during the study period, a total of 12 patients with nonlacunar ischemic strokes who were scanned within 24 hours after onset of symptom were selected for the study. The patient population consisted of 6 patients who had extracranial internal carotid artery stenosis (>70%) and 6 individuals without stenosis. Seven different postprocessing methods were evaluated: first moment, ratio of area to peak, time to peak (TTP), relative TTP, arrival time, full-width at half-maximum, and deconvolution methods. Follow-up MR or CT images were used to determine the areas that evolved into infarcts, which served as the gold standard. Sensitivity and specificity of each transit time technique were calculated. RESULTS: Calculation methods with high sensitivity were the first moment (sensitivity, 74%), TTP (sensitivity, 77%), and deconvolution methods (sensitivity, 81% to 94%). Between the 2 groups with and without internal carotid artery stenosis, the specificity of most of the techniques was lower in the internal carotid artery stenosis group. The first moment and deconvolution methods maintained relatively high specificity even in the stenosis group. CONCLUSIONS: The calculation technique and presence of underlying vasculopathy have a direct impact on the results of PWI. The methods with high sensitivity even in the presence of steno-occlusive disease were the first moment and deconvolution methods with arterial input function derived from the peri-infarct arteries; the deconvolution method was the superior choice because of higher lesion conspicuity.
Schaefer PW, Romero JM, Grant EP, Wu O, Sorensen GA, Koroshetz W, González GR. Perfusion magnetic resonance imaging of acute ischemic stroke. Semin Roentgenol 2002;37(3):230-6.
Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke 2002;33(8):2100-4.Abstract
BACKGROUND AND PURPOSE: Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) after stroke increases risk of hemorrhagic transformation, particularly in areas with blood-brain barrier leakage. Our aim was to characterize acute effects of rtPA administration on the integrity of microvascular barriers. METHODS: Stroke was induced in spontaneously hypertensive rats by unilateral embolic middle cerebral artery occlusion. Six hours after stroke, rtPA was intravenously administered (n=10). Controls received saline (n=4). Extravasation of the large-diameter contrast agent monocrystalline iron oxide nanocolloid (MION) was assessed with susceptibility contrast-enhanced MRI during rtPA injection. In addition, we performed perfusion MRI and diffusion-weighted MRI. After MRI, 2 hours after rtPA treatment, intracerebral hemorrhage was quantified with a spectrophotometric hemoglobin assay. RESULTS: Late rtPA treatment resulted in increased hemorrhage volume (8.4+/-1.7 versus 2.9+/-0.9 micro L in controls; P<0.05). In MION-injected animals, during rtPA administration, transverse relaxation rate change (DeltaR2*) increased from 12.4+/-6.0 to 31.6+/-19.2 s(-1) (P<0.05) in areas with subsequent hemorrhage. Significant DeltaR2* changes were absent in nonhemorrhagic areas, in animals without injected MION, and in saline-treated animals. Thrombolytic therapy did not improve perfusion in regions with hemorrhagic transformation (cerebral blood flow index was 22.8+/-19.7% [of contralateral] at 0.5 hours before and 22.4+/-18.0% at 1 hour after rtPA administration). CONCLUSIONS: The DeltaR2* changes during rtPA delivery in MION-injected animals indicate extravasation of MION, which reflects increased permeability of the blood-brain barrier. This implies that late rtPA treatment rapidly aggravates early ischemia-induced damage to microvascular barriers, thereby enhancing hemorrhagic transformation.