Publications by Year: 2016

Warach SJ, Luby M, Albers GW, Bammer R, Bivard A, Campbell BCV, Derdeyn C, Heit JJ, Khatri P, Lansberg MG, Liebeskind DS, Majoie CBLM, Marks MP, Menon BK, Muir KW, Parsons MW, Vagal A, Yoo AJ, Alexandrov AV, Baron J-C, Fiorella DJ, Furlan AJ, Puig J, Schellinger PD, Wintermark M. Acute Stroke Imaging Research Roadmap III Imaging Selection and Outcomes in Acute Stroke Reperfusion Clinical Trials: Consensus Recommendations and Further Research Priorities. Stroke 2016;47(5):1389-98.Abstract
BACKGROUND AND PURPOSE: The Stroke Imaging Research (STIR) group, the Imaging Working Group of StrokeNet, the American Society of Neuroradiology, and the Foundation of the American Society of Neuroradiology sponsored an imaging session and workshop during the Stroke Treatment Academy Industry Roundtable (STAIR) IX on October 5 to 6, 2015 in Washington, DC. The purpose of this roadmap was to focus on the role of imaging in future research and clinical trials. METHODS: This forum brought together stroke neurologists, neuroradiologists, neuroimaging research scientists, members of the National Institute of Neurological Disorders and Stroke (NINDS), industry representatives, and members of the US Food and Drug Administration to discuss STIR priorities in the light of an unprecedented series of positive acute stroke endovascular therapy clinical trials. RESULTS: The imaging session summarized and compared the imaging components of the recent positive endovascular trials and proposed opportunities for pooled analyses. The imaging workshop developed consensus recommendations for optimal imaging methods for the acquisition and analysis of core, mismatch, and collaterals across multiple modalities, and also a standardized approach for measuring the final infarct volume in prospective clinical trials. CONCLUSIONS: Recent positive acute stroke endovascular clinical trials have demonstrated the added value of neurovascular imaging. The optimal imaging profile for endovascular treatment includes large vessel occlusion, smaller core, good collaterals, and large penumbra. However, equivalent definitions for the imaging profile parameters across modalities are needed, and a standardization effort is warranted, potentially leveraging the pooled data resulting from the recent positive endovascular trials.
Nelson S, Edlow BL, Wu O, Rosenthal ES, Westover BM, Rordorf G. Default Mode Network Perfusion in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2016;25(2):237-42.Abstract
BACKGROUND: The etiology of altered consciousness in patients with high-grade aneurysmal subarachnoid hemorrhage (SAH) is not thoroughly understood. We hypothesized that decreased cerebral blood flow (CBF) in brain regions critical to consciousness may contribute. METHODS: We retrospectively evaluated arterial-spin labeled (ASL) perfusion magnetic resonance imaging (MRI) measurements of CBF in 12 patients with aneurysmal SAH admitted to our neurocritical care unit. CBF values were analyzed within gray matter nodes of the default mode network (DMN), whose functional integrity has been shown to be necessary for consciousness. DMN nodes studied were the bilateral medial prefrontal cortices, thalami, and posterior cingulate cortices. Correlations between nodal CBF and admission Glasgow Coma Scale (GCS) score, admission Hunt and Hess (HH) class, and GCS score at the time of MRI (MRI GCS) were tested. RESULTS: Spearman's correlation coefficients were not significant when comparing admission GCS, admission HH, and MRI GCS versus nodal CBF (p > 0.05). However, inter-rater reliability for nodal CBF was high (r = 0.71, p = 0.01). CONCLUSIONS: In this retrospective pilot study, we did not identify significant correlations between CBF and admission GCS, admission HH class, or MRI GCS for any DMN node. Potential explanations for these findings include small sample size, ASL data acquisition at variable times after SAH onset, and CBF analysis in DMN nodes that may not reflect the functional integrity of the entire network. High inter-rater reliability suggests ASL measurements of CBF within DMN nodes are reproducible. Larger prospective studies are needed to elucidate whether decreased cerebral perfusion contributes to altered consciousness in SAH.
Edlow BL, Copen WA, Izzy S, Bakhadirov K, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. BMC Neurol 2016;16:2.Abstract
BACKGROUND: Diffusion tensor imaging (DTI) may have prognostic utility in patients with traumatic brain injury (TBI), but the optimal timing of DTI data acquisition is unknown because of dynamic changes in white matter water diffusion during the acute and subacute stages of TBI. We aimed to characterize the direction and magnitude of early longitudinal changes in white matter fractional anisotropy (FA) and to determine whether acute or subacute FA values correlate more reliably with functional outcomes after TBI. METHODS: From a prospective TBI outcomes database, 11 patients who underwent acute (≤7 days) and subacute (8 days to rehabilitation discharge) DTI were retrospectively analyzed. Longitudinal changes in FA were measured in 11 white matter regions susceptible to traumatic axonal injury. Correlations were assessed between acute FA, subacute FA and the disability rating scale (DRS) score, which was ascertained at discharge from inpatient rehabilitation. RESULTS: FA declined from the acute-to-subacute period in the genu of the corpus callosum (0.70 ± 0.02 vs. 0.55 ± 0.11, p < 0.05) and inferior longitudinal fasciculus (0.54+/-0.07 vs. 0.49+/-0.07, p < 0.01). Acute correlations between FA and DRS score were variable: higher FA in the body (R = -0.78, p = 0.02) and splenium (R = -0.83, p = 0.003) of the corpus callosum was associated with better outcomes (i.e. lower DRS scores), whereas higher FA in the genu of the corpus callosum (R = 0.83, p = 0.02) corresponded with worse outcomes (i.e. higher DRS scores). In contrast, in the subacute period higher FA in the splenium correlated with better outcomes (R = -0.63, p < 0.05) and no inverse correlations were observed. CONCLUSIONS: White matter FA declined during the acute-to-subacute stages of TBI. Variability in acute FA correlations with outcome suggests that the optimal timing of DTI for TBI prognostication may be in the subacute period.
Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol 2016;15(2):174-184.Abstract
BACKGROUND: The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes. METHODS: To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis. FINDINGS: We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50 × 10-8; joint OR 1·19, 1·12-1·26, p=1·30 × 10-9). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26 × 10-19; joint OR 1·37, 1·30-1·45, p=2·79 × 10-32) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93 × 10-7; joint OR 1·17, 1·11-1·23, p=2·29 × 10-10) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50 × 10-8; joint OR 1·24, 1·15-1·33, p=4·52 × 10-9) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82 × 10-8; joint OR 1·17, 1·11-1·23, p=2·92 × 10-9). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed. INTERPRETATION: Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke. FUNDING: US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
Edlow BL, Copen WA, Izzy S, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit Care 2016;24(3):342-52.Abstract
BACKGROUND: Traumatic axonal injury (TAI) may be reversible, yet there are currently no clinical imaging tools to detect axonal recovery in patients with traumatic brain injury (TBI). We used diffusion tensor imaging (DTI) to characterize serial changes in fractional anisotropy (FA) within TAI lesions of the corpus callosum (CC). We hypothesized that recovery of FA within a TAI lesion correlates with better functional outcome. METHODS: Patients who underwent both an acute DTI scan (≤day 7) and a subacute DTI scan (day 14 to inpatient rehabilitation discharge) at a single institution were retrospectively analyzed. TAI lesions were manually traced on the acute diffusion-weighted images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were measured within the TAI lesions at each time point. FA recovery was defined by a longitudinal increase in CC FA that exceeded the coefficient of variation for FA based on values from healthy controls. Acute FA, ADC, AD, and RD were compared in lesions with and without FA recovery, and correlations were tested between lesional FA recovery and functional recovery, as determined by disability rating scale score at discharge from inpatient rehabilitation. RESULTS: Eleven TAI lesions were identified in 7 patients. DTI detected FA recovery within 2 of 11 TAI lesions. Acute FA, ADC, AD, and RD did not differ between lesions with and without FA recovery. Lesional FA recovery did not correlate with disability rating scale scores. CONCLUSIONS: In this retrospective longitudinal study, we provide initial evidence that FA can recover within TAI lesions. However, FA recovery did not correlate with improved functional outcomes. Prospective histopathological and clinical studies are needed to further elucidate whether lesional FA recovery indicates axonal healing and has prognostic significance.
Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, Chen C, Mayer SA, Meschia JF, Bernstein RA, Wu O, Greer DM, Wijman CA, Albers GW. Multi-Center Study of Diffusion-Weighted Imaging in Coma After Cardiac Arrest. Neurocrit Care 2016;24(1):82-9.Abstract
BACKGROUND: The ability to predict outcomes in acutely comatose cardiac arrest survivors is limited. Brain diffusion-weighted magnetic resonance imaging (DWI MRI) has been shown in initial studies to be a simple and effective prognostic tool. This study aimed to determine the predictive value of previously defined DWI MRI thresholds in a multi-center cohort. METHODS: DWI MRIs of comatose post-cardiac arrest patients were analyzed in this multi-center retrospective observational study. Poor outcome was defined as failure to regain consciousness within 14 days and/or death during the hospitalization. The apparent diffusion coefficient (ADC) value of each brain voxel was determined. ADC thresholds and brain volumes below each threshold were analyzed for their correlation with outcome. RESULTS: 125 patients were included in the analysis. 33 patients (26%) had a good outcome. An ADC value of less than 650 × 10(-6) mm(2)/s in ≥10% of brain volume was highly specific [91% (95% CI 75-98)] and had a good sensitivity [72% (95% CI 61-80)] for predicting poor outcome. This threshold remained an independent predictor of poor outcome in multivariable analysis (p = 0.002). An ADC value of less than 650 × 10(-6) mm(2)/s in >22% of brain volume was needed to achieve 100% specificity for poor outcome. CONCLUSIONS: In patients who remain comatose after cardiac arrest, quantitative DWI MRI findings correlate with early recovery of consciousness. A DWI MRI threshold of 650 × 10(-6) mm(2)/s in ≥10% of brain volume can differentiate patients with good versus poor outcome, though in this patient population the threshold was not 100% specific for poor outcome.
Kimberly TW, Battey TWK, Wu O, Singhal AB, Campbell BCV, Davis SM, Donnan GA, Sheth KN. Novel Imaging Markers of Ischemic Cerebral Edema and Its Association with Neurological Outcome. Acta Neurochir Suppl 2016;121:223-6.Abstract
Ischemic cerebral edema (ICE) is a recognized cause of secondary neurological deterioration after large hemispheric stroke, but little is known about the scope of its impact. To study edema in less severe stroke, our group has developed several markers of cerebral edema using brain magnetic resonance imaging (MRI). These tools, which are based on categorical and volumetric measurements in serial diffusion-weighted imaging (DWI), are applicable to a wide variety of stroke volumes. Further, these metrics provide distinct volumetric measurements attributable to ICE, infarct growth, and hemorrhagic transformation. We previously reported that ICE independently predicted neurological outcome after adjustment for known risk factors. We found that an ICE volume of 11 mL or greater was associated with worse neurological outcome.
Etherton MR, Wu O, Rost NS. Recent Advances in Leukoaraiosis: White Matter Structural Integrity and Functional Outcomes after Acute Ischemic Stroke. Curr Cardiol Rep 2016;18(12):123.Abstract
Leukoaraiosis, a radiographic marker of cerebral small vessel disease detected on T2-weighted brain magnetic resonance imaging (MRI) as white matter hyperintensity (WMH), is a key contributor to the risk and severity of acute cerebral ischemia. Prior investigations have emphasized the pathophysiology of WMH development and progression; however, more recently, an association between WMH burden and functional outcomes after stroke has emerged. There is growing evidence that WMH represents macroscopic injury to the white matter and that the extent of WMH burden on MRI influences functional recovery in multiple domains following acute ischemic stroke (AIS). In this review, we discuss the current understanding of WMH pathogenesis and its impact on AIS and functional recovery.