Publications

2015
Schaefer PW, Pulli B, Copen WA, Hirsch JA, Leslie-Mazwi T, Schwamm LH, Wu O, González RG, Yoo AJ. Combining MRI with NIHSS thresholds to predict outcome in acute ischemic stroke: value for patient selection. AJNR Am J Neuroradiol 2015;36(2):259-64.Abstract
BACKGROUND AND PURPOSE: Selecting acute ischemic stroke patients for reperfusion therapy on the basis of a diffusion-perfusion mismatch has not been uniformly proved to predict a beneficial treatment response. In a prior study, we have shown that combining clinical with MR imaging thresholds can predict clinical outcome with high positive predictive value. In this study, we sought to validate this predictive model in a larger patient cohort and evaluate the effects of reperfusion therapy and stroke side. MATERIALS AND METHODS: One hundred twenty-three consecutive patients with anterior circulation acute ischemic stroke underwent MR imaging within 6 hours of stroke onset. DWI and PWI volumes were measured. Lesion volume and NIHSS score thresholds were used in models predicting good 3-month clinical outcome (mRS 0-2). Patients were stratified by treatment and stroke side. RESULTS: Receiver operating characteristic analysis demonstrated 95.6% and 100% specificity for DWI > 70 mL and NIHSS score > 20 to predict poor outcome, and 92.7% and 91.3% specificity for PWI (mean transit time) < 50 mL and NIHSS score < 8 to predict good outcome. Combining clinical and imaging thresholds led to an 88.8% (71/80) positive predictive value with a 65.0% (80/123) prognostic yield. One hundred percent specific thresholds for DWI (103 versus 31 mL) and NIHSS score (20 versus 17) to predict poor outcome were significantly higher in treated (intravenous and/or intra-arterial) versus untreated patients. Prognostic yield was lower in right- versus left-sided strokes for all thresholds (10.4%-20.7% versus 16.9%-40.0%). Patients with right-sided strokes had higher 100% specific DWI (103.1 versus 74.8 mL) thresholds for poor outcome, and the positive predictive value was lower. CONCLUSIONS: Our predictive model is validated in a much larger patient cohort. Outcome may be predicted in up to two-thirds of patients, and thresholds are affected by stroke side and reperfusion therapy.
Chu CJ, Tanaka N, Diaz J, Edlow BL, Wu O, Hämäläinen M, Stufflebeam S, Cash SS, Kramer MA. EEG functional connectivity is partially predicted by underlying white matter connectivity. Neuroimage 2015;108:23-33.Abstract
Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales.
Copen WA, Deipolyi AR, Schaefer PW, Schwamm LH, González RG, Wu O. Exposing hidden truncation-related errors in acute stroke perfusion imaging. AJNR Am J Neuroradiol 2015;36(4):638-45.Abstract
BACKGROUND AND PURPOSE: The durations of acute ischemic stroke patients' CT or MR perfusion scans may be too short to fully sample the passage of the injected contrast agent through the brain. We tested the potential magnitude of hidden errors related to the truncation of data by short perfusion scans. MATERIALS AND METHODS: Fifty-seven patients with acute ischemic stroke underwent perfusion MR imaging within 12 hours of symptom onset, using a relatively long scan duration (110 seconds). Shorter scan durations (39.5-108.5 seconds) were simulated by progressively deleting the last-acquired images. CBV, CBF, MTT, and time to response function maximum (Tmax) were measured within DWI-identified acute infarcts, with commonly used postprocessing algorithms. All measurements except Tmax were normalized by dividing by the contralateral hemisphere values. The effects of the scan duration on these hemodynamic measurements and on the volumes of lesions with Tmax of >6 seconds were tested using regression. RESULTS: Decreasing scan duration from 110 seconds to 40 seconds falsely reduced perfusion estimates by 47.6%-64.2% of normal for CBV, 1.96%-4.10% for CBF, 133%-205% for MTT, and 6.2-8.0 seconds for Tmax, depending on the postprocessing method. This truncation falsely reduced estimated Tmax lesion volume by 71.5 or 93.8 mL, depending on the deconvolution method. "Lesion reversal" (ie, change from above-normal to apparently normal, or from >6 seconds to ≤6 seconds for the time to response function maximum) with increasing truncation occurred in 37%-46% of lesions for CBV, 2%-4% for CBF, 28%-54% for MTT, and 42%-44% for Tmax, depending on the postprocessing method. CONCLUSIONS: Hidden truncation-related errors in perfusion images may be large enough to alter patient management or affect outcomes of clinical trials.
Copen WA, Morais LT, Wu O, Schwamm LH, Schaefer PW, González GR, Yoo AJ. In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core?. PLoS One 2015;10(7):e0133566.Abstract
BACKGROUND AND PURPOSE: In the treatment of patients with suspected acute ischemic stroke, increasing evidence suggests the importance of measuring the volume of the irreversibly injured "ischemic core." The gold standard method for doing this in the clinical setting is diffusion-weighted magnetic resonance imaging (DWI), but many authors suggest that maps of regional cerebral blood volume (CBV) derived from computed tomography perfusion imaging (CTP) can substitute for DWI. We sought to determine whether DWI and CTP-derived CBV maps are equivalent in measuring core volume. METHODS: 58 patients with suspected stroke underwent CTP and DWI within 6 hours of symptom onset. We measured low-CBV lesion volumes using three methods: "objective absolute," i.e. the volume of tissue with CBV below each of six published absolute thresholds (0.9-2.5 mL/100 g), "objective relative," whose six thresholds (51%-60%) were fractions of mean contralateral CBV, and "subjective," in which two radiologists (R1, R2) outlined lesions subjectively. We assessed the sensitivity and specificity of each method, threshold, and radiologist in detecting infarction, and the degree to which each over- or underestimated the DWI core volume. Additionally, in the subset of 32 patients for whom follow-up CT or MRI was available, we measured the proportion of CBV- or DWI-defined core lesions that exceeded the follow-up infarct volume, and the maximum amount by which this occurred. RESULTS: DWI was positive in 72% (42/58) of patients. CBV maps' sensitivity/specificity in identifying DWI-positive patients were 100%/0% for both objective methods with all thresholds, 43%/94% for R1, and 83%/44% for R2. Mean core overestimation was 156-699 mL for objective absolute thresholds, and 127-200 mL for objective relative thresholds. For R1 and R2, respectively, mean±SD subjective overestimation were -11±26 mL and -11±23 mL, but subjective volumes differed from DWI volumes by up to 117 and 124 mL in individual patients. Inter-rater agreement regarding the presence of infarction on CBV maps was poor (kappa = 0.21). Core lesions defined by the six objective absolute CBV thresholds exceeded follow-up infarct volumes for 81%-100% of patients, by up to 430-1002 mL. Core estimates produced by objective relative thresholds exceeded follow-up volumes in 91% of patients, by up to 210-280 mL. Subjective lesions defined by R1 and R2 exceeded follow-up volumes in 18% and 26% of cases, by up to 71 and 15 mL, respectively. Only 1 of 23 DWI lesions (4%) exceeded final infarct volume, by 3 mL. CONCLUSION: CTP-derived CBV maps cannot reliably substitute for DWI in measuring core volume, or even establish which patients have DWI lesions.
Wintermark M, Luby M, Bornstein NM, Demchuk A, Fiehler J, Kudo K, Lees KR, Liebeskind DS, Michel P, Nogueira RG, Parsons MW, Sasaki M, Wardlaw JM, Wu O, Zhang W, Zhu G, Warach SJ. International survey of acute stroke imaging used to make revascularization treatment decisions. Int J Stroke 2015;10(5):759-62.Abstract
BACKGROUND: To assess the differences across continental regions in terms of stroke imaging obtained for making acute revascularization therapy decisions, and to identify obstacles to participating in randomized trials involving multimodal imaging. METHODS: STroke Imaging Repository (STIR) and Virtual International Stroke Trials Archive (VISTA)-Imaging circulated an online survey through its website, through the websites of national professional societies from multiple countries as well as through email distribution lists from STIR and the above mentioned societies. RESULTS: We received responses from 223 centers (2 from Africa, 38 from Asia, 10 from Australia, 101 from Europe, 4 from Middle East, 55 from North America, 13 from South America). In combination, the sites surveyed administered acute revascularization therapy to a total of 25,326 acute stroke patients in 2012. Seventy-three percent of these patients received intravenous (i.v.) tissue plasminogen activator (tPA), and 27%, endovascular therapy. Vascular imaging was routinely obtained in 79% (152/193) of sites for endovascular therapy decisions, and also as part of standard IV tPA treatment decisions at 46% (92/198) of sites. Modality, availability and use of acute vascular and perfusion imaging before revascularization varied substantially between geographical areas. The main obstacles to participate in randomized trials involving multimodal imaging included: mainly insufficient research support and staff (50%, 79/158) and infrequent use of multimodal imaging (27%, 43/158) . CONCLUSION: There were significant variations among sites and geographical areas in terms of stroke imaging work-up used tomake decisions both for intravenous and endovascular revascularization. Clinical trials using advanced imaging as a selection tool for acute revascularization therapy should address the need for additional resources and technical support, and take into consideration the lack of routine use of such techniques in trial planning.
Bouts MJRJ, Westmoreland SV, de Crespigny AJ, Liu Y, Vangel M, Dijkhuizen RM, Wu O, D'Arceuil HE. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates. BMC Neurosci 2015;16:91.Abstract
BACKGROUND: Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. RESULTS: An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P < 0.001). The distribution of signatures between brains with permanent and transient occlusions varied significantly between groups (P < 0.001). Qualitative comparisons with histopathology revealed that these signatures represented regions with different histopathology. Two signatures identified areas of progressive injury marked by severe necrosis and the presence of gitter cells. Another signature identified less severe but pronounced neuronal and axonal degeneration, while the other signatures depicted tissue remodeling with vascular proliferation and astrogliosis. CONCLUSION: These exploratory results demonstrate the potential of temporally and spatially combined voxel-based methods to generate tissue signatures that may correlate with distinct histopathological features. The identification of distinct ischemic MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.
Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG, Gerstner ER, Schmainda KM, Paynabar K, Wu O, Wen PY, Batchelor T, Rosen B, Stufflebeam SM. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients. Transl Oncol 2015;8(3):137-46.Abstract
OBJECTIVES: This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS: Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS: CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS: DSC-MRI is highly repeatable in high-grade glioma patients.
Wu O, Cloonan L, Mocking SJT, Bouts MJRJ, Copen WA, Cougo-Pinto PT, Fitzpatrick K, Kanakis A, Schaefer PW, Rosand J, Furie KL, Rost NS. Role of Acute Lesion Topography in Initial Ischemic Stroke Severity and Long-Term Functional Outcomes. Stroke 2015;46(9):2438-44.Abstract
BACKGROUND AND PURPOSE: Acute infarct volume, often proposed as a biomarker for evaluating novel interventions for acute ischemic stroke, correlates only moderately with traditional clinical end points, such as the modified Rankin Scale. We hypothesized that the topography of acute stroke lesions on diffusion-weighted magnetic resonance imaging may provide further information with regard to presenting stroke severity and long-term functional outcomes. METHODS: Data from a prospective stroke repository were limited to acute ischemic stroke subjects with magnetic resonance imaging completed within 48 hours from last known well, admission NIH Stroke Scale (NIHSS), and 3-to-6 months modified Rankin Scale scores. Using voxel-based lesion symptom mapping techniques, including age, sex, and diffusion-weighted magnetic resonance imaging lesion volume as covariates, statistical maps were calculated to determine the significance of lesion location for clinical outcome and admission stroke severity. RESULTS: Four hundred ninety subjects were analyzed. Acute stroke lesions in the left hemisphere were associated with more severe NIHSS at admission and poor modified Rankin Scale at 3 to 6 months. Specifically, injury to white matter (corona radiata, internal and external capsules, superior longitudinal fasciculus, and uncinate fasciculus), postcentral gyrus, putamen, and operculum were implicated in poor modified Rankin Scale. More severe NIHSS involved these regions, as well as the amygdala, caudate, pallidum, inferior frontal gyrus, insula, and precentral gyrus. CONCLUSIONS: Acute lesion topography provides important insights into anatomic correlates of admission stroke severity and poststroke outcomes. Future models that account for infarct location in addition to diffusion-weighted magnetic resonance imaging volume may improve stroke outcome prediction and identify patients likely to benefit from aggressive acute intervention and personalized rehabilitation strategies.
2014
Battey TWK, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BCV, Davis SM, Donnan GA, Sheth KN, Kimberly TW. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 2014;45(12):3643-8.Abstract
BACKGROUND AND PURPOSE: In malignant infarction, brain edema leads to secondary neurological deterioration and poor outcome. We sought to determine whether swelling is associated with outcome in smaller volume strokes. METHODS: Two research cohorts of acute stroke subjects with serial brain MRI were analyzed. The categorical presence of swelling and infarct growth was assessed on diffusion-weighted imaging (DWI) by comparing baseline and follow-up scans. The increase in stroke volume (ΔDWI) was then subdivided into swelling and infarct growth volumes using region-of-interest analysis. The relationship of these imaging markers with outcome was evaluated in univariable and multivariable regression. RESULTS: The presence of swelling independently predicted worse outcome after adjustment for age, National Institutes of Health Stroke Scale, admission glucose, and baseline DWI volume (odds ratio, 4.55; 95% confidence interval, 1.21-18.9; P<0.02). Volumetric analysis confirmed that ΔDWI was associated with outcome (odds ratio, 4.29; 95% confidence interval, 2.00-11.5; P<0.001). After partitioning ΔDWI into swelling and infarct growth volumetrically, swelling remained an independent predictor of poor outcome (odds ratio, 1.09; 95% confidence interval, 1.03-1.17; P<0.005). Larger infarct growth was also associated with poor outcome (odds ratio, 7.05; 95% confidence interval, 1.04-143; P<0.045), although small infarct growth was not. The severity of cytotoxic injury measured on apparent diffusion coefficient maps was associated with swelling, whereas the perfusion deficit volume was associated with infarct growth. CONCLUSIONS: Swelling and infarct growth each contribute to total stroke lesion growth in the days after stroke. Swelling is an independent predictor of poor outcome, with a brain swelling volume of ≥11 mL identified as the threshold with greatest sensitivity and specificity for predicting poor outcome.
Kimberly TW, Battey TWK, Pham L, Wu O, Yoo AJ, Furie KL, Singhal AB, Elm JJ, Stern BJ, Sheth KN. Glyburide is associated with attenuated vasogenic edema in stroke patients. Neurocrit Care 2014;20(2):193-201.Abstract
BACKGROUND: Brain edema is a serious complication of ischemic stroke that can lead to secondary neurological deterioration and death. Glyburide is reported to prevent brain swelling in preclinical rodent models of ischemic stroke through inhibition of a non-selective channel composed of sulfonylurea receptor 1 and transient receptor potential cation channel subfamily M member 4. However, the relevance of this pathway to the development of cerebral edema in stroke patients is not known. METHODS: Using a case-control design, we retrospectively assessed neuroimaging and blood markers of cytotoxic and vasogenic edema in subjects who were enrolled in the glyburide advantage in malignant edema and stroke-pilot (GAMES-Pilot) trial. We compared serial brain magnetic resonance images (MRIs) to a cohort with similar large volume infarctions. We also compared matrix metalloproteinase-9 (MMP-9) plasma level in large hemispheric stroke. RESULTS: We report that IV glyburide was associated with T2 fluid-attenuated inversion recovery signal intensity ratio on brain MRI, diminished the lesional water diffusivity between days 1 and 2 (pseudo-normalization), and reduced blood MMP-9 level. CONCLUSIONS: Several surrogate markers of vasogenic edema appear to be reduced in the setting of IV glyburide treatment in human stroke. Verification of these potential imaging and blood biomarkers is warranted in the context of a randomized, placebo-controlled trial.
Auriel E, Edlow BL, Reijmer YD, Fotiadis P, Ramirez-Martinez S, Ni J, Reed AK, Vashkevich A, Schwab K, Rosand J, Viswanathan A, Wu O, Gurol EM, Greenberg SM. Microinfarct disruption of white matter structure: a longitudinal diffusion tensor analysis. Neurology 2014;83(2):182-8.Abstract
OBJECTIVE: To evaluate the local effect of small asymptomatic infarctions detected by diffusion-weighted imaging (DWI) on white matter microstructure using longitudinal structural and diffusion tensor imaging (DTI). METHODS: Nine acute to subacute DWI lesions were identified in 6 subjects with probable cerebral amyloid angiopathy who had undergone high-resolution MRI both before and after DWI lesion detection. Regions of interest (ROIs) corresponding to the site of the DWI lesion (lesion ROI) and corresponding site in the nonlesioned contralateral hemisphere (control ROI) were coregistered to the pre- and postlesional scans. DTI tractography was additionally performed to reconstruct the white matter tracts containing the ROIs. DTI parameters (fractional anisotropy [FA], mean diffusivity [MD]) were quantified within each ROI, the 6-mm lesion-containing tract segments, and the entire lesion-containing tract bundle. Lesion/control FA and MD ratios were compared across time points. RESULTS: The postlesional scans (performed a mean 7.1 ± 4.7 months after DWI lesion detection) demonstrated a decrease in median FA lesion/control ROI ratio (1.08 to 0.93, p = 0.038) and increase in median MD lesion/control ROI ratio (0.97 to 1.17, p = 0.015) relative to the prelesional scans. There were no visible changes on postlesional high-resolution T1-weighted and fluid-attenuated inversion recovery images in 4 of 9 lesion ROIs and small (2-5 mm) T1 hypointensities in the remaining 5. No postlesional changes in FA or MD ratios were detected in the 6-mm lesion-containing tract segments or full tract bundles. CONCLUSIONS: Asymptomatic DWI lesions produce chronic local microstructural injury. The cumulative effects of these widely distributed lesions may directly contribute to small-vessel-related vascular cognitive impairment.
Greer DM, Rosenthal ES, Wu O. Neuroprognostication of hypoxic-ischaemic coma in the therapeutic hypothermia era. Nat Rev Neurol 2014;10(4):190-203.Abstract
Neurological prognostication after cardiac arrest has always been challenging, and has become even more so since the advent of therapeutic hypothermia (TH) in the early 2000s. Studies in this field are prone to substantial biases--most importantly, the self-fulfilling prophecy of early withdrawal of life-sustaining therapies--and physicians must be aware of these limitations when evaluating individual patients. TH mandates sedation and prolongs drug metabolism, and delayed neuronal recovery is possible after cardiac arrest with or without hypothermia treatment; thus, the clinician must allow an adequate observation period to assess for delayed recovery. Exciting advances have been made in clinical evaluation, electrophysiology, chemical biomarkers and neuroimaging, providing insights into the underlying pathophysiological mechanisms of injury, as well as prognosis. Some clinical features, such as pupillary reactivity, continue to provide robust information about prognosis, and EEG patterns, such as reactivity and continuity, seem promising as prognostic indicators. Evoked potential information is likely to remain a reliable prognostic tool in TH-treated patients, whereas traditional serum biomarkers, such as neuron-specific enolase, may be less reliable. Advanced neuroimaging techniques, particularly those utilizing MRI, hold great promise for the future. Clinicians should continue to use all the available tools to provide accurate prognostic advice to patients after cardiac arrest.
Kamps MJA, Horn J, Oddo M, Fugate JE, Storm C, Cronberg T, Wu O, Binnekade JM, Hoedemaekers CWE. Response to De Jonghe et al.: Prognostication of neurological outcome after cardiac arrest: standardization of neurological examination conditions is needed. Intensive Care Med 2014;40(2):295.
Dalca AV, Sridharan R, Cloonan L, Fitzpatrick KM, Kanakis A, Furie KL, Rosand J, Wu O, Sabuncu M, Rost NS, Golland P. Segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors. Med Image Comput Comput Assist Interv 2014;17(Pt 2):773-80.Abstract
We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
Schröder J, Cheng B, Ebinger M, Köhrmann M, Wu O, Kang D-W, Liebeskind DS, Tourdias T, Singer OC, Christensen S, Campbell B, Luby M, Warach S, Fiehler J, Fiebach JB, Gerloff C, Thomalla G. Validity of acute stroke lesion volume estimation by diffusion-weighted imaging-Alberta Stroke Program Early Computed Tomographic Score depends on lesion location in 496 patients with middle cerebral artery stroke. Stroke 2014;45(12):3583-8.Abstract
BACKGROUND AND PURPOSE: Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) has been used to estimate diffusion-weighted imaging (DWI) lesion volume in acute stroke. We aimed to assess correlations of DWI-ASPECTS with lesion volume in different middle cerebral artery (MCA) subregions and reproduce existing ASPECTS thresholds of a malignant profile defined by lesion volume ≥100 mL. METHODS: We analyzed data of patients with MCA stroke from a prospective observational study of DWI and fluid-attenuated inversion recovery in acute stroke. DWI-ASPECTS and lesion volume were calculated. The population was divided into subgroups based on lesion localization (superficial MCA territory, deep MCA territory, or both). Correlation of ASPECTS and infarct volume was calculated, and receiver-operating characteristics curve analysis was performed to identify the optimal ASPECTS threshold for ≥100-mL lesion volume. RESULTS: A total of 496 patients were included. There was a significant negative correlation between ASPECTS and DWI lesion volume (r=-0.78; P<0.0001). With regards to lesion localization, correlation was weaker in deep MCA region (r=-0.19; P=0.038) when compared with superficial (r=-0.72; P<0.001) or combined superficial and deep MCA lesions (r=-0.72; P<0.001). Receiver-operating characteristics analysis revealed ASPECTS≤6 as best cutoff to identify ≥100-mL DWI lesion volume; however, positive predictive value was low (0.35). CONCLUSIONS: ASPECTS has limitations when lesion location is not considered. Identification of patients with malignant profile by DWI-ASPECTS may be unreliable. ASPECTS may be a useful tool for the evaluation of noncontrast computed tomography. However, if MRI is used, ASPECTS seems dispensable because lesion volume can easily be quantified on DWI maps.
2013
Wintermark M, Albers GW, Broderick JP, Demchuk AM, Fiebach JB, Fiehler J, Grotta JC, Houser G, Jovin TG, Lees KR, Lev MH, Liebeskind DS, Luby M, Muir KW, Parsons MW, von Kummer R, Wardlaw JM, Wu O, Yoo AJ, Alexandrov AV, Alger JR, Aviv RI, Bammer R, Baron J-C, Calamante F, Campbell BCV, Carpenter TC, Christensen S, Copen WA, Derdeyn CP, Haley CE, Khatri P, Kudo K, Lansberg MG, Latour LL, Lee T-Y, Leigh R, Lin W, Lyden P, Mair G, Menon BK, Michel P, Mikulik R, Nogueira RG, Ostergaard L, Pedraza S, Riedel CH, Rowley HA, Sanelli PC, Sasaki M, Saver JL, Schaefer PW, Schellinger PD, Tsivgoulis G, Wechsler LR, White PM, Zaharchuk G, Zaidat OO, Davis SM, Donnan GA, Furlan AJ, Hacke W, Kang D-W, Kidwell C, Thijs VN, Thomalla G, Warach SJ. Acute Stroke Imaging Research Roadmap II. Stroke 2013;44(9):2628-39.
Greer DM, Yang J, Scripko PD, Sims JR, Cash S, Wu O, Hafler JP, Schoenfeld DA, Furie KL. Clinical examination for prognostication in comatose cardiac arrest patients. Resuscitation 2013;84(11):1546-51.Abstract
OBJECTIVE: To build new algorithms for prognostication of comatose cardiac arrest patients using clinical examination, and investigate whether therapeutic hypothermia influences the value of the clinical examination. METHODS: From 2000 to 2007, 500 consecutive patients in non-traumatic coma were prospectively enrolled, 200 of whom were post-cardiac arrest. Outcome was determined by modified Rankin Scale (mRS) score at 6 months, with mRS≤3 indicating good outcome. The clinical examination was performed on days 0, 1, 3 and 7 post-arrest, and clinical variables analyzed for importance in prognostication of outcome. A classification and regression tree analysis (CART) was used to develop a predictive algorithm. RESULTS: Good outcome was achieved in 9.9% of patients. In CART analysis, motor response was often chosen as a root node, and spontaneous eye movements, pupillary reflexes, eye opening and corneal reflexes were often chosen as splitting nodes. Over 8% of patients with absent or extensor motor response on day 3 achieved a good outcome, as did 2 patients with myoclonic status epilepticus. The odds of achieving a good outcome were lower in patients who suffered asystole (OR 0.187, 95% CI: 0.039-0.875, p=0.033) compared with ventricular fibrillation or non-perfusing ventricular tachycardia, but some still achieved good outcome. The absence of pupillary and corneal reflexes on day 3 remained highly reliable for predicting poor outcome, regardless of therapeutic hypothermia utilization. CONCLUSION: The clinical examination remains central to prognostication in comatose cardiac arrest patients in the modern area. Future studies should incorporate the clinical examination along with modern technology for accurate prognostication.
Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, Greer DM, Greenberg SM, Wu O, Kinney HC, Folkerth RD. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 2013;72(6):505-23.Abstract
Traumatic coma is associated with disruption of axonal pathways throughout the brain, but the specific pathways involved in humans are incompletely understood. In this study, we used high angular resolution diffusion imaging to map the connectivity of axonal pathways that mediate the 2 critical components of consciousness-arousal and awareness-in the postmortem brain of a 62-year-old woman with acute traumatic coma and in 2 control brains. High angular resolution diffusion imaging tractography guided tissue sampling in the neuropathologic analysis. High angular resolution diffusion imaging tractography demonstrated complete disruption of white matter pathways connecting brainstem arousal nuclei to the basal forebrain and thalamic intralaminar and reticular nuclei. In contrast, hemispheric arousal pathways connecting the thalamus and basal forebrain to the cerebral cortex were only partially disrupted, as were the cortical "awareness pathways." Neuropathologic examination, which used β-amyloid precursor protein and fractin immunomarkers, revealed axonal injury in the white matter of the brainstem and cerebral hemispheres that corresponded to sites of high angular resolution diffusion imaging tract disruption. Axonal injury was also present within the gray matter of the hypothalamus, thalamus, basal forebrain, and cerebral cortex. We propose that traumatic coma may be a subcortical disconnection syndrome related to the disconnection of specific brainstem arousal nuclei from the thalamus and basal forebrain.
Bouts MJRJ, Tiebosch IA, van der Toorn A, Viergever MA, Wu O, Dijkhuizen RM. Early identification of potentially salvageable tissue with MRI-based predictive algorithms after experimental ischemic stroke. J Cereb Blood Flow Metab 2013;33(7):1075-82.Abstract
Individualized stroke treatment decisions can be improved by accurate identification of the extent of salvageable tissue. Magnetic resonance imaging (MRI)-based approaches, including measurement of a 'perfusion-diffusion mismatch' and calculation of infarction probability, allow assessment of tissue-at-risk; however, the ability to explicitly depict potentially salvageable tissue remains uncertain. In this study, five predictive algorithms (generalized linear model (GLM), generalized additive model, support vector machine, adaptive boosting, and random forest) were tested in their potency to depict acute cerebral ischemic tissue that can recover after reperfusion. Acute T2-, diffusion-, and perfusion-weighted MRI, and follow-up T2 maps were collected from rats subjected to right-sided middle cerebral artery occlusion without subsequent reperfusion, for training of algorithms (Group I), and with spontaneous (Group II) or thrombolysis-induced reperfusion (Group III), to determine infarction probability-based viability thresholds and prediction accuracies. The infarction probability difference between irreversible-i.e., infarcted after reperfusion-and salvageable tissue injury-i.e., noninfarcted after reperfusion-was largest for GLM (20±7%) with highest accuracy of risk-based identification of acutely ischemic tissue that could recover on subsequent reperfusion (Dice's similarity index=0.79±0.14). Our study shows that assessment of the heterogeneity of infarction probability with MRI-based algorithms enables estimation of the extent of potentially salvageable tissue after acute ischemic stroke.
Edlow BL, Giacino JT, Wu O. Functional MRI and outcome in traumatic coma. Curr Neurol Neurosci Rep 2013;13(9):375.Abstract
Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial spin labeling (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL perfusion MRI have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as the mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI, and ASL perfusion MRI and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation.

Pages